A novel hybrid learning based Ada Boost (HLBAB) classifier for channel state estimation in cognitive networks

Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times. This has become more pronounced in recent times, especially with increasing scarcity in availability of radio frequency spectrum. Wireless st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control Jg. 9; H. 1; S. 299 - 307
Hauptverfasser: Vadivukkarasi, S., Santhi, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Schlagworte:
ISSN:2195-268X, 2195-2698
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times. This has become more pronounced in recent times, especially with increasing scarcity in availability of radio frequency spectrum. Wireless state of the art communication standards demand high bandwidth to provide seamless connectivity and high degree of mobility, which requires more of radio frequency band for functioning. Hence, intelligent methods of spectrum allocation have been an increasing challenge in recent times. This paper proposes a hybrid learning based-Ada Boost classifier model for efficient spectrum allocation through channel state estimation through a learning and double classification approach. The proposed algorithm has been experimented in a high bandwidth characterized 5G communication simulation settings and observed for its performance measures namely collision rate analysis, throughput, probability of detection, false alarm detection and bit error rate. The proposed technique has been compared against benchmark techniques such as conventional fast Fourier transform based energy detector, fuzzy cognitive engine and adaptive neuro fuzzy inference model without Ada Boost and found to exhibit superior performance in all performance measures. The proposed technique exhibits a spectral efficiency of nearly 90% and considered to be a suitable spectrum sensing scheme for high bandwidth and narrowband utilities.
AbstractList Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times. This has become more pronounced in recent times, especially with increasing scarcity in availability of radio frequency spectrum. Wireless state of the art communication standards demand high bandwidth to provide seamless connectivity and high degree of mobility, which requires more of radio frequency band for functioning. Hence, intelligent methods of spectrum allocation have been an increasing challenge in recent times. This paper proposes a hybrid learning based-Ada Boost classifier model for efficient spectrum allocation through channel state estimation through a learning and double classification approach. The proposed algorithm has been experimented in a high bandwidth characterized 5G communication simulation settings and observed for its performance measures namely collision rate analysis, throughput, probability of detection, false alarm detection and bit error rate. The proposed technique has been compared against benchmark techniques such as conventional fast Fourier transform based energy detector, fuzzy cognitive engine and adaptive neuro fuzzy inference model without Ada Boost and found to exhibit superior performance in all performance measures. The proposed technique exhibits a spectral efficiency of nearly 90% and considered to be a suitable spectrum sensing scheme for high bandwidth and narrowband utilities.
Author Vadivukkarasi, S.
Santhi, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Vadivukkarasi
  fullname: Vadivukkarasi, S.
  email: vadivukkarasi.at2018@gmail.com
  organization: Department of Instrumentation Engineering, Annamalai University
– sequence: 2
  givenname: S.
  surname: Santhi
  fullname: Santhi, S.
  organization: Department of Instrumentation Engineering, Annamalai University
BookMark eNp9kDFPwzAUhC0EEqX0DzBZYoEh8Ow4jTOmFVCkSiwgsVlO-tK6pHax06L8ewxFsDHdG-67d7ozcmydRUIuGNwwgPw2CBBplgCHBGCcpkl_RAacFVnCx4U8_r3l6ykZhbAGAM4EcFEMyKak1u2xpau-8mZBW9TeGruklQ64oOVC04lzoaNXs_mknFzTutUhmMagp43ztF5payMeOt0hxdCZje6Ms9RYWrulNZ3ZI7XYfTj_Fs7JSaPbgKMfHZKX-7vn6SyZPz08Tst5UvMcukTyHBsAUaS8ANGMa9bITAghMZVMZLzKGCLP84XGqpZVhU0Ullc8A61ZVaRDcnnI3Xr3vout1NrtvI0vFRcyj0mSs-jiB1ftXQgeG7X1sb7vFQP1taw6LKvisup7WdVHKD1AIZrtEv1f9D_UJ-tBfc0
Cites_doi 10.1109/SURV.2009.090109
10.5121/ijngn.2011.3203
10.1109/TWC.2008.060869
10.1109/T-WC.2008.070420
10.1109/JSAC.2014.140314
10.1016/j.jcss.2004.10.015
10.1155/2010/381465
10.1109/TVT.2010.2043968
10.1109/TVT.2013.2260834
10.1109/TCOMM.2013.050813.120877
10.1109/MWC.2013.6507399
10.1002/wcm.1017
10.1109/JSAC.2007.070409
10.1109/JSAC.2008.080103
10.1109/TWC.2009.081106
10.1109/ICC.2010.5502348
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s40435-020-00633-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2195-2698
EndPage 307
ExternalDocumentID 10_1007_s40435_020_00633_y
GroupedDBID -EM
0R~
30V
4.4
406
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
H13
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
PT4
RLLFE
ROL
RSV
SCL
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c270t-827ef004932904f6c1f854448e381452b51ee277daebc8bbefbc817b250aa1b93
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001054388500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2195-268X
IngestDate Thu Sep 18 00:04:19 EDT 2025
Sat Nov 29 03:59:53 EST 2025
Fri Feb 21 02:48:40 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Spectrum sensing
Back propagation learning
Ada Boost algorithms
Supervised learning
Cognitive radio networks
Channel state estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-827ef004932904f6c1f854448e381452b51ee277daebc8bbefbc817b250aa1b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2487448821
PQPubID 2043900
PageCount 9
ParticipantIDs proquest_journals_2487448821
crossref_primary_10_1007_s40435_020_00633_y
springer_journals_10_1007_s40435_020_00633_y
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of dynamics and control
PublicationTitleAbbrev Int. J. Dynam. Control
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sutton, Nolan, Doyle (CR7) 2008; 26
Xu, Lu, Chen (CR21) 2014; 6
CR8
Xing, Jing, Cheng, Huo, Cheng (CR10) 2013; 20
Mannor, Meir, Zhang (CR15) 2003; 4
Liang, Zeng, Peh, Hoang (CR4) 2008; 7
Tumuluru, Wang, Niyato (CR9) 2012; 12
Zhang, Wu, Lau (CR2) 2009; 8
Wan, Hu, Wang (CR13) 2016; 32
Lee, Akyildiz (CR6) 2008; 7
Noh, Oh (CR22) 2014; 32
Yucek, Arslan (CR3) 2009; 11
Subhedar, Birajdar (CR12) 2011; 3
Lin, Cheng, Jiang (CR16) 2016; 49
Atapattu, Tellambura, Jiang (CR14) 2001; 10
Sharma, Chatzinotas, Ottersten (CR17) 2013; 62
Li (CR18) 2015; 38
Zhao, Tong, Swami, Chen (CR19) 2007; 25
Zeng, Liang, Hoang, Zhang (CR1) 2010; 2010
Kalai, Servedio (CR5) 2005; 71
Che, Zhang, Gong (CR20) 2013; 61
He (CR11) 2010; 59
M Subhedar (633_CR12) 2011; 3
G Lin (633_CR16) 2016; 49
AT Kalai (633_CR5) 2005; 71
Y Che (633_CR20) 2013; 61
Y Xu (633_CR21) 2014; 6
PD Sutton (633_CR7) 2008; 26
A He (633_CR11) 2010; 59
SK Sharma (633_CR17) 2013; 62
X Wan (633_CR13) 2016; 32
J Noh (633_CR22) 2014; 32
S Atapattu (633_CR14) 2001; 10
WY Lee (633_CR6) 2008; 7
S Zhang (633_CR2) 2009; 8
YC Liang (633_CR4) 2008; 7
S Mannor (633_CR15) 2003; 4
633_CR8
H Li (633_CR18) 2015; 38
Q Zhao (633_CR19) 2007; 25
T Yucek (633_CR3) 2009; 11
Y Zeng (633_CR1) 2010; 2010
X Xing (633_CR10) 2013; 20
VK Tumuluru (633_CR9) 2012; 12
References_xml – volume: 11
  start-page: 116
  issue: 1
  year: 2009
  end-page: 129
  ident: CR3
  article-title: A survey of spectrum sensing algorithms for cognitive radio networks
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/SURV.2009.090109
– volume: 3
  start-page: 37
  issue: 2
  year: 2011
  end-page: 51
  ident: CR12
  article-title: Spectrum sensing techniques in cognitive radio networks—a survey
  publication-title: Int J Next Gener Netw
  doi: 10.5121/ijngn.2011.3203
– volume: 7
  start-page: 1326
  issue: 4
  year: 2008
  end-page: 1337
  ident: CR4
  article-title: Sensing-throughput tradeoff for cognitive radio networks
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2008.060869
– volume: 7
  start-page: 3845
  issue: 10
  year: 2008
  end-page: 3857
  ident: CR6
  article-title: Optimal spectrum sensing framework for cognitive radio networks
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/T-WC.2008.070420
– volume: 32
  start-page: 539
  issue: 3
  year: 2014
  end-page: 549
  ident: CR22
  article-title: Cognitive radio channel with cooperative multi-antenna secondary systems
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2014.140314
– volume: 71
  start-page: 266
  issue: 3
  year: 2005
  end-page: 290
  ident: CR5
  article-title: Boosting in presence of noise
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2004.10.015
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 15
  ident: CR1
  article-title: A review on spectrum sensing for cognitive radio: challenges and solutions
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/2010/381465
– volume: 59
  start-page: 1578
  issue: 4
  year: 2010
  end-page: 1592
  ident: CR11
  article-title: A survey of artificial intelligence for cognitive radios
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2010.2043968
– volume: 62
  start-page: 3671
  issue: 8
  year: 2013
  end-page: 3684
  ident: CR17
  article-title: Eigen value based sensing and SNR estimation for cognitive radio in presence of noise correlation
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2013.2260834
– volume: 6
  start-page: 2855
  issue: 17
  year: 2014
  end-page: 2863
  ident: CR21
  article-title: Prediction method of cognitive radio spectrum based on support vector machine
  publication-title: J Telecommun Sci
– volume: 32
  start-page: 52
  issue: 3
  year: 2016
  end-page: 59
  ident: CR13
  article-title: ISM band prediction algorithm based on two dimensional LMBP neural network
  publication-title: J Telecommun Sci
– volume: 61
  start-page: 2678
  issue: 7
  year: 2013
  end-page: 2691
  ident: CR20
  article-title: On design of opportunistic spectrum access in the presence of reactive primary users
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2013.050813.120877
– volume: 20
  start-page: 90
  issue: 2
  year: 2013
  end-page: 96
  ident: CR10
  article-title: Spectrum prediction in cognitive radio networks
  publication-title: IEEE Wirel Commun
  doi: 10.1109/MWC.2013.6507399
– volume: 12
  start-page: 862
  issue: 10
  year: 2012
  end-page: 874
  ident: CR9
  article-title: Channel status prediction, n for cognitive radio networks
  publication-title: J Wirel Commun Mob Comput
  doi: 10.1002/wcm.1017
– volume: 4
  start-page: 713
  year: 2003
  end-page: 742
  ident: CR15
  article-title: Greedy algorithms for classification—consistency convergence rates and adaptivity
  publication-title: J Mach Learn Res
– volume: 38
  start-page: 617
  issue: 7
  year: 2015
  end-page: 627
  ident: CR18
  article-title: Cognitive radio based on the support vector machine to estimate the spectrum of leisure
  publication-title: J Mod Electron Technol
– ident: CR8
– volume: 10
  start-page: 1
  issue: 4
  year: 2001
  end-page: 10
  ident: CR14
  article-title: Energy detection based cooperative spectrum sensing in cognitive radio networks
  publication-title: IEEE Trans Wirel Commun
– volume: 25
  start-page: 589
  issue: 3
  year: 2007
  end-page: 600
  ident: CR19
  article-title: Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2007.070409
– volume: 26
  start-page: 13
  issue: 1
  year: 2008
  end-page: 24
  ident: CR7
  article-title: Cyclostationary signatures in practical cognitive radio applications
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2008.080103
– volume: 49
  start-page: 44
  issue: 3
  year: 2016
  end-page: 59
  ident: CR16
  article-title: Performance analysis of three-state HMM in shortwave channel estimation
  publication-title: J Commun Technol
– volume: 8
  start-page: 5575
  issue: 11
  year: 2009
  end-page: 5581
  ident: CR2
  article-title: A low-overhead energy detection based cooperative sensing protocol for cognitive radio systems
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2009.081106
– volume: 49
  start-page: 44
  issue: 3
  year: 2016
  ident: 633_CR16
  publication-title: J Commun Technol
– volume: 61
  start-page: 2678
  issue: 7
  year: 2013
  ident: 633_CR20
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2013.050813.120877
– volume: 38
  start-page: 617
  issue: 7
  year: 2015
  ident: 633_CR18
  publication-title: J Mod Electron Technol
– volume: 26
  start-page: 13
  issue: 1
  year: 2008
  ident: 633_CR7
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2008.080103
– volume: 7
  start-page: 1326
  issue: 4
  year: 2008
  ident: 633_CR4
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2008.060869
– volume: 8
  start-page: 5575
  issue: 11
  year: 2009
  ident: 633_CR2
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2009.081106
– volume: 32
  start-page: 52
  issue: 3
  year: 2016
  ident: 633_CR13
  publication-title: J Telecommun Sci
– volume: 4
  start-page: 713
  year: 2003
  ident: 633_CR15
  publication-title: J Mach Learn Res
– ident: 633_CR8
  doi: 10.1109/ICC.2010.5502348
– volume: 3
  start-page: 37
  issue: 2
  year: 2011
  ident: 633_CR12
  publication-title: Int J Next Gener Netw
  doi: 10.5121/ijngn.2011.3203
– volume: 12
  start-page: 862
  issue: 10
  year: 2012
  ident: 633_CR9
  publication-title: J Wirel Commun Mob Comput
  doi: 10.1002/wcm.1017
– volume: 25
  start-page: 589
  issue: 3
  year: 2007
  ident: 633_CR19
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2007.070409
– volume: 59
  start-page: 1578
  issue: 4
  year: 2010
  ident: 633_CR11
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2010.2043968
– volume: 62
  start-page: 3671
  issue: 8
  year: 2013
  ident: 633_CR17
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2013.2260834
– volume: 7
  start-page: 3845
  issue: 10
  year: 2008
  ident: 633_CR6
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/T-WC.2008.070420
– volume: 32
  start-page: 539
  issue: 3
  year: 2014
  ident: 633_CR22
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2014.140314
– volume: 2010
  start-page: 1
  year: 2010
  ident: 633_CR1
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/2010/381465
– volume: 6
  start-page: 2855
  issue: 17
  year: 2014
  ident: 633_CR21
  publication-title: J Telecommun Sci
– volume: 10
  start-page: 1
  issue: 4
  year: 2001
  ident: 633_CR14
  publication-title: IEEE Trans Wirel Commun
– volume: 20
  start-page: 90
  issue: 2
  year: 2013
  ident: 633_CR10
  publication-title: IEEE Wirel Commun
  doi: 10.1109/MWC.2013.6507399
– volume: 11
  start-page: 116
  issue: 1
  year: 2009
  ident: 633_CR3
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/SURV.2009.090109
– volume: 71
  start-page: 266
  issue: 3
  year: 2005
  ident: 633_CR5
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2004.10.015
SSID ssj0002140249
ssib031263557
Score 2.1508656
Snippet Spectrum sensing, through efficient channel estimation methods utilizing cognitive radio networks, has become an increasingly researched area in recent times....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 299
SubjectTerms Algorithms
Bandwidths
Bit error rate
Classifiers
Cognitive radio
Collision dynamics
Collision rates
Complexity
Control
Control and Systems Theory
Dynamical Systems
Engineering
Error detection
False alarms
Fast Fourier transformations
Fourier transforms
Frequencies
Frequency spectrum
Machine learning
Narrowband
Spectrum allocation
State estimation
Utilities
Vibration
Wireless communications
Title A novel hybrid learning based Ada Boost (HLBAB) classifier for channel state estimation in cognitive networks
URI https://link.springer.com/article/10.1007/s40435-020-00633-y
https://www.proquest.com/docview/2487448821
Volume 9
WOSCitedRecordID wos001054388500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2195-2698
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140249
  issn: 2195-268X
  databaseCode: RSV
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMDCCI1jhM7Y4qoOlQV4qVukZ3YUAkS1IRK_ff43KQFBANMGZJY0d3lHrr7vkPoNBRUm6KLOoFm2qG-1g5PE2GqVmjbaBHq1PLM9tlgwIfD8KYChRX1tHvdkrSeeg52Ax4YQBMDEjrwPGe6jFZMuOOwsOH27rG2Is8FfpWqlwf-mJgagtg8mMBiQhLwYYWe-fnYrxFqkXZ-65TaANTd_N-nb6GNKuHE0cxCttGSynbQ-icawl30GuEsn6gX_DwF_BauNkk8YQhxKY5SgTt5XpT4rNfvRJ1znEDKPdImomKT82IAD2fmdQtOwkDbMcND4lGG5-NJOJsNnBd76KF7fX_Vc6o1DE5CWLt0OGFKQyXhEaNUHSSu5j41ZZ0y0Z76RPquUoSxVCiZcCmVNheXSZNcCeHK0NtHjSzP1AHCQnDYU5QSRTwqiRaEyVTQlBo30zY23UQXtejjtxnbRjznVbZCjI0QYyvEeNpErVo7cfXnFTGhQOhv6ga3iS5rbSxu_37a4d8eP0JrBMZb7DhaCzXK8bs6RqvJpBwV4xNrkR-0E9nm
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1itugcPigaazbZJj6lYKtYiWqW3sMnuakETaWqh_96dTdKq6EFPOSRZwsxkHsx83wAcNzhTuuhiVl25ymI1pSxPRFxXrdi2UbyhhOGZ7bjdrtfvN25zUFhaTLsXLUnjqadgN-SBQTQxIqHrjmNN5mGB6YiFjPl394-FFTk28qvkvTz0x1TXENTkwRQXE9K618_RMz8f-zVCzdLOb51SE4Baa__79HVYzRNO4mcWsgFzMt6ElU80hFvw6pM4GcsX8jxB_BbJN0k8EQxxgviCk2aSpCNy0u40_eYpiTDlHigdUYnOeQmCh2P9ugEnEaTtyPCQZBCT6XgSibOB83QbHlqXvYu2la9hsCLqVkeWR12psJJwqFaqqke28mpMl3VSR3tWo2HNlpK6ruAyjLwwlEpfbDfUyRXndthwdqAUJ7HcBcK5h3uKBJXUYSFVnLqh4Eww7Waq2qbLcFaIPnjL2DaCKa-yEWKghRgYIQaTMlQK7QT5n5cGlCGhv64b7DKcF9qY3f79tL2_PX4ES-3eTSfoXHWv92GZ4qiLGU2rQGk0fJcHsBiNR4N0eGis8wP0DtzK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iujBb7FadQ8eFA1tNpsmPbZqqVhKwQ96C5vsrhY0LW0s9N-7s0lqFT2IpxySLGRnsvOGmfcG4LTGmdJJF7OqylMWc5WyfBFxnbVi2UbxmhJGZ7btdTp-r1frzrH4Tbd7XpJMOQ2o0hQn5aFQ5RnxDTVhkFmMrOiq41jTRVhi2EiP-fr9U-5Rjo1aK1ldD89mqvMJajAxxSGFtOr3MibNz8t-jVafEPRb1dQEo-bG_z9jE9YzIErqqedswYKMt2FtTp5wB97qJB5M5Ct5mSKvi2QTJp4Jhj5B6oKTxmAwTshZq92oN85JhFC8r3SkJRoLEyQVx_p1Q1oiKOeR8iRJPyaztiUSp43o4114bN48XLWsbDyDFVGvklg-9aTCDMOh2tiqGtnKd5lO96RGAcyloWtLST1PcBlGfhhKpS-2F2rQxbkd1pw9KMSDWO4D4dzH-UWCSuqwkCpOvVBwJpg-fira14twkZshGKYqHMFMb9lsYqA3MTCbGEyLUMotFWR_5DigDIX-dT5hF-Eyt8zn7d9XO_jb4yew0r1uBu3bzt0hrFLsgDEdayUoJKN3eQTL0STpj0fHxlE_APXv5a4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+learning+based+Ada+Boost+%28HLBAB%29+classifier+for+channel+state+estimation+in+cognitive+networks&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Vadivukkarasi%2C+S&rft.au=Santhi%2C+S&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=9&rft.issue=1&rft.spage=299&rft.epage=307&rft_id=info:doi/10.1007%2Fs40435-020-00633-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon