Multiobjective linear fractional programming model with equality and inequality constraints under pentagonal intuitionistic fuzzy environment

Multi-objective Linear Fractional optimization simultaneously addresses diverse goals using fractional programming techniques, offering a versatile decision-making framework adaptable to complex problems. The integration of Multiobjective Linear Fractional principles within an Intuitionistic Fuzzy E...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Opsearch Ročník 62; číslo 4; s. 1991 - 2028
Hlavní autori: Yuvashri, P., Saraswathi, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New Delhi Springer India 01.12.2025
Springer Nature B.V
Predmet:
ISSN:0030-3887, 0975-0320
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multi-objective Linear Fractional optimization simultaneously addresses diverse goals using fractional programming techniques, offering a versatile decision-making framework adaptable to complex problems. The integration of Multiobjective Linear Fractional principles within an Intuitionistic Fuzzy Environment reshapes decision-making, optimizing multiple objectives concurrently amid imprecise information. This innovative fusion of linear fractional programming and intuitive, fuzzy logic forms a flexible framework to efficiently address complex problems, accounting for uncertainties and diverse decision criteria, expanding the solution spectrum comprehensively. In this research paper, the multi-objective optimization issue is modelled in a fuzzy intuitionistic environment. The cost of objective function, decision making variable and coefficients are to be pentagonal intuitionistic fuzzy number (PIFN). Furthermore in this paper we take up a problem where the constraints are both equality and inequality and the crisp version is achieved using novel fractional to linear transformation with aid of the accuracy function defuzzified the constraints where the uncertain parameters are represented as intuitionistic pentagonal fuzzy numbers. We have constructed alternate approach a to resolve multi-objective optimization problems. The suggested approach entails thinking objectively when making decisions. For the simultaneous optimal evaluation of each objective. The transformation which converted the IFMOLFPP into crisp multiobjective linear programming problem(CMOLPP) by proposed strategy. Where the converted CMOLPP was solved by using lingprog to get optimal solution for CMOLPP. The numerical examples are provided to demonstrate the effectiveness of the suggested solution technique. To show the practical applicability, a case study of airline issue is also examined.
AbstractList Multi-objective Linear Fractional optimization simultaneously addresses diverse goals using fractional programming techniques, offering a versatile decision-making framework adaptable to complex problems. The integration of Multiobjective Linear Fractional principles within an Intuitionistic Fuzzy Environment reshapes decision-making, optimizing multiple objectives concurrently amid imprecise information. This innovative fusion of linear fractional programming and intuitive, fuzzy logic forms a flexible framework to efficiently address complex problems, accounting for uncertainties and diverse decision criteria, expanding the solution spectrum comprehensively. In this research paper, the multi-objective optimization issue is modelled in a fuzzy intuitionistic environment. The cost of objective function, decision making variable and coefficients are to be pentagonal intuitionistic fuzzy number (PIFN). Furthermore in this paper we take up a problem where the constraints are both equality and inequality and the crisp version is achieved using novel fractional to linear transformation with aid of the accuracy function defuzzified the constraints where the uncertain parameters are represented as intuitionistic pentagonal fuzzy numbers. We have constructed alternate approach a to resolve multi-objective optimization problems. The suggested approach entails thinking objectively when making decisions. For the simultaneous optimal evaluation of each objective. The transformation which converted the IFMOLFPP into crisp multiobjective linear programming problem(CMOLPP) by proposed strategy. Where the converted CMOLPP was solved by using lingprog to get optimal solution for CMOLPP. The numerical examples are provided to demonstrate the effectiveness of the suggested solution technique. To show the practical applicability, a case study of airline issue is also examined.
Author Yuvashri, P.
Saraswathi, A.
Author_xml – sequence: 1
  givenname: P.
  surname: Yuvashri
  fullname: Yuvashri, P.
  email: spprakash199@gmail.com
  organization: Department of Mathematics, Rajalakshmi Engineering College
– sequence: 2
  givenname: A.
  orcidid: 0000-0003-0529-4346
  surname: Saraswathi
  fullname: Saraswathi, A.
  email: saraswaa@srmist.edu.in
  organization: Department of Mathematics, College of engineering and Technology, SRM Institute of Science and Technology
BookMark eNp9kE1u2zAQhYnCAZo4uUBXBLpWOiJpUVwWRtsUcJBNuiYoauTQkEiHpFzYd8idy8QtustqfvDeh5l3RRY-eCTkUw23NYD8kmq2UrICJiqAthHV6QO5BCVXFXAGi9IDh4q3rfxIrlLaATQCWnFJXu7nMbvQ7dBmd0A6Oo8m0iGaMgdvRrqPYRvNNDm_pVPocaS_XX6i-Dyb0eUjNb6nxfRvtMGnHI3zOdHZ9xjpHn022zdW2c7uletSdpYO8-l0pOgPLgY_Fdk1uRjMmPDmb12SX9-_Pa7vqs3Dj5_rr5vKMgm5UpZxzrBrOyaAKegl2s6IXnX1imPT9YMdrLHSKEQm5MCA8VqiQaEAm1XDl-TzmVuee54xZb0LcywXJs1Z0yomGqGKip1VNoaUIg56H91k4lHXoF9j1-fYdYldv8WuT8XEz6ZUxH6L8T_6Hdcf05ON_w
Cites_doi 10.1049/trit.2019.0030
10.1016/j.bjbas.2017.08.005
10.1109/MAMI.2015.7456582URL
10.14445/22315373/IJMTT-V56P569
10.22541/au.160459407.71981177/v1
10.1007/s12597-014-0194-1
10.1016/j.jocs.2017.12.004
10.1080/16168658.2021.1938868
10.1007/s13198-018-0738-5
10.1016/j.apm.2018.01.008
10.1016/S0165-0114(86)80034-3
10.18280/mmep.100511
10.2139/ssrn.4054426
10.1016/j.matpr.2019.04.209
10.1016/S0165-0114(02)00374-3
10.1016/S0165-0114(02)00142-2
10.14445/22315373/IJMTT-V41P529
10.22105/jarie.2017.48543
10.1007/s00500-022-06884-5
10.1155/2013/435030
10.1016/j.rico.2021.100091
10.1007/s40815-022-01348-2
10.1051/ro/2013056
10.1007/s00500-022-07408-x
10.1016/0165-0114(94)90229-1
10.28924/2291-8639-21-2023-121
10.1016/j.mcm.2007.12.007
10.18280/mmep.110128
10.1016/j.fiae.2016.06.007
10.1016/j.chaos.2020.110352
10.1007/s00500-019-04442-0
10.1002/nav.3800090303
10.1007/s12597-018-00351-2
10.12732/ijpam.v114i4.8
10.1016/S0165-0114(01)00060-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Operational Research Society of India 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Operational Research Society of India 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Operational Research Society of India 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Operational Research Society of India 2024.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1007/s12597-024-00864-z
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Business
EISSN 0975-0320
EndPage 2028
ExternalDocumentID 10_1007_s12597_024_00864_z
GroupedDBID -~X
06D
0R~
0VY
1N0
203
29N
2JN
2KG
2LR
2VQ
30V
4.4
406
408
40D
40E
5VS
67Z
7WY
8FE
8FG
8FL
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATHPR
AXYYD
AYFIA
AYQZM
BA0
BAPOH
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IKXTQ
ITM
IWAJR
IXC
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
K8~
KOV
L6V
LLZTM
M0C
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
P9M
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PTHSS
Q2X
R9I
ROL
RSV
S1Z
S27
S3B
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c270t-9c2332eb8b240290d7ecba4d9b153e6bdfcfcac7a9ee247f202317eae490e6563
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001336763500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-3887
IngestDate Mon Nov 10 06:20:52 EST 2025
Sat Nov 29 06:53:25 EST 2025
Thu Nov 06 11:44:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Accuracy function
Pentagonal intuitionistic fuzzy number
Crisp multi objective linear programming problem
Fuzzy optimal solution
Multi-objective linear programming problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-9c2332eb8b240290d7ecba4d9b153e6bdfcfcac7a9ee247f202317eae490e6563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0529-4346
PQID 3268924649
PQPubID 326266
PageCount 38
ParticipantIDs proquest_journals_3268924649
crossref_primary_10_1007_s12597_024_00864_z
springer_journals_10_1007_s12597_024_00864_z
PublicationCentury 2000
PublicationDate 20251200
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationTitle Opsearch
PublicationTitleAbbrev OPSEARCH
PublicationYear 2025
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References R Mitlif (864_CR21) 2022; 13
SR Porchelvi (864_CR27) 2014; 6
G Uthra (864_CR37) 2018; 56
A Ebrahimnejad (864_CR12) 2018; 57
TA Krassmir (864_CR18) 1994; 61
Y Prakash (864_CR28) 2023; 10
A Charne (864_CR7) 1962; 9
S Narayanamoorthy (864_CR22) 2017; 114
R Arya (864_CR2) 2020; 24
M Borza (864_CR4) 2020; 13
N Guzel (864_CR14) 2013; 2013
864_CR15
B Stanojevi (864_CR35) 2022; 26
SF Tantawy (864_CR36) 2008; 48
M Chakraborty (864_CR6) 2002; 125
BB Pal (864_CR26) 2003; 139
K Sivakumar (864_CR33) 2024; 11
D Chakraborty (864_CR5) 2015; 52
P Rath (864_CR29) 2018; 37
I Ali (864_CR1) 2019; 10
864_CR31
864_CR10
864_CR32
D Sahoo (864_CR30) 2022; 6
MB Hasan (864_CR16) 2011; 8
G Yanga (864_CR42) 2020; 141
TK Bhatia (864_CR3) 2022; 26
MS Osman (864_CR25) 2018; 7
LGV Nayakam (864_CR24) 2016; 8
H Elham (864_CR11) 2023; 13
PA Ejegwa (864_CR13) 2014; 10
CF Wang (864_CR40) 2008; 204
SK Das (864_CR9) 2018; 25
TA Krassmir (864_CR17) 1986; 20
S Nayak (864_CR23) 2019; 56
SK Das (864_CR8) 2017; 4
M Malik (864_CR19) 2022; 24
P Yuvashri (864_CR41) 2024; 46
C Veeramani (864_CR38) 2014; 48
R Srinivasan (864_CR34) 2020; 21
SIM Minasiana (864_CR20) 2003; 134
K Vidhya (864_CR39) 2023; 21
References_xml – ident: 864_CR15
  doi: 10.1049/trit.2019.0030
– volume: 7
  start-page: 139
  year: 2018
  ident: 864_CR25
  publication-title: Beni-Suef Univ. J. Basic Appl. Sci.
  doi: 10.1016/j.bjbas.2017.08.005
– volume: 6
  start-page: 8095
  year: 2014
  ident: 864_CR27
  publication-title: Int. J. Current Res.
– ident: 864_CR10
  doi: 10.1109/MAMI.2015.7456582URL
– volume: 56
  start-page: 530
  year: 2018
  ident: 864_CR37
  publication-title: Int. J. Math. Trends Technol.
  doi: 10.14445/22315373/IJMTT-V56P569
– volume: 13
  start-page: 3255
  year: 2022
  ident: 864_CR21
  publication-title: J. Algebr. Stat.
– ident: 864_CR31
  doi: 10.22541/au.160459407.71981177/v1
– volume: 52
  start-page: 431
  year: 2015
  ident: 864_CR5
  publication-title: OPSEARCH
  doi: 10.1007/s12597-014-0194-1
– volume: 25
  start-page: 367
  year: 2018
  ident: 864_CR9
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.12.004
– volume: 13
  start-page: 323
  issue: 3
  year: 2020
  ident: 864_CR4
  publication-title: Fuzzy Info. Eng.
  doi: 10.1080/16168658.2021.1938868
– volume: 13
  start-page: 111
  issue: 1
  year: 2023
  ident: 864_CR11
  publication-title: J. Mahani Math. Res.
– volume: 8
  start-page: 1
  year: 2011
  ident: 864_CR16
  publication-title: Int. J. Oper. Res.
– volume: 10
  start-page: 173
  year: 2019
  ident: 864_CR1
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-018-0738-5
– volume: 57
  start-page: 459
  year: 2018
  ident: 864_CR12
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.01.008
– volume: 20
  start-page: 87
  year: 1986
  ident: 864_CR17
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/S0165-0114(86)80034-3
– volume: 10
  start-page: 1611
  issue: 5
  year: 2023
  ident: 864_CR28
  publication-title: Math. Model. Eng. Probl.
  doi: 10.18280/mmep.100511
– ident: 864_CR32
  doi: 10.2139/ssrn.4054426
– volume: 21
  start-page: 155
  year: 2020
  ident: 864_CR34
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2019.04.209
– volume: 139
  start-page: 395
  issue: 2
  year: 2003
  ident: 864_CR26
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(02)00374-3
– volume: 134
  start-page: 397
  year: 2003
  ident: 864_CR20
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(02)00142-2
– volume: 37
  start-page: 109
  year: 2018
  ident: 864_CR29
  publication-title: Bull. Pure Appl. Sci.
  doi: 10.14445/22315373/IJMTT-V41P529
– volume: 4
  start-page: 89
  issue: 2
  year: 2017
  ident: 864_CR8
  publication-title: J. Appl. Res. Industr. Eng.
  doi: 10.22105/jarie.2017.48543
– volume: 26
  start-page: 5275
  year: 2022
  ident: 864_CR35
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-06884-5
– volume: 2013
  start-page: 435030
  issue: 1
  year: 2013
  ident: 864_CR14
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2013/435030
– volume: 6
  start-page: 1
  year: 2022
  ident: 864_CR30
  publication-title: Results Control Optim.
  doi: 10.1016/j.rico.2021.100091
– volume: 24
  start-page: 3544
  issue: 8
  year: 2022
  ident: 864_CR19
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-022-01348-2
– volume: 48
  start-page: 109
  issue: 1
  year: 2014
  ident: 864_CR38
  publication-title: RAIRO-Oper. Res.
  doi: 10.1051/ro/2013056
– volume: 26
  start-page: 11525
  year: 2022
  ident: 864_CR3
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07408-x
– volume: 61
  start-page: 137
  year: 1994
  ident: 864_CR18
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(94)90229-1
– volume: 21
  start-page: 121
  year: 2023
  ident: 864_CR39
  publication-title: Int. J. Anal. Appl.
  doi: 10.28924/2291-8639-21-2023-121
– volume: 48
  start-page: 969
  issue: 5–6
  year: 2008
  ident: 864_CR36
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2007.12.007
– volume: 11
  start-page: 255
  issue: 1
  year: 2024
  ident: 864_CR33
  publication-title: Math. Model. Eng. Probl.
  doi: 10.18280/mmep.110128
– volume: 8
  start-page: 237
  year: 2016
  ident: 864_CR24
  publication-title: Fuzzy Inf. Eng.
  doi: 10.1016/j.fiae.2016.06.007
– volume: 141
  start-page: 1
  year: 2020
  ident: 864_CR42
  publication-title: Chaos Solitons and Fractals
  doi: 10.1016/j.chaos.2020.110352
– volume: 10
  start-page: 1
  year: 2014
  ident: 864_CR13
  publication-title: Euro. Sci. J.
– volume: 24
  start-page: 9105
  year: 2020
  ident: 864_CR2
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04442-0
– volume: 9
  start-page: 181
  year: 1962
  ident: 864_CR7
  publication-title: Nav. Res. Logist Q.
  doi: 10.1002/nav.3800090303
– volume: 204
  start-page: 281
  issue: 1
  year: 2008
  ident: 864_CR40
  publication-title: Appl. Math. Comput.
– volume: 56
  start-page: 174
  issue: 1
  year: 2019
  ident: 864_CR23
  publication-title: OPSEARCH
  doi: 10.1007/s12597-018-00351-2
– volume: 114
  start-page: 777
  year: 2017
  ident: 864_CR22
  publication-title: Int. J. Pure Appl. Math.
  doi: 10.12732/ijpam.v114i4.8
– volume: 125
  start-page: 335
  year: 2002
  ident: 864_CR6
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(01)00060-4
– volume: 46
  start-page: 3259
  issue: 2
  year: 2024
  ident: 864_CR41
  publication-title: J. Intell. Fuzzy Syst.
SSID ssj0064084
Score 2.3420405
Snippet Multi-objective Linear Fractional optimization simultaneously addresses diverse goals using fractional programming techniques, offering a versatile...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1991
SubjectTerms Application Article
Business and Management
Careers
Constraints
Cotton
Decision making
Equality
Expected values
Fuzzy logic
Fuzzy sets
Inventory
Linear programming
Linear transformations
Management
Mathematical programming
Mathematics
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Parameter uncertainty
Pareto optimum
Problem solving
Production planning
Ratios
Sensitivity analysis
Uncertainty
Title Multiobjective linear fractional programming model with equality and inequality constraints under pentagonal intuitionistic fuzzy environment
URI https://link.springer.com/article/10.1007/s12597-024-00864-z
https://www.proquest.com/docview/3268924649
Volume 62
WOSCitedRecordID wos001336763500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 0975-0320
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064084
  issn: 0030-3887
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BQQgGHgVEeckDG0RKYze2R4SoGKBCPKpuke04CCTaKmmRmv_Af8Z2ElIQDDA6sU-Rz777Yt93B3ASU9bGJGgbDQhiT6t8j3Ha8XAcaCyZ2SOudEL_mvZ6bDDgtyUpLKui3asrSWepa7KbQerUMz7FszicePkiLBl3x2zBhrv7fmV_Q-KzIvcytpljGS2pMj_L-OqOaoz57VrUeZvuxv--cxPWS3SJzovlsAULetiElSq4vQlrc-kHTevmM2drtg3vjos7ki-FCUQWf4oUJWlBfTBiy1iuVzMYuQo6yJ7iIl0QM2dIDGNkBlVNZaGnrUAxyZClqqVobAPVn5ws83TqosVcomiUTPN8huZYdzvw2L18uLjyymINngqoP_G4CjAOtGTS3tdwP6ZaSUFiLo1N1aGME5UooajgWgeEJrZse5tqoQn3tQGVeBcaw9FQ7wHSTGIbfoU1VgT7UsRtQX0aUt5JQoNnWnBa6SwaFzk5ojr7sp39yMx-5GY_yltwWKk1KvdnFhnQysyfZ0h4C84qNdavf5e2_7fuB7Aa2ILBLv7lEBqTdKqPYFm9TZ6z9Nit2w99Yuxl
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xieXAUkCU1QduECmJ3dg-IgQCUSrEpt4i23EQSLRV0iLRf-CfsZ2EAIIDHJ3Ek8jj5cWe9wZgP6EswCQMjAcEsbtVvsc4bXk4CTWWzIwRlzrhvk07Hdbt8quSFJZX0e7VkaSbqWuym0Hq1DNrimdxOPHGkzBt3tKyivnXN_fV_BsRnxXay9gqxzJaUmV-tvF1Oaox5rdjUbfanC797zuXYbFEl-io6A4rMKF7DZitgtsbsPBJftCULj80W_NVeHNc3L58KqZAZPGnyFCaFdQHY7aM5Xo2lZHLoIPsLi7SBTHzFYlegkylqqgs9LQZKIY5slS1DA1soPqDs2Wujly0mBOKRuloPH5Fn1h3a3B3enJ7fOaVyRo8FVJ_6HEVYhxqyaQ9r-F-QrWSgiRcmjlVRzJJVaqEooJrHRKa2rTtAdVCE-5rAyrxOkz1-j29AUgziW34FdZYEexLkQSC-jSivJVGBs804aDyWTwoNDniWn3Ztn5sWj92rR-Pm7BduTUux2ceG9DKzJ9nRHgTDis31rd_t7b5t8f3YO7s9rIdt887F1swH9rkwS4WZhumhtlI78CMehk-5tmu68PvmkzvSQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL3iSwgextYN0Q2YH_bGoqaxie1HBKtAQIUEVH2LbMdBQyKt0hSJ_gf-83ydhBa0PUw8OomvIl9_HNvn3AvwI-WiS1nUdR5QDE-rwkBIfhjQNLJUCzdGfOqEwQXv98VwKK8WVPye7d5cSVaaBozSlJedcZp15sI3h9p54NaXADE5C2bLsMqQSI_79etBMxfHLBRVHGaKUWQFr2Uzf7fxemma4803V6R-5eltvf-fP8KHGnWSo6qbfIIlm7dgvSG9t2BzISyhK12-xHKdfIZnr9Ed6ftqaiSIS1VBsqKSRDizNcfrwVUmPrMOwdNdYivB5hNReUpcpaZoEJJiZopyQlDCVpAxEtjvvC33dOpZZD6ANMmms9kTWVDjfYHb3q-b49OgTuIQmIiHZSBNRGlktdB4jyPDlFujFUuldnOtjXWamcwow5W0NmI8w3TuXW6VZTK0DmzSbVjJR7ndAWKFpkjLopYaRkOt0q7iIY-5PMxih3PacND4LxlXsTqSeVRmbP3EtX7iWz-ZtWG3cXFSj9tJ4sCscDvSmMk2_GxcOn_9b2tf_-_z77B-ddJLLs76599gI8Kcwp4iswsrZTG1e7BmHsvfk2Lfd-c_6Qb4LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+linear+fractional+programming+model+with+equality+and+inequality+constraints+under+pentagonal+intuitionistic+fuzzy+environment&rft.jtitle=Opsearch&rft.au=Yuvashri%2C+P&rft.au=Saraswathi%2C+A&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0030-3887&rft.eissn=0975-0320&rft.volume=62&rft.issue=4&rft.spage=1991&rft.epage=2028&rft_id=info:doi/10.1007%2Fs12597-024-00864-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3887&client=summon