A (1.4+ϵ)-approximation algorithm for the 2-Max-Duo problem
The maximum duo-preservation string mapping ( Max-Duo ) problem is the complement of the well studied minimum common string partition problem, both of which have applications in many fields including text compression and bioinformatics. k - Max-Duo is the restricted version of Max-Duo , where every...
Saved in:
| Published in: | Journal of combinatorial optimization Vol. 40; no. 3; pp. 806 - 824 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The
maximum duo-preservation string mapping
(
Max-Duo
) problem is the complement of the well studied
minimum common string partition
problem, both of which have applications in many fields including text compression and bioinformatics.
k
-
Max-Duo
is the restricted version of
Max-Duo
, where every letter of the alphabet occurs at most
k
times in each of the strings, which is readily reduced into the well known
maximum independent set
(
MIS
) problem on a graph of maximum degree
Δ
≤
6
(
k
-
1
)
. In particular, 2-
Max-Duo
can then be approximated arbitrarily close to 1.8 using the state-of-the-art approximation algorithm for the
MIS
problem on bounded-degree graphs. 2-
Max-Duo
was proved APX-hard and very recently a
(
1.6
+
ϵ
)
-approximation algorithm was claimed, for any
ϵ
>
0
. In this paper, we present a vertex-degree reduction technique, based on which, we show that 2-
Max-Duo
can be approximated arbitrarily close to 1.4. |
|---|---|
| AbstractList | The
maximum duo-preservation string mapping
(
Max-Duo
) problem is the complement of the well studied
minimum common string partition
problem, both of which have applications in many fields including text compression and bioinformatics.
k
-
Max-Duo
is the restricted version of
Max-Duo
, where every letter of the alphabet occurs at most
k
times in each of the strings, which is readily reduced into the well known
maximum independent set
(
MIS
) problem on a graph of maximum degree
Δ
≤
6
(
k
-
1
)
. In particular, 2-
Max-Duo
can then be approximated arbitrarily close to 1.8 using the state-of-the-art approximation algorithm for the
MIS
problem on bounded-degree graphs. 2-
Max-Duo
was proved APX-hard and very recently a
(
1.6
+
ϵ
)
-approximation algorithm was claimed, for any
ϵ
>
0
. In this paper, we present a vertex-degree reduction technique, based on which, we show that 2-
Max-Duo
can be approximated arbitrarily close to 1.4. The maximum duo-preservation string mapping (Max-Duo) problem is the complement of the well studied minimum common string partition problem, both of which have applications in many fields including text compression and bioinformatics. k-Max-Duo is the restricted version of Max-Duo, where every letter of the alphabet occurs at most k times in each of the strings, which is readily reduced into the well known maximum independent set (MIS) problem on a graph of maximum degree Δ≤6(k-1). In particular, 2-Max-Duo can then be approximated arbitrarily close to 1.8 using the state-of-the-art approximation algorithm for the MIS problem on bounded-degree graphs. 2-Max-Duo was proved APX-hard and very recently a (1.6+ϵ)-approximation algorithm was claimed, for any ϵ>0. In this paper, we present a vertex-degree reduction technique, based on which, we show that 2-Max-Duo can be approximated arbitrarily close to 1.4. |
| Author | Xu, Yao Zhang, Peng Lin, Guohui Su, Bing Liu, Tian Chen, Yong Luo, Taibo |
| Author_xml | – sequence: 1 givenname: Yong surname: Chen fullname: Chen, Yong organization: Department of Mathematics, Hangzhou Dianzi University – sequence: 2 givenname: Guohui orcidid: 0000-0003-4283-3396 surname: Lin fullname: Lin, Guohui email: guohui@ualberta.ca organization: Department of Computing Science, University of Alberta – sequence: 3 givenname: Tian surname: Liu fullname: Liu, Tian organization: Key Laboratory of High Confidence Software Technologies (MOE), Department of Computer Science and Technology, Peking University – sequence: 4 givenname: Taibo surname: Luo fullname: Luo, Taibo organization: School of Economics and Management, Xidian University – sequence: 5 givenname: Bing surname: Su fullname: Su, Bing organization: School of Economics and Management, Xi’an Technological University – sequence: 6 givenname: Yao surname: Xu fullname: Xu, Yao organization: Department of Computer Science, Kettering University – sequence: 7 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: School of Computer Science and Technology, Shandong University |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKsBN4qk3iQzkwy4KfUXKm50HTLpTX9oJzWZQn0wn8NXMjqCO1f3wD3nXO43IL3GN0jIKYMRA5BXkYGSigIHClByRuGA9FkhBeVKlb2kheK0rKA4IoMYVwCQdN4n1-PsnI3yy8-PC2q22-D3y41pl77JzHruw7JdbDLnQ9YuMOP0yezpzc5nyVevcXNMDp1ZRzz5nUPyenf7Mnmg0-f7x8l4Si2X0FKFrJ5Z51RtFAplIS-ZshIrBC6RIeesSvuZKwCLAoW1mNdCGadmokLJxZCcdb3p7tsOY6tXfheadFLzvEglFVQiuXjnssHHGNDpbUjPhHfNQH9T0h0lnSjpH0oaUkh0oZjMzRzDX_U_qS_Z72sY |
| Cites_doi | 10.1007/11970125_22 10.1007/978-3-319-43681-4_5 10.1007/s10878-010-9370-2 10.1016/j.tcs.2014.02.017 10.1007/978-3-540-87361-7_8 10.1007/978-3-642-40453-5_19 10.1109/TCBB.2005.48 10.1145/1186810.1186812 10.1007/978-3-662-44753-6_2 10.1016/j.dam.2006.05.011 10.1016/j.tcs.2016.09.015 10.1145/1227161.1402297 10.1007/s002240000113 10.1137/1.9781611973402.8 10.1016/j.tcs.2016.07.011 10.1007/978-3-540-27821-4_8 10.1007/3-540-48523-6_17 10.1007/978-3-540-30551-4_43 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10878-020-00621-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| EndPage | 824 |
| ExternalDocumentID | 10_1007_s10878_020_00621_0 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11571252; 61370052 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Scholarship Council grantid: 201508330054 funderid: http://dx.doi.org/10.13039/501100004543 – fundername: National Natural Science Foundation of China grantid: 61972228; 61672323 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11971139; 11771114 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Humanities and Social Science Foundation of Ministry of Education of China grantid: 18YJAZH080 – fundername: Youth Innovation Team of Shaanxi Universities – fundername: Shaanxi Provincial Science and Technology Department grantid: 2020JQ-654 funderid: http://dx.doi.org/10.13039/501100011710 – fundername: National Natural Science Foundation of China grantid: 71701162 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 – fundername: Humanities and Social Science Foundation of Ministry of Education of China grantid: 18YJC630114 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c270t-8e1bdcff8ba8e38c04618c7e9e027e1e2219dcfdf50e55e3cce4b38af8d39e723 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552512000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Wed Sep 17 23:56:40 EDT 2025 Sat Nov 29 04:54:34 EST 2025 Fri Feb 21 02:33:40 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | String partition Duo-preservation string mapping G.4 Algorithm design and analysis Independent set F.2.2 Pattern matching Approximation algorithm G.2.1 Combinatorial algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-8e1bdcff8ba8e38c04618c7e9e027e1e2219dcfdf50e55e3cce4b38af8d39e723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4283-3396 |
| PQID | 2450279093 |
| PQPubID | 2043856 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2450279093 crossref_primary_10_1007_s10878_020_00621_0 springer_journals_10_1007_s10878_020_00621_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BermanPFujitoTOn approximation properties of the independent set problem for low degree graphsTheory Comput Syst199932115132166390810.1007/s002240000113 BerettaSCastelliMDondiRParameterized tractability of the maximum-duo preservation string mapping problemTheoret Comput Sci20166461625354196510.1016/j.tcs.2016.07.011 Brubach B (2016) Further improvement in approximating the maximum duo-preservation string mapping problem. In: Proceedings of the 16th international workshop on algorithms in bioinformatics (WABI 2016), volume 9838 of LNBI, pp 52–64 Damaschke P (2008) Minimum common string partition parameterized. In: Proceedings of the 8th international workshop on algorithms in bioinformatics (WABI 2008), volume 5251 of LNBI, pp 87–98 Bulteau L, Komusiewicz C (2014) Minimum common string partition parameterized by partition size is fixed-parameter tractable. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms (SODA’14), pp 102–121 SwensonKMMarronMEarnest-DeYoungJVMoretBMApproximating the true evolutionary distance between two genomesJ Exp Algorithmics20081235244370110.1145/1227161.1402297 Boria N, Cabodi G, Camurati P, Palena M, Pasini P, Quer S (2016) A 7/2-approximation algorithm for the maximum duo-preservation string mapping problem. In: Proceedings of the 27th annual symposium on combinatorial pattern matching (CPM 2016), volume 54 of LIPIcs, pp 11:1–11:8 ChenWChenZSamatovaNFPengLWangJTangMSolving the maximum duo-preservation string mapping problem with linear programmingTheoret Comput Sci2014530111318136610.1016/j.tcs.2014.02.017 Goldstein A, Kolman P, Zheng J (2004) Minimum common string partition problem: Hardness and approximations. In: Proceedings of the 15th international symposium on algorithms and computation (ISAAC 2004), volume 3341 of LNCS, pp 484–495 KolmanPWaleńTApproximating reversal distance for strings with bounded number of duplicatesDiscrete Appl Math2007155327336230315610.1016/j.dam.2006.05.011 Xu Y, Chen Y, Luo T, Lin G (2017) A local search 2.917-approximation algorithm for duo-preservation string mapping. arXiv:1702.01877 Kolman P, Waleń T (2006) Reversal distance for strings with duplicates: linear time approximation using hitting set. In: Proceedings of the 4th international workshop on approximation and online algorithms (WAOA 2006), volume 4368 of LNCS, pp 279–289 ChenXZhengJFuZNanPZhongYLonardiSJiangTAssignment of orthologous genes via genome rearrangementIEEE/ACM Trans Comput Biol Bioinf2005230231510.1109/TCBB.2005.48 CormodeGMuthukrishnanSThe string edit distance matching problem with movesACM Trans Algorithms200732:12:19230182810.1145/1186810.1186812 Bulteau L, Fertin G, Komusiewicz C, Rusu I (2013) A fixed-parameter algorithm for minimum common string partition with few duplications. In: Proceedings of the 13th international workshop on algorithms in bioinformatics (WABI 2013), volume 8126 of LNBI, pp 244–258 Dudek B, Gawrychowski P, Ostropolski-Nalewaja P (2017) A family of approximation algorithms for the maximum duo-preservation string mapping problem. In: Proceedings of the 28th annual symposium on combinatorial pattern matching (CPM 2017), volume 78 of LIPIcs, pp 10:1–10:14. arXiv:1702.02405 JiangHZhuBZhuDZhuHMinimum common string partition revisitedJ Comb Optim201223519527290396510.1007/s10878-010-9370-2 Berman P, Karpinski M (1999) On some tighter inapproximability results. In: Proceedings of the of 26th international colloquium on automata, languages and programming (ICALP’99), pp 200–209 GareyMRJohnsonDSComputers and intractability: a guide to the theory of NP-completeness1979San FranciscoW. H. Freeman and Company0411.68039 Chrobak M, Kolman P, Sgall J (2004) The greedy algorithm for the minimum common string partition problem. In: Proceedings of the 7th international workshop on approximation algorithms for combinatorial optimization problems (APPROX 2004) and the 8th international workshop on randomization and computation (RANDOM 2004), volume 3122 of LNCS, pp 84–95 Boria N, Kurpisz A, Leppänen S, Mastrolilli M (2014) Improved approximation for the maximum duo-preservation string mapping problem. In: Proceedings of the 14th international workshop on algorithms in bioinformatics (WABI 2014), volume 8701 of LNBI, pp 14–25 Beretta S, Castelli M, Dondi R (2016a) Corrigendum to “Parameterized tractability of the maximum-duo preservation string mapping problem” [646(2016), 16–25]. Theoret Comput Sci 653:108–110 621_CR9 G Cormode (621_CR13) 2007; 3 P Berman (621_CR3) 1999; 32 P Kolman (621_CR19) 2007; 155 W Chen (621_CR11) 2014; 530 621_CR17 621_CR14 MR Garey (621_CR16) 1979 621_CR15 621_CR12 X Chen (621_CR10) 2005; 2 621_CR22 621_CR1 621_CR20 621_CR4 H Jiang (621_CR18) 2012; 23 621_CR6 621_CR5 S Beretta (621_CR2) 2016; 646 621_CR8 621_CR7 KM Swenson (621_CR21) 2008; 12 |
| References_xml | – reference: Beretta S, Castelli M, Dondi R (2016a) Corrigendum to “Parameterized tractability of the maximum-duo preservation string mapping problem” [646(2016), 16–25]. Theoret Comput Sci 653:108–110 – reference: KolmanPWaleńTApproximating reversal distance for strings with bounded number of duplicatesDiscrete Appl Math2007155327336230315610.1016/j.dam.2006.05.011 – reference: Goldstein A, Kolman P, Zheng J (2004) Minimum common string partition problem: Hardness and approximations. In: Proceedings of the 15th international symposium on algorithms and computation (ISAAC 2004), volume 3341 of LNCS, pp 484–495 – reference: Xu Y, Chen Y, Luo T, Lin G (2017) A local search 2.917-approximation algorithm for duo-preservation string mapping. arXiv:1702.01877 – reference: CormodeGMuthukrishnanSThe string edit distance matching problem with movesACM Trans Algorithms200732:12:19230182810.1145/1186810.1186812 – reference: ChenXZhengJFuZNanPZhongYLonardiSJiangTAssignment of orthologous genes via genome rearrangementIEEE/ACM Trans Comput Biol Bioinf2005230231510.1109/TCBB.2005.48 – reference: Brubach B (2016) Further improvement in approximating the maximum duo-preservation string mapping problem. In: Proceedings of the 16th international workshop on algorithms in bioinformatics (WABI 2016), volume 9838 of LNBI, pp 52–64 – reference: Damaschke P (2008) Minimum common string partition parameterized. In: Proceedings of the 8th international workshop on algorithms in bioinformatics (WABI 2008), volume 5251 of LNBI, pp 87–98 – reference: BerettaSCastelliMDondiRParameterized tractability of the maximum-duo preservation string mapping problemTheoret Comput Sci20166461625354196510.1016/j.tcs.2016.07.011 – reference: Bulteau L, Fertin G, Komusiewicz C, Rusu I (2013) A fixed-parameter algorithm for minimum common string partition with few duplications. In: Proceedings of the 13th international workshop on algorithms in bioinformatics (WABI 2013), volume 8126 of LNBI, pp 244–258 – reference: GareyMRJohnsonDSComputers and intractability: a guide to the theory of NP-completeness1979San FranciscoW. H. Freeman and Company0411.68039 – reference: BermanPFujitoTOn approximation properties of the independent set problem for low degree graphsTheory Comput Syst199932115132166390810.1007/s002240000113 – reference: Chrobak M, Kolman P, Sgall J (2004) The greedy algorithm for the minimum common string partition problem. In: Proceedings of the 7th international workshop on approximation algorithms for combinatorial optimization problems (APPROX 2004) and the 8th international workshop on randomization and computation (RANDOM 2004), volume 3122 of LNCS, pp 84–95 – reference: Dudek B, Gawrychowski P, Ostropolski-Nalewaja P (2017) A family of approximation algorithms for the maximum duo-preservation string mapping problem. In: Proceedings of the 28th annual symposium on combinatorial pattern matching (CPM 2017), volume 78 of LIPIcs, pp 10:1–10:14. arXiv:1702.02405 – reference: JiangHZhuBZhuDZhuHMinimum common string partition revisitedJ Comb Optim201223519527290396510.1007/s10878-010-9370-2 – reference: Berman P, Karpinski M (1999) On some tighter inapproximability results. In: Proceedings of the of 26th international colloquium on automata, languages and programming (ICALP’99), pp 200–209 – reference: Boria N, Kurpisz A, Leppänen S, Mastrolilli M (2014) Improved approximation for the maximum duo-preservation string mapping problem. In: Proceedings of the 14th international workshop on algorithms in bioinformatics (WABI 2014), volume 8701 of LNBI, pp 14–25 – reference: Boria N, Cabodi G, Camurati P, Palena M, Pasini P, Quer S (2016) A 7/2-approximation algorithm for the maximum duo-preservation string mapping problem. In: Proceedings of the 27th annual symposium on combinatorial pattern matching (CPM 2016), volume 54 of LIPIcs, pp 11:1–11:8 – reference: SwensonKMMarronMEarnest-DeYoungJVMoretBMApproximating the true evolutionary distance between two genomesJ Exp Algorithmics20081235244370110.1145/1227161.1402297 – reference: ChenWChenZSamatovaNFPengLWangJTangMSolving the maximum duo-preservation string mapping problem with linear programmingTheoret Comput Sci2014530111318136610.1016/j.tcs.2014.02.017 – reference: Bulteau L, Komusiewicz C (2014) Minimum common string partition parameterized by partition size is fixed-parameter tractable. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms (SODA’14), pp 102–121 – reference: Kolman P, Waleń T (2006) Reversal distance for strings with duplicates: linear time approximation using hitting set. In: Proceedings of the 4th international workshop on approximation and online algorithms (WAOA 2006), volume 4368 of LNCS, pp 279–289 – ident: 621_CR20 doi: 10.1007/11970125_22 – ident: 621_CR6 – ident: 621_CR7 doi: 10.1007/978-3-319-43681-4_5 – volume: 23 start-page: 519 year: 2012 ident: 621_CR18 publication-title: J Comb Optim doi: 10.1007/s10878-010-9370-2 – volume: 530 start-page: 1 year: 2014 ident: 621_CR11 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2014.02.017 – ident: 621_CR14 doi: 10.1007/978-3-540-87361-7_8 – ident: 621_CR8 doi: 10.1007/978-3-642-40453-5_19 – volume: 2 start-page: 302 year: 2005 ident: 621_CR10 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2005.48 – volume-title: Computers and intractability: a guide to the theory of NP-completeness year: 1979 ident: 621_CR16 – volume: 3 start-page: 2:1 year: 2007 ident: 621_CR13 publication-title: ACM Trans Algorithms doi: 10.1145/1186810.1186812 – ident: 621_CR5 doi: 10.1007/978-3-662-44753-6_2 – volume: 155 start-page: 327 year: 2007 ident: 621_CR19 publication-title: Discrete Appl Math doi: 10.1016/j.dam.2006.05.011 – ident: 621_CR1 doi: 10.1016/j.tcs.2016.09.015 – volume: 12 start-page: 3 year: 2008 ident: 621_CR21 publication-title: J Exp Algorithmics doi: 10.1145/1227161.1402297 – volume: 32 start-page: 115 year: 1999 ident: 621_CR3 publication-title: Theory Comput Syst doi: 10.1007/s002240000113 – ident: 621_CR15 – ident: 621_CR9 doi: 10.1137/1.9781611973402.8 – volume: 646 start-page: 16 year: 2016 ident: 621_CR2 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2016.07.011 – ident: 621_CR12 doi: 10.1007/978-3-540-27821-4_8 – ident: 621_CR22 – ident: 621_CR4 doi: 10.1007/3-540-48523-6_17 – ident: 621_CR17 doi: 10.1007/978-3-540-30551-4_43 |
| SSID | ssj0009054 |
| Score | 2.2058954 |
| Snippet | The
maximum duo-preservation string mapping
(
Max-Duo
) problem is the complement of the well studied
minimum common string partition
problem, both of which... The maximum duo-preservation string mapping (Max-Duo) problem is the complement of the well studied minimum common string partition problem, both of which have... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 806 |
| SubjectTerms | Algorithms Approximation Bioinformatics Combinatorics Convex and Discrete Geometry Degree reduction Mapping Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Strings Theory of Computation |
| Title | A (1.4+ϵ)-approximation algorithm for the 2-Max-Duo problem |
| URI | https://link.springer.com/article/10.1007/s10878-020-00621-0 https://www.proquest.com/docview/2450279093 |
| Volume | 40 |
| WOSCitedRecordID | wos000552512000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6JQkA8cQMXI9dI4EpeKRVxaITb1FjmOA5WgRU2K-mN8B7_EOE1IQXCAY2RnNHpxPGN53huE9kPu-JiurDzUnAgjNVHaKtI0MfjteZRGOms24XU6qtv1r3JSWFJUuxdXktlOPUV2U04NljkmdJPBIXgWzUG4U65hw_XNfSm1S-WklS3kjnD2kzlV5mcbX8NRmWN-uxbNos3F8v_8XEFLeXaJW5PlsIpmbH8NLU5pDsJT-1OoNVlHJy180DgW9fe3Q5LJi497Ey4j1k8Pg2EvfXzGkNZieAUz0tZjcjYa4LwLzQa6uzi_Pb0keUMFYphHU6JsI4xMHKtQK8uVcWLrynjWt3A4tQ3LYPuC8SiW1EppuTFWhFzpWEXctx7jm6jSH_TtFsI-h9THUhXTZigin2khIyNCKsC8FIxWUb3ANXiZ6GYEpUKyQygAhIIMoQBm1wrog_wfSgImJLjlU59X0VEBdTn8u7Xtv03fQQvMfa2sQq-GKulwZHfRvHlNe8lwL1tbH0xfxwA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA1aBXXhW6xWzcKFUiNpHp0MuClqqdgW0SruhkwmowVtpdNKf8zv8JdM5uFU0YUuh2QulzOZ3Btyz7kA7PvU8jFtWbkvKWKKSySkFqiqQuO342AcyLjZhNNui_t79yolhUVZtXt2JRnv1BNkN2HVYIllQleJOQRPgxlmIpZVzL--uculdjFPWtma3NGc_XhKlfnZxtdwlOeY365F42hTX_qfn8tgMc0uYS1ZDitgSvdWwcKE5qB5an0KtUZr4KQGDyrHrPz-dohiefFxN-EyQvn00B90h4_P0KS10LwCCWrJMTob9WHahWYd3NbPO6cNlDZUQIo4eIiErviBCkPhS6GpUFZsXShHu9ocTnVFE7N9mfEg5FhzrqlSmvlUyFAE1NUOoRug0Ov39CaALjWpj8YixFWfBS6RjAeK-ZgZ85wRXATlDFfvJdHN8HKFZIuQZxDyYoQ8M7uUQe-l_1DkEcaNWy52aREcZVDnw79b2_rb9D0w1-i0ml7zon25DeaJ_XJxtV4JFIaDkd4Bs-p12I0Gu_E6-wCq68nk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzid2gcflBmX5bKm4MtwDkU3Bl7YW0nTVAfaja2T_TF_h3_JpBc7RR_Ex5L0cPiSNueQ830HgEOPGD6mKSv3BIFUMgG5UBzWZKD9tm2EfBE3m7Dbbd7tOp0pFn9c7Z5dSSacBqPSFEaVgR9Upohv3CjDYsOKrmGdEM-COWoK6U2-fvuQy-4ilrS11XGkzgNZSpv52cbXoymPN79dkcYnT3Pl_z6vguU06rTqyTZZAzMqXAdLU1qE-qn1KeA62gBndeuoekrL72_HMJYdn_QSjqMlnh_7w1709GLpcNfSr1gYtsQENsZ9K-1Oswnumxd355cwbbQAJbZRBLmqer4MAu4JrgiXRoSdS1s5Sietqqqw_q3pcT9gSDGmiJSKeoSLgPvEUTYmW6AQ9kO1DSyH6JBIIR6gmkd9BwvKfEk9RLV5RjEqgnKGsTtI9DTcXDnZIORqhNwYIVfPLmXL4Kbf1sjFlGm3HOSQIjjJYM-Hf7e287fpB2Ch02i6N1ft612wiM3CxUV8JVCIhmO1B-bla9QbDffjLfcB66rSyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+%281.4%2B%CF%B5%29-approximation+algorithm+for+the+2-Max-Duo+problem&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Chen%2C+Yong&rft.au=Lin%2C+Guohui&rft.au=Liu%2C+Tian&rft.au=Luo%2C+Taibo&rft.date=2020-10-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=40&rft.issue=3&rft.spage=806&rft.epage=824&rft_id=info:doi/10.1007%2Fs10878-020-00621-0&rft.externalDocID=10_1007_s10878_020_00621_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |