Hardware Acceleration for Object Detection using YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform
Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware platform, having exceptional computing capabilities due to their adaptable topologies, enabling highly parallel, high-performance, and diverse...
Uloženo v:
| Vydáno v: | Engineering, technology & applied science research Ročník 14; číslo 1; s. 13066 - 13071 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.02.2024
|
| ISSN: | 2241-4487, 1792-8036 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware platform, having exceptional computing capabilities due to their adaptable topologies, enabling highly parallel, high-performance, and diverse operations that allow for customized reconfiguration of integrated circuits to enhance the effectiveness of object detection accelerators. However, there is a scarcity of assessments that offer a comprehensive analysis of FPGA-based object detection accelerators, and there is currently no comprehensive framework to enable object detection specifically tailored to the unique characteristics of FPGA technology. The You Only Look Once (YOLO) algorithm is an innovative method that combines speed and accuracy in object detection. This study implemented the YOLOv5 algorithm on a Xilinx® Zynq-7000 System on a Chip (SoC) to perform real-time object detection. Using the MS-COCO dataset, the proposed study showed an improvement in resource utilization with approximately 42 thousand (78%) look-up tables, 56 thousand (52%) flip-flops, 65 (46%) BRAMs, and 19 (9%) DSPs at a frequency of 250 MHz, improving the effectiveness compared to previous simulated results. |
|---|---|
| AbstractList | Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware platform, having exceptional computing capabilities due to their adaptable topologies, enabling highly parallel, high-performance, and diverse operations that allow for customized reconfiguration of integrated circuits to enhance the effectiveness of object detection accelerators. However, there is a scarcity of assessments that offer a comprehensive analysis of FPGA-based object detection accelerators, and there is currently no comprehensive framework to enable object detection specifically tailored to the unique characteristics of FPGA technology. The You Only Look Once (YOLO) algorithm is an innovative method that combines speed and accuracy in object detection. This study implemented the YOLOv5 algorithm on a Xilinx® Zynq-7000 System on a Chip (SoC) to perform real-time object detection. Using the MS-COCO dataset, the proposed study showed an improvement in resource utilization with approximately 42 thousand (78%) look-up tables, 56 thousand (52%) flip-flops, 65 (46%) BRAMs, and 19 (9%) DSPs at a frequency of 250 MHz, improving the effectiveness compared to previous simulated results. |
| Author | Alhomoud, Ahmed Ben Ammar, Mohammed Saidani, Taoufik Ghodhbani, Refka Zayani, Hafedh Alshammari, Ahmad |
| Author_xml | – sequence: 1 givenname: Taoufik surname: Saidani fullname: Saidani, Taoufik – sequence: 2 givenname: Refka surname: Ghodhbani fullname: Ghodhbani, Refka – sequence: 3 givenname: Ahmed surname: Alhomoud fullname: Alhomoud, Ahmed – sequence: 4 givenname: Ahmad surname: Alshammari fullname: Alshammari, Ahmad – sequence: 5 givenname: Hafedh surname: Zayani fullname: Zayani, Hafedh – sequence: 6 givenname: Mohammed surname: Ben Ammar fullname: Ben Ammar, Mohammed |
| BookMark | eNptkL1OwzAYRS0EEqV04gW8oxTb8U8yRoW2SJHSoQOwRI7jFFeuU2zz07cnLUyIb7nS1fnucK7AueudBuAGoynNUEbvdJTBT7ng-AyMsMhJkqGUn4MRIRQnlGbiEkxC2KLheMapICNgl9K3n9JrWCilrfYymt7BrvewarZaRXiv4xDH8j0Yt4HPVVl9sKHWe1hq6d2xLOym9ya-7uDAPRlr3Bd8Obg3OF8tCriyMg6Lu2tw0Ukb9OQ3x2A9f1jPlklZLR5nRZkoIlBMciIk1ohmaU65kJKwhvGMcdZonnaK510j2kamTdsgJalWrMVIsY7hPBUUp2Nw-zOrfB-C112992Yn_aHGqD6pqk-q6qOqgcZ_aGXiyUL00th_f74BJCNwSQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3594348 crossref_primary_10_1016_j_neucom_2025_130874 crossref_primary_10_1007_s11554_025_01635_9 crossref_primary_10_1177_14780771251352933 |
| Cites_doi | 10.1145/3242898 10.1016/j.image.2018.07.007 10.1049/iet-ipr.2018.5952 10.1145/3289602.3293904 10.48084/etasr.6406 10.3390/app13074144 10.1145/3309551 10.1109/IPDPSW.2019.00026 10.1109/ACCESS.2019.2941547 10.48084/etasr.6397 10.1109/TCSI.2017.2767204 10.1109/CVPR.2014.81 10.1016/j.imavis.2020.103910 10.1109/ACCESS.2023.3266093 10.1109/ACCESS.2018.2890150 10.48084/etasr.6377 10.1007/s40031-020-00508-y 10.1145/3174243.3174266 10.1016/j.sysarc.2019.01.007 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.48084/etasr.6761 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1792-8036 |
| EndPage | 13071 |
| ExternalDocumentID | 10_48084_etasr_6761 |
| GroupedDBID | .4S 5VS AAYXX ADBBV AEGXH ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EDO EJD ITG ITH KWQ OK1 RNS TUS |
| ID | FETCH-LOGICAL-c270t-927a1e04839467aa25b568565be63fc69fb7dba3bdb0ca4ec5d10c5f51937413 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173528400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2241-4487 |
| IngestDate | Sat Nov 29 03:45:12 EST 2025 Tue Nov 18 20:46:49 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c270t-927a1e04839467aa25b568565be63fc69fb7dba3bdb0ca4ec5d10c5f51937413 |
| OpenAccessLink | https://doi.org/10.48084/etasr.6761 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_48084_etasr_6761 crossref_citationtrail_10_48084_etasr_6761 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering, technology & applied science research |
| PublicationYear | 2024 |
| References | 182058 182069 182059 182063 182064 182061 182072 182062 182073 182056 182067 182057 182068 182054 182065 182055 182066 182070 182060 182071 |
| References_xml | – ident: 182060 doi: 10.1145/3242898 – ident: 182071 doi: 10.1016/j.image.2018.07.007 – ident: 182066 doi: 10.1049/iet-ipr.2018.5952 – ident: 182068 doi: 10.1145/3289602.3293904 – ident: 182055 doi: 10.48084/etasr.6406 – ident: 182058 doi: 10.3390/app13074144 – ident: 182063 doi: 10.1145/3309551 – ident: 182064 doi: 10.1109/IPDPSW.2019.00026 – ident: 182065 doi: 10.1109/ACCESS.2019.2941547 – ident: 182054 doi: 10.48084/etasr.6397 – ident: 182067 doi: 10.1109/TCSI.2017.2767204 – ident: 182056 doi: 10.1109/CVPR.2014.81 – ident: 182073 doi: 10.1016/j.imavis.2020.103910 – ident: 182057 doi: 10.1109/ACCESS.2023.3266093 – ident: 182059 – ident: 182062 doi: 10.1109/ACCESS.2018.2890150 – ident: 182061 doi: 10.48084/etasr.6377 – ident: 182072 doi: 10.1007/s40031-020-00508-y – ident: 182069 doi: 10.1145/3174243.3174266 – ident: 182070 doi: 10.1016/j.sysarc.2019.01.007 |
| SSID | ssj0000686472 ssib044735913 ssib050383323 |
| Score | 2.3471801 |
| Snippet | Object recognition presents considerable difficulties within the domain of computer vision. Field-Programmable Gate Arrays (FPGAs) offer a flexible hardware... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 13066 |
| Title | Hardware Acceleration for Object Detection using YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform |
| Volume | 14 |
| WOSCitedRecordID | wos001173528400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1792-8036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044735913 issn: 2241-4487 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4AAHxKcYA-TDTlSBNHHi5BihbRxgnaCHwqVyHGeJlialTbty4Y_kL-K9OE6zscM4cIla24navJ_el_3ej5BDoew08XlsyZQxi0EMYgkPolbGmeckoZMwTzZkE_z0NJhOw7PB4LephdkUvCyD7TZc_FdRwxgIG0tn_0Hc3UNhAD6D0OEKYofrrQSPe_GXeJ4rkhJsynJ3mnAcY9IFVEytNEH4ukkUfBt_Gm88GFYL0271fBgV59Uyr7M57iZMc3BGt8PvP8sfw-Ozkwipjmr0dq_k9XedDVFudZezb9AlWm_XlBG1TYa6ZPRXkSeaXmo4EdU6zbsKopOsSrK4nfui0ovOkERFVs2rtc6MZ_O2TKuZWGUCi_Lydkok_eyGw8yBaKME0cOwIITURllpJc1D0OK2bpzSaXH2F1q1SgYj7fs9-w7fNenLdePBAjtgCJlarJbvfK6bxF9t0X3NdHYHGiGUam6fNTfP8OY75K7DvRA17edfR0bHMaR67u0MYzce121dNO09BNjRHzkRzV_XZaXN89_vflzPkep5RJNH5GEbytBIQ_AxGajyCXnQg8FTUhgw0j4YKUCHajDSDoy0ASPVYKQIRmrASDswUlinwUgRjBTBSA0Yn5HJ8dHkw0er5fewpMPt2godLkYKOQ1CMNdCOF7s-QFEGLHy3VT6YRrzJBZunMS2FExJLxnZ0ksx6ABH2H1O9sqqVC8IVS7HTIYPvpZgqSODAOOO1BbwvlMWjvbJW_OuZrLtfY8ULMXsBsHtk8Nu8UK3fLlp2cvbLTsg93e4fkX26uVavSb35KbOV8s3DTb-AEzHoUE |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+Acceleration+for+Object+Detection+using+YOLOv5+Deep+Learning+Algorithm+on+Xilinx+Zynq+FPGA+Platform&rft.jtitle=Engineering%2C+technology+%26+applied+science+research&rft.au=Saidani%2C+Taoufik&rft.au=Ghodhbani%2C+Refka&rft.au=Alhomoud%2C+Ahmed&rft.au=Alshammari%2C+Ahmad&rft.date=2024-02-01&rft.issn=2241-4487&rft.eissn=1792-8036&rft.volume=14&rft.issue=1&rft.spage=13066&rft.epage=13071&rft_id=info:doi/10.48084%2Fetasr.6761&rft.externalDBID=n%2Fa&rft.externalDocID=10_48084_etasr_6761 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2241-4487&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2241-4487&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2241-4487&client=summon |