On the calculation of the poles of multivariate meromorphic functions using the symbolic-numeric two-point qd-algorithm

The so-called quotient-difference algorithm, or qd-algorithm, is used for determining the poles of a meromorphic function from its Taylor coefficients. A generalization of this algorithm to the univariate and multivariate two-point cases applied to a power series (positive or negative exponents) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 84; H. 4; S. 1443 - 1458
Hauptverfasser: Elidrissi, A., Abouir, J., Benouahmane, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2020
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The so-called quotient-difference algorithm, or qd-algorithm, is used for determining the poles of a meromorphic function from its Taylor coefficients. A generalization of this algorithm to the univariate and multivariate two-point cases applied to a power series (positive or negative exponents) is presented. We describe also the symbolic-numeric two-point qd-algorithm to compute the poles of multivariate meromorphic functions in a given domain from its series expansion coefficients. This algorithm can be regarded as computing the parametrized eigenvalues for a tridiagonal matrix. Numerical examples are furnished to illustrate our results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-020-00887-9