Heterogeneous Data Clustering Considering Multiple User-provided Constraints
Clustering on heterogeneous networks which consist of multi-typed objects and links has proved to be a useful technique in many scenarios. Although numerous clustering methods have achieved remarkable success, current clustering methods for heterogeneous networks tend to consider only internal infor...
Saved in:
| Published in: | International journal of computers, communications & control Vol. 14; no. 2; pp. 170 - 182 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oradea
Agora University of Oradea
01.04.2019
|
| Subjects: | |
| ISSN: | 1841-9836, 1841-9844 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Clustering on heterogeneous networks which consist of multi-typed objects and links has proved to be a useful technique in many scenarios. Although numerous clustering methods have achieved remarkable success, current clustering methods for heterogeneous networks tend to consider only internal information of the dataset. In order to utilize background domain knowledge, we propose a general framework for clustering heterogeneous data considering multiple user-provided constrains. Specifically, we summarize that three types of manual constraints on the object can be used to guide the clustering process. Then we propose the User- HeteClus algorithm to solve the key issues in the case of star-structure heterogeneous data, which incorporating the user constraint into similarity measurement between central objects. Experiments on a real-world dataset show the effectiveness of the proposed algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1841-9836 1841-9844 |
| DOI: | 10.15837/ijccc.2019.2.3419 |