A New Algorithm for Solving Strictly Convex Quadratic Programs

We reformulate convex quadratic programs with simple bound constraints and strictly convex quadratic programs as problems of unconstrained minimization of convex quadratic splines. Therefore, any algorithm for finding a minimizer of a convex quadratic spline can be used to solve these quadratic prog...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 7; číslo 3; s. 595 - 619
Hlavní autoři: Li, Wu, Swetits, John
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.08.1997
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We reformulate convex quadratic programs with simple bound constraints and strictly convex quadratic programs as problems of unconstrained minimization of convex quadratic splines. Therefore, any algorithm for finding a minimizer of a convex quadratic spline can be used to solve these quadratic programming problems. In this paper, we propose a Newton method to find a minimizer of a convex quadratic spline derived from the unconstrained reformulation of a strictly convex quadratic programming problem. The Newton method is a "natural mixture" of a descent method and an active-set method. Moreover, it is an iterative method, yet it terminates in finite operations (in exact arithmetic).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/S1052623493246045