Spectral Solvers of Maxwell’s Equations in Particle-in-Cell Codes: Numerical Schemes and Parallel Implementation

To solve Maxwell’s equations, particle-in-cell (PIC) simulation codes typically use the Finite-Difference Time-Domain (FDTD) method, which is subject to numerical dispersion. In contrast, spectral solvers are free of numerical dispersion effects and provide a high-quality solution. This paper discus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics Jg. 46; H. 1; S. 133 - 142
1. Verfasser: Panova, E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.01.2025
Springer Nature B.V
Schlagworte:
ISSN:1995-0802, 1818-9962
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To solve Maxwell’s equations, particle-in-cell (PIC) simulation codes typically use the Finite-Difference Time-Domain (FDTD) method, which is subject to numerical dispersion. In contrast, spectral solvers are free of numerical dispersion effects and provide a high-quality solution. This paper discusses some issues encountered when integrating spectral solvers into PIC codes. We describe a technique to implement a Perfectly Matched Layer (PML) in PIC codes with spectral solvers. We also propose a modified total-field/scattered-field (TFSF) method for effectively generating electromagnetic field at the boundary of a computational domain in case of an arbitrary-order field solver. The schemes under consideration have been successfully implemented in the PICADOR code using the OpenMP and MPI technologies. We demonstrate that spectral field solvers allow us to significantly decrease a computational grid resolution and achieve a performance gain, despite the additional overhead of performing Fast Fourier Transform (FFT).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080224608282