Streaming submodular maximization under d-knapsack constraints

Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 45; no. 1; p. 15
Main Authors: Chen, Zihan, Liu, Bin, Du, Hongmin W.
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2023
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study two problem of maximizing submodular functions with d -knapsack constraints. First, for the problem of maximizing DR-submodular functions with d -knapsack constraints on the integer lattice, we propose a one pass streaming algorithm that achieves a 1 - θ 1 + d -approximation with O log ( d β - 1 ) β ϵ memory complexity and O log ( d β - 1 ) ϵ log ‖ b ‖ ∞ update time per element, where θ = min ( α + ϵ , 0.5 + ϵ ) and α , β are the upper and lower bounds for the cost of each item in the stream. Then we devise an improved streaming algorithm to reduce the memory complexity to O ( d β ϵ ) with unchanged approximation ratio and query complexity. Then for the problem of maximizing submodular functions with d -knapsack constraints under noise, we design a one pass streaming algorithm. When ε → 0 , it achieves a 1 1 - α + d -approximate ratio, memory complexity O log ( d β - 1 ) β ϵ and query complexity O log ( d β - 1 ) ϵ per element. As far as we know, these two are the first streaming algorithms under their corresponding problems.
AbstractList Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study two problem of maximizing submodular functions with d-knapsack constraints. First, for the problem of maximizing DR-submodular functions with d-knapsack constraints on the integer lattice, we propose a one pass streaming algorithm that achieves a 1-θ1+d-approximation with Olog(dβ-1)βϵ memory complexity and Olog(dβ-1)ϵlog‖b‖∞ update time per element, where θ=min(α+ϵ,0.5+ϵ) and α,β are the upper and lower bounds for the cost of each item in the stream. Then we devise an improved streaming algorithm to reduce the memory complexity to O(dβϵ) with unchanged approximation ratio and query complexity. Then for the problem of maximizing submodular functions with d-knapsack constraints under noise, we design a one pass streaming algorithm. When ε→0, it achieves a 11-α+d-approximate ratio, memory complexity Olog(dβ-1)βϵ and query complexity Olog(dβ-1)ϵ per element. As far as we know, these two are the first streaming algorithms under their corresponding problems.
Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study two problem of maximizing submodular functions with d -knapsack constraints. First, for the problem of maximizing DR-submodular functions with d -knapsack constraints on the integer lattice, we propose a one pass streaming algorithm that achieves a 1 - θ 1 + d -approximation with O log ( d β - 1 ) β ϵ memory complexity and O log ( d β - 1 ) ϵ log ‖ b ‖ ∞ update time per element, where θ = min ( α + ϵ , 0.5 + ϵ ) and α , β are the upper and lower bounds for the cost of each item in the stream. Then we devise an improved streaming algorithm to reduce the memory complexity to O ( d β ϵ ) with unchanged approximation ratio and query complexity. Then for the problem of maximizing submodular functions with d -knapsack constraints under noise, we design a one pass streaming algorithm. When ε → 0 , it achieves a 1 1 - α + d -approximate ratio, memory complexity O log ( d β - 1 ) β ϵ and query complexity O log ( d β - 1 ) ϵ per element. As far as we know, these two are the first streaming algorithms under their corresponding problems.
ArticleNumber 15
Author Chen, Zihan
Liu, Bin
Du, Hongmin W.
Author_xml – sequence: 1
  givenname: Zihan
  surname: Chen
  fullname: Chen, Zihan
  organization: School of Mathematical Sciences, Ocean University of China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0002-8958-3999
  surname: Liu
  fullname: Liu, Bin
  email: binliu@ouc.edu.cn
  organization: School of Mathematical Sciences, Ocean University of China
– sequence: 3
  givenname: Hongmin W.
  surname: Du
  fullname: Du, Hongmin W.
  organization: Accounting and Information Systems Department, Rutgers University
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8BzNd5OLIItfsOBBPYc0nS7d3aZr0oL6641W8OZphuF534FngWahD4DQOSWXlJDyKlGiS40JY5gQIymmR2hOZckx01rN8s41w8oQeYIWKW1JpogUc3T9PERwXRs2RRqrrq_HvYtF597brv10Q9uHYgw1xKLGu-AOyfld4fuQhujaMKRTdNy4fYKz37lEr3e3L6sHvH66f1zdrLFnJRlw2QgQpaa0YpV3VBleCdCNrKXXBkgp85UJ4wRXtYdKgao0GEebhgkBwPgSXUy9h9i_jZAGu-3HGPJLy5kUyhgtRabYRPnYpxShsYfYdi5-WErstyc7ebLZk_3xZGkO8SmUMhw2EP-q_0l9AQoRbc0
Cites_doi 10.1016/S0167-6377(03)00062-2
10.1007/s00453-020-00786-4
10.1109/ACCESS.2018.2871668
10.1007/s10107-018-1324-y
10.1109/TKDE.2018.2854182
10.1007/BF02680565
10.1109/TNSE.2020.2993042
10.1287/moor.7.3.410
10.1007/BF01588971
10.1109/TCSS.2021.3061452
10.1061/(ASCE)0733-9496(2008)134:6(516)
10.1145/3447396
10.1287/moor.3.3.177
10.1109/ICDCS.2019.00042
10.1145/2623330.2623637
10.1145/956750.956769
10.1137/1.9781611973730.80
10.1145/1835804.1835934
10.1137/1.9781611973105.88
10.1137/1.9781611973068.60
10.1145/1281192.1281239
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10878-022-00951-1
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
ExternalDocumentID 10_1007_s10878_022_00951_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11971447; 11871442
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020MA045
  funderid: http://dx.doi.org/10.13039/501100007129
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c270t-7f4e47811b2bca1693b4e8f5d5c89e075bca249a436dceb6e6b8e9a1ff244ee23
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000917086300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Sat Sep 27 04:21:43 EDT 2025
Sat Nov 29 04:54:39 EST 2025
Fri Feb 21 02:45:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Streaming algorithm
Integer lattice
Knapsack constraints
Noise
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-7f4e47811b2bca1693b4e8f5d5c89e075bca249a436dceb6e6b8e9a1ff244ee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8958-3999
PQID 3254699854
PQPubID 2043856
ParticipantIDs proquest_journals_3254699854
crossref_primary_10_1007_s10878_022_00951_1
springer_journals_10_1007_s10878_022_00951_1
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR19
CR18
CR17
CR16
CR15
Murota (CR20) 1998; 83
CR14
CR12
CR11
CR31
Yu, Xu, Cui (CR30) 2018; 6
Nemhauser, Wolsey, Fisher (CR22) 1978; 14
Wolsey (CR29) 1982; 7
Wang, Li, Tan (CR28) 2018; 31
Guo, Wu (CR10) 2021; 15
CR2
CR4
CR3
CR6
CR5
CR7
Krause, Leskovec, Guestrin, VanBriesen, Faloutsos (CR1) 2008; 134
Soma, Yoshida (CR26) 2018; 172
CR25
CR24
CR21
Nemhauser, Wolsey (CR23) 1978; 3
Guo, Chen, Wu (CR8) 2020; 7
Guo, Wu (CR9) 2021; 8
Sviridenko (CR27) 2004; 32
Huang, Kakimura (CR13) 2021; 83
951_CR19
M Sviridenko (951_CR27) 2004; 32
951_CR18
K Murota (951_CR20) 1998; 83
Q Yu (951_CR30) 2018; 6
L Wolsey (951_CR29) 1982; 7
Y Wang (951_CR28) 2018; 31
A Krause (951_CR1) 2008; 134
951_CR25
951_CR21
951_CR24
L Nemhauser (951_CR22) 1978; 14
J Guo (951_CR8) 2020; 7
J Guo (951_CR10) 2021; 15
951_CR3
951_CR4
L Nemhauser (951_CR23) 1978; 3
951_CR2
951_CR7
J Guo (951_CR9) 2021; 8
951_CR5
951_CR6
951_CR31
951_CR15
951_CR14
C Huang (951_CR13) 2021; 83
951_CR17
T Soma (951_CR26) 2018; 172
951_CR16
951_CR11
951_CR12
References_xml – ident: CR18
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  end-page: 43
  ident: CR27
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 83
  start-page: 879
  issue: 3
  year: 2021
  end-page: 902
  ident: CR13
  article-title: Improved streaming algorithms for maximising monotone submodular functions under a knapsack constraint
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00786-4
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 6
  start-page: 53736
  year: 2018
  end-page: 53747
  ident: CR30
  article-title: Streaming algorithms for news and scientific literature recommendation: monotone submodular maximization with a d-Knapsack constraint
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2871668
– ident: CR6
– volume: 172
  start-page: 539
  issue: 1
  year: 2018
  end-page: 563
  ident: CR26
  article-title: Maximizing monotone submodular functions over the integer lattice
  publication-title: Math Program
  doi: 10.1007/s10107-018-1324-y
– volume: 31
  start-page: 1327
  issue: 7
  year: 2018
  end-page: 1340
  ident: CR28
  article-title: Efficient representative subset selection over sliding windows
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2854182
– volume: 83
  start-page: 313
  issue: 1
  year: 1998
  end-page: 371
  ident: CR20
  article-title: Discrete convex analysis
  publication-title: Math Program
  doi: 10.1007/BF02680565
– ident: CR25
– ident: CR21
– volume: 7
  start-page: 2775
  issue: 4
  year: 2020
  end-page: 2786
  ident: CR8
  article-title: Continuous activity maximization in online social networks
  publication-title: IEEE Trans Netw Sc Eng
  doi: 10.1109/TNSE.2020.2993042
– ident: CR19
– volume: 7
  start-page: 410
  issue: 3
  year: 1982
  end-page: 425
  ident: CR29
  article-title: Maximising real-valued submodular set function: primal and dual heuristics for location problems
  publication-title: Math Oper Res
  doi: 10.1287/moor.7.3.410
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  end-page: 294
  ident: CR22
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math Program
  doi: 10.1007/BF01588971
– ident: CR3
– ident: CR15
– volume: 8
  start-page: 768
  issue: 3
  year: 2021
  end-page: 779
  ident: CR9
  article-title: Continuous profit maximization: a study of unconstrained dr-submodular maximization
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2021.3061452
– ident: CR17
– ident: CR31
– ident: CR11
– volume: 134
  start-page: 516
  issue: 6
  year: 2008
  end-page: 526
  ident: CR1
  article-title: Efficient sensor placement optimization for securing large water distribution networks
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(2008)134:6(516)
– volume: 15
  start-page: 1
  issue: 5
  year: 2021
  end-page: 23
  ident: CR10
  article-title: Adaptive influence maximization: if influential node unwilling to be the seed
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3447396
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  end-page: 188
  ident: CR23
  article-title: Best algorithms for approximating the maximum of a submodular set function
  publication-title: Math Oper Res
  doi: 10.1287/moor.3.3.177
– ident: CR5
– ident: CR7
– ident: CR24
– ident: 951_CR31
  doi: 10.1109/ICDCS.2019.00042
– volume: 83
  start-page: 879
  issue: 3
  year: 2021
  ident: 951_CR13
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00786-4
– ident: 951_CR19
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 951_CR27
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(03)00062-2
– ident: 951_CR2
  doi: 10.1145/2623330.2623637
– ident: 951_CR6
  doi: 10.1145/956750.956769
– volume: 6
  start-page: 53736
  year: 2018
  ident: 951_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2871668
– ident: 951_CR25
– ident: 951_CR3
  doi: 10.1137/1.9781611973730.80
– ident: 951_CR21
– volume: 134
  start-page: 516
  issue: 6
  year: 2008
  ident: 951_CR1
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(2008)134:6(516)
– volume: 8
  start-page: 768
  issue: 3
  year: 2021
  ident: 951_CR9
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2021.3061452
– ident: 951_CR7
– ident: 951_CR5
  doi: 10.1145/1835804.1835934
– volume: 31
  start-page: 1327
  issue: 7
  year: 2018
  ident: 951_CR28
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2854182
– ident: 951_CR15
– ident: 951_CR11
– ident: 951_CR16
  doi: 10.1137/1.9781611973105.88
– ident: 951_CR17
  doi: 10.1137/1.9781611973068.60
– ident: 951_CR18
  doi: 10.1145/1281192.1281239
– volume: 15
  start-page: 1
  issue: 5
  year: 2021
  ident: 951_CR10
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3447396
– volume: 172
  start-page: 539
  issue: 1
  year: 2018
  ident: 951_CR26
  publication-title: Math Program
  doi: 10.1007/s10107-018-1324-y
– ident: 951_CR24
– volume: 83
  start-page: 313
  issue: 1
  year: 1998
  ident: 951_CR20
  publication-title: Math Program
  doi: 10.1007/BF02680565
– volume: 7
  start-page: 2775
  issue: 4
  year: 2020
  ident: 951_CR8
  publication-title: IEEE Trans Netw Sc Eng
  doi: 10.1109/TNSE.2020.2993042
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  ident: 951_CR23
  publication-title: Math Oper Res
  doi: 10.1287/moor.3.3.177
– volume: 7
  start-page: 410
  issue: 3
  year: 1982
  ident: 951_CR29
  publication-title: Math Oper Res
  doi: 10.1287/moor.7.3.410
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 951_CR22
  publication-title: Math Program
  doi: 10.1007/BF01588971
– ident: 951_CR14
– ident: 951_CR4
– ident: 951_CR12
SSID ssj0009054
Score 2.2877207
Snippet Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 15
SubjectTerms Algorithms
Approximation
Combinatorial analysis
Combinatorics
Complexity
Constraints
Convex and Discrete Geometry
Design
Integers
Lower bounds
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maximization
Operations Research/Decision Theory
Optimization
Sensors
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZg4wAH3ojBQD1wg4ilTbv2AgK0iQNMEwJptypJXQlNe7AWxM_HaVMKSHDh1jZSVMWJ_dmOPwOcpL6KuOYpuSVcMeFiwJR0kWmhE-RCdTgWlPl33cEgHI2ioQ24ZfZaZaUTC0WdzLSJkZ97hridfANfXM5fmOkaZbKrtoXGMjQNU5loQPO6Nxg-1LS7Hb9sa0s4kvxA35bN2OK50LDLkjNW4AzGv5umGm_-SJEWlqe_8d9_3oR1izmdq3KTbMESTrdh7QsTIb3df9K3ZjtwYXLVckIjTkb2cpaYu6rORL4_T2zZpmNqzxZOwsZTOc-kHjvaAE3TbyLPduGp33u8uWW20QLTbreTs24qsCg5Va7S0tCzKIFh6ie-DiMkUEFfyU2TwgsSjSrAQIUYSZ6mBA4QXW8PGtPZFPfBIb2LoUdemK8jkdATdxOCXJ7nhyiElC04rdY4npd8GnHNnGwkEpNE4kIiMW9Bu1rY2J6tLK5XtQVnlWjq4d9nO_h7tkNYNb3ky_hKGxr54hWPYEW_5c_Z4tjurA_4w9TH
  priority: 102
  providerName: ProQuest
Title Streaming submodular maximization under d-knapsack constraints
URI https://link.springer.com/article/10.1007/s10878-022-00951-1
https://www.proquest.com/docview/3254699854
Volume 45
WOSCitedRecordID wos000917086300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o5kEP_hanc_TgTQtLm6ztRVCZeHBjbCrDS0nSVxhj3Vir-Of70rVuih70EtqmhPJI8r6vL-97AOexUAHTLCZawpTNHWzZSjpoa64jZFw1GeaS-Q9et-sPh0GvSApLy9PuZUgy36lXkt18owZL5CnHBTZxniq5O98sx_7geSm12xSLUraEHYn7iSJV5ucxvrqjJcb8FhbNvc3dzv--cxe2C3RpXS-mwx6sYbIPWyuag3TX-RRqTQ_gykSl5YR6rJQ84zQyp1KtiXwfTYoETctkmc2tyB4ncpZKPba0gZSmskSWHsLTXfvx9t4uSirY2vGame3FHPPkUuUoLY0Qi-LoxyIS2g-Q4AM9JUImuduKNKoWtpSPgWRxTDAA0XGPoJJMEzwGi3ZY9F3iW0IHPKIr5kQErlxX-Mi5lDW4KC0bzhbKGeFSI9nYKCQbhbmNQlaDemn8sFhFaegasX7ig4LX4LI09rL799FO_vb6KWyaKvKLPyt1qGTzVzyDDf2WjdJ5A6o37W6v34D1jtMzrTegtideGvm8-wCSsM3O
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBfXgW1yfPehJg5s03W0PKuIDxd3Fg4K3mqRTWGQfbtfXn_I3OunDqqA3D97aBgLtTGa-r8l8A7AVezrghsdES7hmUmCNaSWQGWki5FJXOaaS-Y16q-Xf3gZXI_BW1MLYY5VFTEwDddQz9h_5nmuF24kbePKw_8Bs1yi7u1q00Mjc4hJfn4myJfsXJ2TfbSHOTq-Pz1neVYAZUa8OWT2WmNZXaqGNslokWqIfe5Fn_AApg9JT4iRKurXIoK5hTfsYKB7HlAkRrdABhfwxSUzIrqumuCpFfqte1kSXUCuxTi8v0slL9XyrZUvUL0U1jH9NhCW6_bYhm-a5s5n_9oVmYTpH1M5RtgTmYAS78zD1SWeR7pof4rTJAhzYnXjVoREnITTQi-xJXKejXtqdvCjVsZV1Aydi913VT5S5d4yF0babxjBZhJs_eZ0lGO32urgMDmUV9F3imJ4JZERXXEQEKF3X81FKpSqwU9g07GdqIWGpC209ICQPCFMPCHkF1gpDhnnkSMLSihXYLVyhHP55tpXfZ9uEifPrZiNsXLQuV2FSEFbL_iStwehw8IjrMG6ehu1ksJH6tAN3f-0i79tWMno
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZxO7YNvGra0Sde-CKIOxTkGXthbyeUUxlg31ir-fE96cVP0QXxrmxLKadrzfUm-7xByGgsVMs1ipCVMUe6CT5V0gWquDTCumgxyy_xOq9sN-v2wN6fiz3e7V0uShabBujQlWWNi4sac8C2wzrBIpHKMQJH_LHFbNMjy9ceXme1uUxRlbRFHIg8UpWzm5z6-pqYZ3vy2RJpnnvbG_595k6yXqNO5LIbJFlmAZJuszXkR4tnDp4FrukMu7Gq1HGGLk2LGHBu7W9UZyffBqBRuOlZ9NnUMHSZykko9dLSFmrbiRJbukuf2zdPVLS1LLVDttpoZbcUcctGpcpWW1qBFcQhiYYQOQkBYgVeRqEnu-UaD8sFXAYSSxTHCAwDX2yOLyTiBfeLgnxcCD3mY0CE3eMRcg6DL80QAnEtZI2dVlKNJ4agRzbyTbYwijFGUxyhiNVKvXkRUfl1p5FkTf-SJgtfIeRX4WfPvvR387fYTstK7bkedu-79IVm1heaLyZc6Wcymr3BElvVbNkinx_mg-wC2E9UU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streaming+submodular+maximization+under+d-knapsack+constraints&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Chen%2C+Zihan&rft.au=Liu%2C+Bin&rft.au=Du%2C+Hongmin+W.&rft.date=2023-01-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1007%2Fs10878-022-00951-1&rft.externalDocID=10_1007_s10878_022_00951_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon