On the calculation of the poles of multivariate meromorphic functions using the symbolic-numeric two-point qd-algorithm
The so-called quotient-difference algorithm, or qd-algorithm, is used for determining the poles of a meromorphic function from its Taylor coefficients. A generalization of this algorithm to the univariate and multivariate two-point cases applied to a power series (positive or negative exponents) is...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 84; číslo 4; s. 1443 - 1458 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The so-called quotient-difference algorithm, or qd-algorithm, is used for determining the poles of a meromorphic function from its Taylor coefficients. A generalization of this algorithm to the univariate and multivariate two-point cases applied to a power series (positive or negative exponents) is presented. We describe also the symbolic-numeric two-point qd-algorithm to compute the poles of multivariate meromorphic functions in a given domain from its series expansion coefficients. This algorithm can be regarded as computing the parametrized eigenvalues for a tridiagonal matrix. Numerical examples are furnished to illustrate our results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-020-00887-9 |