A (1.4+ϵ)-approximation algorithm for the 2-Max-Duo problem

The maximum duo-preservation string mapping ( Max-Duo ) problem is the complement of the well studied minimum common string partition problem, both of which have applications in many fields including text compression and bioinformatics. k - Max-Duo is the restricted version of Max-Duo , where every...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 40; číslo 3; s. 806 - 824
Hlavní autoři: Chen, Yong, Lin, Guohui, Liu, Tian, Luo, Taibo, Su, Bing, Xu, Yao, Zhang, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2020
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The maximum duo-preservation string mapping ( Max-Duo ) problem is the complement of the well studied minimum common string partition problem, both of which have applications in many fields including text compression and bioinformatics. k - Max-Duo is the restricted version of Max-Duo , where every letter of the alphabet occurs at most k times in each of the strings, which is readily reduced into the well known maximum independent set ( MIS ) problem on a graph of maximum degree Δ ≤ 6 ( k - 1 ) . In particular, 2- Max-Duo can then be approximated arbitrarily close to 1.8 using the state-of-the-art approximation algorithm for the MIS problem on bounded-degree graphs. 2- Max-Duo was proved APX-hard and very recently a ( 1.6 + ϵ ) -approximation algorithm was claimed, for any ϵ > 0 . In this paper, we present a vertex-degree reduction technique, based on which, we show that 2- Max-Duo can be approximated arbitrarily close to 1.4.
AbstractList The maximum duo-preservation string mapping ( Max-Duo ) problem is the complement of the well studied minimum common string partition problem, both of which have applications in many fields including text compression and bioinformatics. k - Max-Duo is the restricted version of Max-Duo , where every letter of the alphabet occurs at most k times in each of the strings, which is readily reduced into the well known maximum independent set ( MIS ) problem on a graph of maximum degree Δ ≤ 6 ( k - 1 ) . In particular, 2- Max-Duo can then be approximated arbitrarily close to 1.8 using the state-of-the-art approximation algorithm for the MIS problem on bounded-degree graphs. 2- Max-Duo was proved APX-hard and very recently a ( 1.6 + ϵ ) -approximation algorithm was claimed, for any ϵ > 0 . In this paper, we present a vertex-degree reduction technique, based on which, we show that 2- Max-Duo can be approximated arbitrarily close to 1.4.
The maximum duo-preservation string mapping (Max-Duo) problem is the complement of the well studied minimum common string partition problem, both of which have applications in many fields including text compression and bioinformatics. k-Max-Duo is the restricted version of Max-Duo, where every letter of the alphabet occurs at most k times in each of the strings, which is readily reduced into the well known maximum independent set (MIS) problem on a graph of maximum degree Δ≤6(k-1). In particular, 2-Max-Duo can then be approximated arbitrarily close to 1.8 using the state-of-the-art approximation algorithm for the MIS problem on bounded-degree graphs. 2-Max-Duo was proved APX-hard and very recently a (1.6+ϵ)-approximation algorithm was claimed, for any ϵ>0. In this paper, we present a vertex-degree reduction technique, based on which, we show that 2-Max-Duo can be approximated arbitrarily close to 1.4.
Author Xu, Yao
Zhang, Peng
Lin, Guohui
Su, Bing
Liu, Tian
Chen, Yong
Luo, Taibo
Author_xml – sequence: 1
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: Department of Mathematics, Hangzhou Dianzi University
– sequence: 2
  givenname: Guohui
  orcidid: 0000-0003-4283-3396
  surname: Lin
  fullname: Lin, Guohui
  email: guohui@ualberta.ca
  organization: Department of Computing Science, University of Alberta
– sequence: 3
  givenname: Tian
  surname: Liu
  fullname: Liu, Tian
  organization: Key Laboratory of High Confidence Software Technologies (MOE), Department of Computer Science and Technology, Peking University
– sequence: 4
  givenname: Taibo
  surname: Luo
  fullname: Luo, Taibo
  organization: School of Economics and Management, Xidian University
– sequence: 5
  givenname: Bing
  surname: Su
  fullname: Su, Bing
  organization: School of Economics and Management, Xi’an Technological University
– sequence: 6
  givenname: Yao
  surname: Xu
  fullname: Xu, Yao
  organization: Department of Computer Science, Kettering University
– sequence: 7
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: School of Computer Science and Technology, Shandong University
BookMark eNp9kM1KAzEUhYNUsK2-gKsBN4qk3iQzkwy4KfUXKm50HTLpTX9oJzWZQn0wn8NXMjqCO1f3wD3nXO43IL3GN0jIKYMRA5BXkYGSigIHClByRuGA9FkhBeVKlb2kheK0rKA4IoMYVwCQdN4n1-PsnI3yy8-PC2q22-D3y41pl77JzHruw7JdbDLnQ9YuMOP0yezpzc5nyVevcXNMDp1ZRzz5nUPyenf7Mnmg0-f7x8l4Si2X0FKFrJ5Z51RtFAplIS-ZshIrBC6RIeesSvuZKwCLAoW1mNdCGadmokLJxZCcdb3p7tsOY6tXfheadFLzvEglFVQiuXjnssHHGNDpbUjPhHfNQH9T0h0lnSjpH0oaUkh0oZjMzRzDX_U_qS_Z72sY
Cites_doi 10.1007/11970125_22
10.1007/978-3-319-43681-4_5
10.1007/s10878-010-9370-2
10.1016/j.tcs.2014.02.017
10.1007/978-3-540-87361-7_8
10.1007/978-3-642-40453-5_19
10.1109/TCBB.2005.48
10.1145/1186810.1186812
10.1007/978-3-662-44753-6_2
10.1016/j.dam.2006.05.011
10.1016/j.tcs.2016.09.015
10.1145/1227161.1402297
10.1007/s002240000113
10.1137/1.9781611973402.8
10.1016/j.tcs.2016.07.011
10.1007/978-3-540-27821-4_8
10.1007/3-540-48523-6_17
10.1007/978-3-540-30551-4_43
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10878-020-00621-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 824
ExternalDocumentID 10_1007_s10878_020_00621_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11571252; 61370052
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Scholarship Council
  grantid: 201508330054
  funderid: http://dx.doi.org/10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 61972228; 61672323
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11971139; 11771114
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Humanities and Social Science Foundation of Ministry of Education of China
  grantid: 18YJAZH080
– fundername: Youth Innovation Team of Shaanxi Universities
– fundername: Shaanxi Provincial Science and Technology Department
  grantid: 2020JQ-654
  funderid: http://dx.doi.org/10.13039/501100011710
– fundername: National Natural Science Foundation of China
  grantid: 71701162
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: Humanities and Social Science Foundation of Ministry of Education of China
  grantid: 18YJC630114
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c270t-8e1bdcff8ba8e38c04618c7e9e027e1e2219dcfdf50e55e3cce4b38af8d39e723
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552512000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Wed Sep 17 23:56:40 EDT 2025
Sat Nov 29 04:54:34 EST 2025
Fri Feb 21 02:33:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords String partition
Duo-preservation string mapping
G.4 Algorithm design and analysis
Independent set
F.2.2 Pattern matching
Approximation algorithm
G.2.1 Combinatorial algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-8e1bdcff8ba8e38c04618c7e9e027e1e2219dcfdf50e55e3cce4b38af8d39e723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4283-3396
PQID 2450279093
PQPubID 2043856
PageCount 19
ParticipantIDs proquest_journals_2450279093
crossref_primary_10_1007_s10878_020_00621_0
springer_journals_10_1007_s10878_020_00621_0
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BermanPFujitoTOn approximation properties of the independent set problem for low degree graphsTheory Comput Syst199932115132166390810.1007/s002240000113
BerettaSCastelliMDondiRParameterized tractability of the maximum-duo preservation string mapping problemTheoret Comput Sci20166461625354196510.1016/j.tcs.2016.07.011
Brubach B (2016) Further improvement in approximating the maximum duo-preservation string mapping problem. In: Proceedings of the 16th international workshop on algorithms in bioinformatics (WABI 2016), volume 9838 of LNBI, pp 52–64
Damaschke P (2008) Minimum common string partition parameterized. In: Proceedings of the 8th international workshop on algorithms in bioinformatics (WABI 2008), volume 5251 of LNBI, pp 87–98
Bulteau L, Komusiewicz C (2014) Minimum common string partition parameterized by partition size is fixed-parameter tractable. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms (SODA’14), pp 102–121
SwensonKMMarronMEarnest-DeYoungJVMoretBMApproximating the true evolutionary distance between two genomesJ Exp Algorithmics20081235244370110.1145/1227161.1402297
Boria N, Cabodi G, Camurati P, Palena M, Pasini P, Quer S (2016) A 7/2-approximation algorithm for the maximum duo-preservation string mapping problem. In: Proceedings of the 27th annual symposium on combinatorial pattern matching (CPM 2016), volume 54 of LIPIcs, pp 11:1–11:8
ChenWChenZSamatovaNFPengLWangJTangMSolving the maximum duo-preservation string mapping problem with linear programmingTheoret Comput Sci2014530111318136610.1016/j.tcs.2014.02.017
Goldstein A, Kolman P, Zheng J (2004) Minimum common string partition problem: Hardness and approximations. In: Proceedings of the 15th international symposium on algorithms and computation (ISAAC 2004), volume 3341 of LNCS, pp 484–495
KolmanPWaleńTApproximating reversal distance for strings with bounded number of duplicatesDiscrete Appl Math2007155327336230315610.1016/j.dam.2006.05.011
Xu Y, Chen Y, Luo T, Lin G (2017) A local search 2.917-approximation algorithm for duo-preservation string mapping. arXiv:1702.01877
Kolman P, Waleń T (2006) Reversal distance for strings with duplicates: linear time approximation using hitting set. In: Proceedings of the 4th international workshop on approximation and online algorithms (WAOA 2006), volume 4368 of LNCS, pp 279–289
ChenXZhengJFuZNanPZhongYLonardiSJiangTAssignment of orthologous genes via genome rearrangementIEEE/ACM Trans Comput Biol Bioinf2005230231510.1109/TCBB.2005.48
CormodeGMuthukrishnanSThe string edit distance matching problem with movesACM Trans Algorithms200732:12:19230182810.1145/1186810.1186812
Bulteau L, Fertin G, Komusiewicz C, Rusu I (2013) A fixed-parameter algorithm for minimum common string partition with few duplications. In: Proceedings of the 13th international workshop on algorithms in bioinformatics (WABI 2013), volume 8126 of LNBI, pp 244–258
Dudek B, Gawrychowski P, Ostropolski-Nalewaja P (2017) A family of approximation algorithms for the maximum duo-preservation string mapping problem. In: Proceedings of the 28th annual symposium on combinatorial pattern matching (CPM 2017), volume 78 of LIPIcs, pp 10:1–10:14. arXiv:1702.02405
JiangHZhuBZhuDZhuHMinimum common string partition revisitedJ Comb Optim201223519527290396510.1007/s10878-010-9370-2
Berman P, Karpinski M (1999) On some tighter inapproximability results. In: Proceedings of the of 26th international colloquium on automata, languages and programming (ICALP’99), pp 200–209
GareyMRJohnsonDSComputers and intractability: a guide to the theory of NP-completeness1979San FranciscoW. H. Freeman and Company0411.68039
Chrobak M, Kolman P, Sgall J (2004) The greedy algorithm for the minimum common string partition problem. In: Proceedings of the 7th international workshop on approximation algorithms for combinatorial optimization problems (APPROX 2004) and the 8th international workshop on randomization and computation (RANDOM 2004), volume 3122 of LNCS, pp 84–95
Boria N, Kurpisz A, Leppänen S, Mastrolilli M (2014) Improved approximation for the maximum duo-preservation string mapping problem. In: Proceedings of the 14th international workshop on algorithms in bioinformatics (WABI 2014), volume 8701 of LNBI, pp 14–25
Beretta S, Castelli M, Dondi R (2016a) Corrigendum to “Parameterized tractability of the maximum-duo preservation string mapping problem” [646(2016), 16–25]. Theoret Comput Sci 653:108–110
621_CR9
G Cormode (621_CR13) 2007; 3
P Berman (621_CR3) 1999; 32
P Kolman (621_CR19) 2007; 155
W Chen (621_CR11) 2014; 530
621_CR17
621_CR14
MR Garey (621_CR16) 1979
621_CR15
621_CR12
X Chen (621_CR10) 2005; 2
621_CR22
621_CR1
621_CR20
621_CR4
H Jiang (621_CR18) 2012; 23
621_CR6
621_CR5
S Beretta (621_CR2) 2016; 646
621_CR8
621_CR7
KM Swenson (621_CR21) 2008; 12
References_xml – reference: Beretta S, Castelli M, Dondi R (2016a) Corrigendum to “Parameterized tractability of the maximum-duo preservation string mapping problem” [646(2016), 16–25]. Theoret Comput Sci 653:108–110
– reference: KolmanPWaleńTApproximating reversal distance for strings with bounded number of duplicatesDiscrete Appl Math2007155327336230315610.1016/j.dam.2006.05.011
– reference: Goldstein A, Kolman P, Zheng J (2004) Minimum common string partition problem: Hardness and approximations. In: Proceedings of the 15th international symposium on algorithms and computation (ISAAC 2004), volume 3341 of LNCS, pp 484–495
– reference: Xu Y, Chen Y, Luo T, Lin G (2017) A local search 2.917-approximation algorithm for duo-preservation string mapping. arXiv:1702.01877
– reference: CormodeGMuthukrishnanSThe string edit distance matching problem with movesACM Trans Algorithms200732:12:19230182810.1145/1186810.1186812
– reference: ChenXZhengJFuZNanPZhongYLonardiSJiangTAssignment of orthologous genes via genome rearrangementIEEE/ACM Trans Comput Biol Bioinf2005230231510.1109/TCBB.2005.48
– reference: Brubach B (2016) Further improvement in approximating the maximum duo-preservation string mapping problem. In: Proceedings of the 16th international workshop on algorithms in bioinformatics (WABI 2016), volume 9838 of LNBI, pp 52–64
– reference: Damaschke P (2008) Minimum common string partition parameterized. In: Proceedings of the 8th international workshop on algorithms in bioinformatics (WABI 2008), volume 5251 of LNBI, pp 87–98
– reference: BerettaSCastelliMDondiRParameterized tractability of the maximum-duo preservation string mapping problemTheoret Comput Sci20166461625354196510.1016/j.tcs.2016.07.011
– reference: Bulteau L, Fertin G, Komusiewicz C, Rusu I (2013) A fixed-parameter algorithm for minimum common string partition with few duplications. In: Proceedings of the 13th international workshop on algorithms in bioinformatics (WABI 2013), volume 8126 of LNBI, pp 244–258
– reference: GareyMRJohnsonDSComputers and intractability: a guide to the theory of NP-completeness1979San FranciscoW. H. Freeman and Company0411.68039
– reference: BermanPFujitoTOn approximation properties of the independent set problem for low degree graphsTheory Comput Syst199932115132166390810.1007/s002240000113
– reference: Chrobak M, Kolman P, Sgall J (2004) The greedy algorithm for the minimum common string partition problem. In: Proceedings of the 7th international workshop on approximation algorithms for combinatorial optimization problems (APPROX 2004) and the 8th international workshop on randomization and computation (RANDOM 2004), volume 3122 of LNCS, pp 84–95
– reference: Dudek B, Gawrychowski P, Ostropolski-Nalewaja P (2017) A family of approximation algorithms for the maximum duo-preservation string mapping problem. In: Proceedings of the 28th annual symposium on combinatorial pattern matching (CPM 2017), volume 78 of LIPIcs, pp 10:1–10:14. arXiv:1702.02405
– reference: JiangHZhuBZhuDZhuHMinimum common string partition revisitedJ Comb Optim201223519527290396510.1007/s10878-010-9370-2
– reference: Berman P, Karpinski M (1999) On some tighter inapproximability results. In: Proceedings of the of 26th international colloquium on automata, languages and programming (ICALP’99), pp 200–209
– reference: Boria N, Kurpisz A, Leppänen S, Mastrolilli M (2014) Improved approximation for the maximum duo-preservation string mapping problem. In: Proceedings of the 14th international workshop on algorithms in bioinformatics (WABI 2014), volume 8701 of LNBI, pp 14–25
– reference: Boria N, Cabodi G, Camurati P, Palena M, Pasini P, Quer S (2016) A 7/2-approximation algorithm for the maximum duo-preservation string mapping problem. In: Proceedings of the 27th annual symposium on combinatorial pattern matching (CPM 2016), volume 54 of LIPIcs, pp 11:1–11:8
– reference: SwensonKMMarronMEarnest-DeYoungJVMoretBMApproximating the true evolutionary distance between two genomesJ Exp Algorithmics20081235244370110.1145/1227161.1402297
– reference: ChenWChenZSamatovaNFPengLWangJTangMSolving the maximum duo-preservation string mapping problem with linear programmingTheoret Comput Sci2014530111318136610.1016/j.tcs.2014.02.017
– reference: Bulteau L, Komusiewicz C (2014) Minimum common string partition parameterized by partition size is fixed-parameter tractable. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms (SODA’14), pp 102–121
– reference: Kolman P, Waleń T (2006) Reversal distance for strings with duplicates: linear time approximation using hitting set. In: Proceedings of the 4th international workshop on approximation and online algorithms (WAOA 2006), volume 4368 of LNCS, pp 279–289
– ident: 621_CR20
  doi: 10.1007/11970125_22
– ident: 621_CR6
– ident: 621_CR7
  doi: 10.1007/978-3-319-43681-4_5
– volume: 23
  start-page: 519
  year: 2012
  ident: 621_CR18
  publication-title: J Comb Optim
  doi: 10.1007/s10878-010-9370-2
– volume: 530
  start-page: 1
  year: 2014
  ident: 621_CR11
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2014.02.017
– ident: 621_CR14
  doi: 10.1007/978-3-540-87361-7_8
– ident: 621_CR8
  doi: 10.1007/978-3-642-40453-5_19
– volume: 2
  start-page: 302
  year: 2005
  ident: 621_CR10
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2005.48
– volume-title: Computers and intractability: a guide to the theory of NP-completeness
  year: 1979
  ident: 621_CR16
– volume: 3
  start-page: 2:1
  year: 2007
  ident: 621_CR13
  publication-title: ACM Trans Algorithms
  doi: 10.1145/1186810.1186812
– ident: 621_CR5
  doi: 10.1007/978-3-662-44753-6_2
– volume: 155
  start-page: 327
  year: 2007
  ident: 621_CR19
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2006.05.011
– ident: 621_CR1
  doi: 10.1016/j.tcs.2016.09.015
– volume: 12
  start-page: 3
  year: 2008
  ident: 621_CR21
  publication-title: J Exp Algorithmics
  doi: 10.1145/1227161.1402297
– volume: 32
  start-page: 115
  year: 1999
  ident: 621_CR3
  publication-title: Theory Comput Syst
  doi: 10.1007/s002240000113
– ident: 621_CR15
– ident: 621_CR9
  doi: 10.1137/1.9781611973402.8
– volume: 646
  start-page: 16
  year: 2016
  ident: 621_CR2
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2016.07.011
– ident: 621_CR12
  doi: 10.1007/978-3-540-27821-4_8
– ident: 621_CR22
– ident: 621_CR4
  doi: 10.1007/3-540-48523-6_17
– ident: 621_CR17
  doi: 10.1007/978-3-540-30551-4_43
SSID ssj0009054
Score 2.2057934
Snippet The maximum duo-preservation string mapping ( Max-Duo ) problem is the complement of the well studied minimum common string partition problem, both of which...
The maximum duo-preservation string mapping (Max-Duo) problem is the complement of the well studied minimum common string partition problem, both of which have...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 806
SubjectTerms Algorithms
Approximation
Bioinformatics
Combinatorics
Convex and Discrete Geometry
Degree reduction
Mapping
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Strings
Theory of Computation
Title A (1.4+ϵ)-approximation algorithm for the 2-Max-Duo problem
URI https://link.springer.com/article/10.1007/s10878-020-00621-0
https://www.proquest.com/docview/2450279093
Volume 40
WOSCitedRecordID wos000552512000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6JQUA4cQMUosZ1mInGpgIoDrRCbeots14FK0KImRf0xvoNfYrKRguAAx8jJyHp2ZpH93hCyjxGEgaMV7SmbU8EUp75iAp0hhlfA-McgJQpfep0OdLv-VU4Ki4rb7sWRZOqpp8hukKjBsoQJ3WBYBM-SOQx3kDRsuL65L6V2bTdrZYu5I9Z-bk6V-dnG13BU5pjfjkXTaNNa_t88V8hSnl1azWw7rJIZM1gji1Oag_jU_hRqjdbJSdM6cI5F_f3tkKby4pN-xmW05NPDcNSPH58tTGst_MRitC0n9Gw8tPIuNBvkrnV-e3pB84YKVDPPjikYR_V0GIKSYDjoRGwdtGd8g8WpcQxD94XjvdC1jesarrURioMMocd94zG-SSqD4cBsEUtKLiAEozwwwpMgfbQiIUyorA1pRJXUC1yDl0w3IygVkhOEAkQoSBEK7CqpFdAH-T8UBUy4OC3f9nmVHBVQl8O_W9v-2-s7ZIElq5Xe0KuRSjwam10yr1_jfjTaS_fWB3XVxmc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL1oFdSFb7FaNQsXSh1JZybNDbgpaqnYFtEq7sIknWhBW-lD-mN-h7_kzctU0YUuwySX4czkPpg55wLsUwThWPI91vZMwST3BHM8LskZUnhFin8cI6Jw3W428f7euUpIYYP0tnt6JBl56gmyG4ZqsDxkQpc5FcHTMCMpYoWK-dc3d5nUrmnFrWwpd6Taz0qoMj_b-BqOshzz27FoFG2qS_-b5zIsJtmlUYm3wwpM6e4qLExoDtJT41OodbAGJxXjoHQsi-9vhyySFx93Yi6joZ4eev3O8PHZoLTWoE8MzhpqzM5GPSPpQrMOt9Xz1mmNJQ0VmM9tc8hQl7y2HwToKdQC_VBsHX1bO5qKU13SnNwXjbcDy9SWpYXva-kJVAG2haNtLjYg1-119SYYSgmJAWrPRi1thcohKwqDkMpaVlrmoZji6r7EuhluppAcIuQSQm6EkGvmoZBC7yb_0MDl0qJpOaYj8nCUQp0N_25t62-v78FcrdWou_WL5uU2zPNw5aLbegXIDfsjvQOz_uuwM-jvRvvsA801yUs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iujBb7FaNQcPSl2b7m6aCXgp1qLYloIfeAubZKMFTUubSv-Yv8O_5G6S2ip6EI9hk2F5u9mZYee9AThUHoRi2fdI4JmMcOox4niUq8NQuVdU_o9iQhRu2K0WPjw47SkWf1LtPr6STDkNWqUpiku9ICxNEd9QK8NSzYquUJUQz8Ic14X0Ol-_uZ_I7ppW2tZWxZEqD7Qy2szPNr66pkm8-e2KNPE89ZX_z3kVlrOo06im22QNZmS0DktTWoTqqfkp4DrYgLOqcVQ-5cX3t2OSyI6POinH0RDPj91-J356MVS4a6hPDEqaYkRqw66RdafZhLv6xe35JckaLRCf2mZMUJa9wA9D9ARKhr4WYUfflo5USassS6qONTUehJYpLUsy35fcYyhCDJgjbcq2IBd1I7kNhhCMY4jSs1FyW6BwlBWBoaa4VoTkeSiOMXZ7qZ6GO1FO1gi5CiE3Qcg181AYL4Ob_VsDl3JLTcsxHZaHkzHsk-Hfre387fUDWGjX6m7jqnW9C4tUL1xSxFeAXNwfyj2Y91_jzqC_n2y5D_AV0i8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+%281.4%2B%CF%B5%29-approximation+algorithm+for+the+2-Max-Duo+problem&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Chen%2C+Yong&rft.au=Lin%2C+Guohui&rft.au=Liu%2C+Tian&rft.au=Luo%2C+Taibo&rft.date=2020-10-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=40&rft.issue=3&rft.spage=806&rft.epage=824&rft_id=info:doi/10.1007%2Fs10878-020-00621-0&rft.externalDocID=10_1007_s10878_020_00621_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon