On the calculation of the poles of multivariate meromorphic functions using the symbolic-numeric two-point qd-algorithm

The so-called quotient-difference algorithm, or qd-algorithm, is used for determining the poles of a meromorphic function from its Taylor coefficients. A generalization of this algorithm to the univariate and multivariate two-point cases applied to a power series (positive or negative exponents) is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 84; číslo 4; s. 1443 - 1458
Hlavní autoři: Elidrissi, A., Abouir, J., Benouahmane, B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2020
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The so-called quotient-difference algorithm, or qd-algorithm, is used for determining the poles of a meromorphic function from its Taylor coefficients. A generalization of this algorithm to the univariate and multivariate two-point cases applied to a power series (positive or negative exponents) is presented. We describe also the symbolic-numeric two-point qd-algorithm to compute the poles of multivariate meromorphic functions in a given domain from its series expansion coefficients. This algorithm can be regarded as computing the parametrized eigenvalues for a tridiagonal matrix. Numerical examples are furnished to illustrate our results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-020-00887-9