Some Theorems of Approximation Theory in Weighted Smirnov Classes with Variable Exponent

Let G ⊂ C be a Jordan domain with rectifiable Dini smooth boundary Γ . In this work, we investigate approximation properties of matrix transforms constructed via Faber series in weighted Smirnov classes with variable exponent. Moreover, direct and inverse theorems of approximation theory in weighted...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational methods and function theory Ročník 20; číslo 1; s. 39 - 61
Hlavní autor: Testici, Ahmet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Témata:
ISSN:1617-9447, 2195-3724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let G ⊂ C be a Jordan domain with rectifiable Dini smooth boundary Γ . In this work, we investigate approximation properties of matrix transforms constructed via Faber series in weighted Smirnov classes with variable exponent. Moreover, direct and inverse theorems of approximation theory in weighted Smirnov classes with variable exponent are proved and some results related to constructive characterization in generalized Lipschitz classes are obtained.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-019-00296-7