Some Theorems of Approximation Theory in Weighted Smirnov Classes with Variable Exponent

Let G ⊂ C be a Jordan domain with rectifiable Dini smooth boundary Γ . In this work, we investigate approximation properties of matrix transforms constructed via Faber series in weighted Smirnov classes with variable exponent. Moreover, direct and inverse theorems of approximation theory in weighted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory Jg. 20; H. 1; S. 39 - 61
1. Verfasser: Testici, Ahmet
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Schlagworte:
ISSN:1617-9447, 2195-3724
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G ⊂ C be a Jordan domain with rectifiable Dini smooth boundary Γ . In this work, we investigate approximation properties of matrix transforms constructed via Faber series in weighted Smirnov classes with variable exponent. Moreover, direct and inverse theorems of approximation theory in weighted Smirnov classes with variable exponent are proved and some results related to constructive characterization in generalized Lipschitz classes are obtained.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-019-00296-7