Hardware Acceleration for Object Detection using YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform

Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware platform, having exceptional computing capabilities due to their adaptable topologies, enabling highly parallel, high-performance, and diverse...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering, technology & applied science research Ročník 14; číslo 1; s. 13066 - 13071
Hlavní autoři: Saidani, Taoufik, Ghodhbani, Refka, Alhomoud, Ahmed, Alshammari, Ahmad, Zayani, Hafedh, Ben Ammar, Mohammed
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.02.2024
ISSN:2241-4487, 1792-8036
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware platform, having exceptional computing capabilities due to their adaptable topologies, enabling highly parallel, high-performance, and diverse operations that allow for customized reconfiguration of integrated circuits to enhance the effectiveness of object detection accelerators. However, there is a scarcity of assessments that offer a comprehensive analysis of FPGA-based object detection accelerators, and there is currently no comprehensive framework to enable object detection specifically tailored to the unique characteristics of FPGA technology. The You Only Look Once (YOLO) algorithm is an innovative method that combines speed and accuracy in object detection. This study implemented the YOLOv5 algorithm on a Xilinx® Zynq-7000 System on a Chip (SoC) to perform real-time object detection. Using the MS-COCO dataset, the proposed study showed an improvement in resource utilization with approximately 42 thousand (78%) look-up tables, 56 thousand (52%) flip-flops, 65 (46%) BRAMs, and 19 (9%) DSPs at a frequency of 250 MHz, improving the effectiveness compared to previous simulated results.
AbstractList Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware platform, having exceptional computing capabilities due to their adaptable topologies, enabling highly parallel, high-performance, and diverse operations that allow for customized reconfiguration of integrated circuits to enhance the effectiveness of object detection accelerators. However, there is a scarcity of assessments that offer a comprehensive analysis of FPGA-based object detection accelerators, and there is currently no comprehensive framework to enable object detection specifically tailored to the unique characteristics of FPGA technology. The You Only Look Once (YOLO) algorithm is an innovative method that combines speed and accuracy in object detection. This study implemented the YOLOv5 algorithm on a Xilinx® Zynq-7000 System on a Chip (SoC) to perform real-time object detection. Using the MS-COCO dataset, the proposed study showed an improvement in resource utilization with approximately 42 thousand (78%) look-up tables, 56 thousand (52%) flip-flops, 65 (46%) BRAMs, and 19 (9%) DSPs at a frequency of 250 MHz, improving the effectiveness compared to previous simulated results.
Author Alhomoud, Ahmed
Ben Ammar, Mohammed
Saidani, Taoufik
Ghodhbani, Refka
Zayani, Hafedh
Alshammari, Ahmad
Author_xml – sequence: 1
  givenname: Taoufik
  surname: Saidani
  fullname: Saidani, Taoufik
– sequence: 2
  givenname: Refka
  surname: Ghodhbani
  fullname: Ghodhbani, Refka
– sequence: 3
  givenname: Ahmed
  surname: Alhomoud
  fullname: Alhomoud, Ahmed
– sequence: 4
  givenname: Ahmad
  surname: Alshammari
  fullname: Alshammari, Ahmad
– sequence: 5
  givenname: Hafedh
  surname: Zayani
  fullname: Zayani, Hafedh
– sequence: 6
  givenname: Mohammed
  surname: Ben Ammar
  fullname: Ben Ammar, Mohammed
BookMark eNptkL1OwzAYRS0EEqV04gW8oxTb8U8yRoW2SJHSoQOwRI7jFFeuU2zz07cnLUyIb7nS1fnucK7AueudBuAGoynNUEbvdJTBT7ng-AyMsMhJkqGUn4MRIRQnlGbiEkxC2KLheMapICNgl9K3n9JrWCilrfYymt7BrvewarZaRXiv4xDH8j0Yt4HPVVl9sKHWe1hq6d2xLOym9ya-7uDAPRlr3Bd8Obg3OF8tCriyMg6Lu2tw0Ukb9OQ3x2A9f1jPlklZLR5nRZkoIlBMciIk1ohmaU65kJKwhvGMcdZonnaK510j2kamTdsgJalWrMVIsY7hPBUUp2Nw-zOrfB-C112992Yn_aHGqD6pqk-q6qOqgcZ_aGXiyUL00th_f74BJCNwSQ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3594348
crossref_primary_10_1016_j_neucom_2025_130874
crossref_primary_10_1007_s11554_025_01635_9
crossref_primary_10_1177_14780771251352933
Cites_doi 10.1145/3242898
10.1016/j.image.2018.07.007
10.1049/iet-ipr.2018.5952
10.1145/3289602.3293904
10.48084/etasr.6406
10.3390/app13074144
10.1145/3309551
10.1109/IPDPSW.2019.00026
10.1109/ACCESS.2019.2941547
10.48084/etasr.6397
10.1109/TCSI.2017.2767204
10.1109/CVPR.2014.81
10.1016/j.imavis.2020.103910
10.1109/ACCESS.2023.3266093
10.1109/ACCESS.2018.2890150
10.48084/etasr.6377
10.1007/s40031-020-00508-y
10.1145/3174243.3174266
10.1016/j.sysarc.2019.01.007
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.48084/etasr.6761
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1792-8036
EndPage 13071
ExternalDocumentID 10_48084_etasr_6761
GroupedDBID .4S
5VS
AAYXX
ADBBV
AEGXH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EDO
EJD
ITG
ITH
KWQ
OK1
RNS
TUS
ID FETCH-LOGICAL-c270t-927a1e04839467aa25b568565be63fc69fb7dba3bdb0ca4ec5d10c5f51937413
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173528400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2241-4487
IngestDate Sat Nov 29 03:45:12 EST 2025
Tue Nov 18 20:46:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-927a1e04839467aa25b568565be63fc69fb7dba3bdb0ca4ec5d10c5f51937413
OpenAccessLink https://doi.org/10.48084/etasr.6761
PageCount 6
ParticipantIDs crossref_primary_10_48084_etasr_6761
crossref_citationtrail_10_48084_etasr_6761
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering, technology & applied science research
PublicationYear 2024
References 182058
182069
182059
182063
182064
182061
182072
182062
182073
182056
182067
182057
182068
182054
182065
182055
182066
182070
182060
182071
References_xml – ident: 182060
  doi: 10.1145/3242898
– ident: 182071
  doi: 10.1016/j.image.2018.07.007
– ident: 182066
  doi: 10.1049/iet-ipr.2018.5952
– ident: 182068
  doi: 10.1145/3289602.3293904
– ident: 182055
  doi: 10.48084/etasr.6406
– ident: 182058
  doi: 10.3390/app13074144
– ident: 182063
  doi: 10.1145/3309551
– ident: 182064
  doi: 10.1109/IPDPSW.2019.00026
– ident: 182065
  doi: 10.1109/ACCESS.2019.2941547
– ident: 182054
  doi: 10.48084/etasr.6397
– ident: 182067
  doi: 10.1109/TCSI.2017.2767204
– ident: 182056
  doi: 10.1109/CVPR.2014.81
– ident: 182073
  doi: 10.1016/j.imavis.2020.103910
– ident: 182057
  doi: 10.1109/ACCESS.2023.3266093
– ident: 182059
– ident: 182062
  doi: 10.1109/ACCESS.2018.2890150
– ident: 182061
  doi: 10.48084/etasr.6377
– ident: 182072
  doi: 10.1007/s40031-020-00508-y
– ident: 182069
  doi: 10.1145/3174243.3174266
– ident: 182070
  doi: 10.1016/j.sysarc.2019.01.007
SSID ssj0000686472
ssib044735913
ssib050383323
Score 2.3471801
Snippet Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 13066
Title Hardware Acceleration for Object Detection using YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform
Volume 14
WOSCitedRecordID wos001173528400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1792-8036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044735913
  issn: 2241-4487
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4AAHxKcYA-TDTlSBNHHi5BihbRxgnaCHwqVyHGeJlialTbty4Y_kL-K9OE6zscM4cIla24navJ_el_3ej5BDoew08XlsyZQxi0EMYgkPolbGmeckoZMwTzZkE_z0NJhOw7PB4LephdkUvCyD7TZc_FdRwxgIG0tn_0Hc3UNhAD6D0OEKYofrrQSPe_GXeJ4rkhJsynJ3mnAcY9IFVEytNEH4ukkUfBt_Gm88GFYL0271fBgV59Uyr7M57iZMc3BGt8PvP8sfw-Ozkwipjmr0dq_k9XedDVFudZezb9AlWm_XlBG1TYa6ZPRXkSeaXmo4EdU6zbsKopOsSrK4nfui0ovOkERFVs2rtc6MZ_O2TKuZWGUCi_Lydkok_eyGw8yBaKME0cOwIITURllpJc1D0OK2bpzSaXH2F1q1SgYj7fs9-w7fNenLdePBAjtgCJlarJbvfK6bxF9t0X3NdHYHGiGUam6fNTfP8OY75K7DvRA17edfR0bHMaR67u0MYzce121dNO09BNjRHzkRzV_XZaXN89_vflzPkep5RJNH5GEbytBIQ_AxGajyCXnQg8FTUhgw0j4YKUCHajDSDoy0ASPVYKQIRmrASDswUlinwUgRjBTBSA0Yn5HJ8dHkw0er5fewpMPt2godLkYKOQ1CMNdCOF7s-QFEGLHy3VT6YRrzJBZunMS2FExJLxnZ0ksx6ABH2H1O9sqqVC8IVS7HTIYPvpZgqSODAOOO1BbwvlMWjvbJW_OuZrLtfY8ULMXsBsHtk8Nu8UK3fLlp2cvbLTsg93e4fkX26uVavSb35KbOV8s3DTb-AEzHoUE
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+Acceleration+for+Object+Detection+using+YOLOv5+Deep+Learning+Algorithm+on+Xilinx+Zynq+FPGA+Platform&rft.jtitle=Engineering%2C+technology+%26+applied+science+research&rft.au=Saidani%2C+Taoufik&rft.au=Ghodhbani%2C+Refka&rft.au=Alhomoud%2C+Ahmed&rft.au=Alshammari%2C+Ahmad&rft.date=2024-02-01&rft.issn=2241-4487&rft.eissn=1792-8036&rft.volume=14&rft.issue=1&rft.spage=13066&rft.epage=13071&rft_id=info:doi/10.48084%2Fetasr.6761&rft.externalDBID=n%2Fa&rft.externalDocID=10_48084_etasr_6761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2241-4487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2241-4487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2241-4487&client=summon