Streaming submodular maximization under d-knapsack constraints
Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study...
Saved in:
| Published in: | Journal of combinatorial optimization Vol. 45; no. 1; p. 15 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study two problem of maximizing submodular functions with
d
-knapsack constraints. First, for the problem of maximizing DR-submodular functions with
d
-knapsack constraints on the integer lattice, we propose a one pass streaming algorithm that achieves a
1
-
θ
1
+
d
-approximation with
O
log
(
d
β
-
1
)
β
ϵ
memory complexity and
O
log
(
d
β
-
1
)
ϵ
log
‖
b
‖
∞
update time per element, where
θ
=
min
(
α
+
ϵ
,
0.5
+
ϵ
)
and
α
,
β
are the upper and lower bounds for the cost of each item in the stream. Then we devise an improved streaming algorithm to reduce the memory complexity to
O
(
d
β
ϵ
)
with unchanged approximation ratio and query complexity. Then for the problem of maximizing submodular functions with
d
-knapsack constraints under noise, we design a one pass streaming algorithm. When
ε
→
0
, it achieves a
1
1
-
α
+
d
-approximate ratio, memory complexity
O
log
(
d
β
-
1
)
β
ϵ
and query complexity
O
log
(
d
β
-
1
)
ϵ
per element. As far as we know, these two are the first streaming algorithms under their corresponding problems. |
|---|---|
| AbstractList | Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study two problem of maximizing submodular functions with d-knapsack constraints. First, for the problem of maximizing DR-submodular functions with d-knapsack constraints on the integer lattice, we propose a one pass streaming algorithm that achieves a 1-θ1+d-approximation with Olog(dβ-1)βϵ memory complexity and Olog(dβ-1)ϵlog‖b‖∞ update time per element, where θ=min(α+ϵ,0.5+ϵ) and α,β are the upper and lower bounds for the cost of each item in the stream. Then we devise an improved streaming algorithm to reduce the memory complexity to O(dβϵ) with unchanged approximation ratio and query complexity. Then for the problem of maximizing submodular functions with d-knapsack constraints under noise, we design a one pass streaming algorithm. When ε→0, it achieves a 11-α+d-approximate ratio, memory complexity Olog(dβ-1)βϵ and query complexity Olog(dβ-1)ϵ per element. As far as we know, these two are the first streaming algorithms under their corresponding problems. Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study two problem of maximizing submodular functions with d -knapsack constraints. First, for the problem of maximizing DR-submodular functions with d -knapsack constraints on the integer lattice, we propose a one pass streaming algorithm that achieves a 1 - θ 1 + d -approximation with O log ( d β - 1 ) β ϵ memory complexity and O log ( d β - 1 ) ϵ log ‖ b ‖ ∞ update time per element, where θ = min ( α + ϵ , 0.5 + ϵ ) and α , β are the upper and lower bounds for the cost of each item in the stream. Then we devise an improved streaming algorithm to reduce the memory complexity to O ( d β ϵ ) with unchanged approximation ratio and query complexity. Then for the problem of maximizing submodular functions with d -knapsack constraints under noise, we design a one pass streaming algorithm. When ε → 0 , it achieves a 1 1 - α + d -approximate ratio, memory complexity O log ( d β - 1 ) β ϵ and query complexity O log ( d β - 1 ) ϵ per element. As far as we know, these two are the first streaming algorithms under their corresponding problems. |
| ArticleNumber | 15 |
| Author | Chen, Zihan Liu, Bin Du, Hongmin W. |
| Author_xml | – sequence: 1 givenname: Zihan surname: Chen fullname: Chen, Zihan organization: School of Mathematical Sciences, Ocean University of China – sequence: 2 givenname: Bin orcidid: 0000-0002-8958-3999 surname: Liu fullname: Liu, Bin email: binliu@ouc.edu.cn organization: School of Mathematical Sciences, Ocean University of China – sequence: 3 givenname: Hongmin W. surname: Du fullname: Du, Hongmin W. organization: Accounting and Information Systems Department, Rutgers University |
| BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8BzNd5OLIItfsOBBPYc0nS7d3aZr0oL6641W8OZphuF534FngWahD4DQOSWXlJDyKlGiS40JY5gQIymmR2hOZckx01rN8s41w8oQeYIWKW1JpogUc3T9PERwXRs2RRqrrq_HvYtF597brv10Q9uHYgw1xKLGu-AOyfld4fuQhujaMKRTdNy4fYKz37lEr3e3L6sHvH66f1zdrLFnJRlw2QgQpaa0YpV3VBleCdCNrKXXBkgp85UJ4wRXtYdKgao0GEebhgkBwPgSXUy9h9i_jZAGu-3HGPJLy5kUyhgtRabYRPnYpxShsYfYdi5-WErstyc7ebLZk_3xZGkO8SmUMhw2EP-q_0l9AQoRbc0 |
| Cites_doi | 10.1016/S0167-6377(03)00062-2 10.1007/s00453-020-00786-4 10.1109/ACCESS.2018.2871668 10.1007/s10107-018-1324-y 10.1109/TKDE.2018.2854182 10.1007/BF02680565 10.1109/TNSE.2020.2993042 10.1287/moor.7.3.410 10.1007/BF01588971 10.1109/TCSS.2021.3061452 10.1061/(ASCE)0733-9496(2008)134:6(516) 10.1145/3447396 10.1287/moor.3.3.177 10.1109/ICDCS.2019.00042 10.1145/2623330.2623637 10.1145/956750.956769 10.1137/1.9781611973730.80 10.1145/1835804.1835934 10.1137/1.9781611973105.88 10.1137/1.9781611973068.60 10.1145/1281192.1281239 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10878-022-00951-1 |
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| ExternalDocumentID | 10_1007_s10878_022_00951_1 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11971447; 11871442 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020MA045 funderid: http://dx.doi.org/10.13039/501100007129 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS 7XB 8FE 8FG L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c270t-7f4e47811b2bca1693b4e8f5d5c89e075bca249a436dceb6e6b8e9a1ff244ee23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000917086300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Sat Sep 27 04:21:43 EDT 2025 Sat Nov 29 04:54:39 EST 2025 Fri Feb 21 02:45:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Streaming algorithm Integer lattice Knapsack constraints Noise |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-7f4e47811b2bca1693b4e8f5d5c89e075bca249a436dceb6e6b8e9a1ff244ee23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8958-3999 |
| PQID | 3254699854 |
| PQPubID | 2043856 |
| ParticipantIDs | proquest_journals_3254699854 crossref_primary_10_1007_s10878_022_00951_1 springer_journals_10_1007_s10878_022_00951_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CR19 CR18 CR17 CR16 CR15 Murota (CR20) 1998; 83 CR14 CR12 CR11 CR31 Yu, Xu, Cui (CR30) 2018; 6 Nemhauser, Wolsey, Fisher (CR22) 1978; 14 Wolsey (CR29) 1982; 7 Wang, Li, Tan (CR28) 2018; 31 Guo, Wu (CR10) 2021; 15 CR2 CR4 CR3 CR6 CR5 CR7 Krause, Leskovec, Guestrin, VanBriesen, Faloutsos (CR1) 2008; 134 Soma, Yoshida (CR26) 2018; 172 CR25 CR24 CR21 Nemhauser, Wolsey (CR23) 1978; 3 Guo, Chen, Wu (CR8) 2020; 7 Guo, Wu (CR9) 2021; 8 Sviridenko (CR27) 2004; 32 Huang, Kakimura (CR13) 2021; 83 951_CR19 M Sviridenko (951_CR27) 2004; 32 951_CR18 K Murota (951_CR20) 1998; 83 Q Yu (951_CR30) 2018; 6 L Wolsey (951_CR29) 1982; 7 Y Wang (951_CR28) 2018; 31 A Krause (951_CR1) 2008; 134 951_CR25 951_CR21 951_CR24 L Nemhauser (951_CR22) 1978; 14 J Guo (951_CR8) 2020; 7 J Guo (951_CR10) 2021; 15 951_CR3 951_CR4 L Nemhauser (951_CR23) 1978; 3 951_CR2 951_CR7 J Guo (951_CR9) 2021; 8 951_CR5 951_CR6 951_CR31 951_CR15 951_CR14 C Huang (951_CR13) 2021; 83 951_CR17 T Soma (951_CR26) 2018; 172 951_CR16 951_CR11 951_CR12 |
| References_xml | – ident: CR18 – volume: 32 start-page: 41 issue: 1 year: 2004 end-page: 43 ident: CR27 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper Res Lett doi: 10.1016/S0167-6377(03)00062-2 – volume: 83 start-page: 879 issue: 3 year: 2021 end-page: 902 ident: CR13 article-title: Improved streaming algorithms for maximising monotone submodular functions under a knapsack constraint publication-title: Algorithmica doi: 10.1007/s00453-020-00786-4 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR12 – volume: 6 start-page: 53736 year: 2018 end-page: 53747 ident: CR30 article-title: Streaming algorithms for news and scientific literature recommendation: monotone submodular maximization with a d-Knapsack constraint publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2871668 – ident: CR6 – volume: 172 start-page: 539 issue: 1 year: 2018 end-page: 563 ident: CR26 article-title: Maximizing monotone submodular functions over the integer lattice publication-title: Math Program doi: 10.1007/s10107-018-1324-y – volume: 31 start-page: 1327 issue: 7 year: 2018 end-page: 1340 ident: CR28 article-title: Efficient representative subset selection over sliding windows publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2854182 – volume: 83 start-page: 313 issue: 1 year: 1998 end-page: 371 ident: CR20 article-title: Discrete convex analysis publication-title: Math Program doi: 10.1007/BF02680565 – ident: CR25 – ident: CR21 – volume: 7 start-page: 2775 issue: 4 year: 2020 end-page: 2786 ident: CR8 article-title: Continuous activity maximization in online social networks publication-title: IEEE Trans Netw Sc Eng doi: 10.1109/TNSE.2020.2993042 – ident: CR19 – volume: 7 start-page: 410 issue: 3 year: 1982 end-page: 425 ident: CR29 article-title: Maximising real-valued submodular set function: primal and dual heuristics for location problems publication-title: Math Oper Res doi: 10.1287/moor.7.3.410 – volume: 14 start-page: 265 issue: 1 year: 1978 end-page: 294 ident: CR22 article-title: An analysis of approximations for maximizing submodular set functions-I publication-title: Math Program doi: 10.1007/BF01588971 – ident: CR3 – ident: CR15 – volume: 8 start-page: 768 issue: 3 year: 2021 end-page: 779 ident: CR9 article-title: Continuous profit maximization: a study of unconstrained dr-submodular maximization publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2021.3061452 – ident: CR17 – ident: CR31 – ident: CR11 – volume: 134 start-page: 516 issue: 6 year: 2008 end-page: 526 ident: CR1 article-title: Efficient sensor placement optimization for securing large water distribution networks publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(2008)134:6(516) – volume: 15 start-page: 1 issue: 5 year: 2021 end-page: 23 ident: CR10 article-title: Adaptive influence maximization: if influential node unwilling to be the seed publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3447396 – volume: 3 start-page: 177 issue: 3 year: 1978 end-page: 188 ident: CR23 article-title: Best algorithms for approximating the maximum of a submodular set function publication-title: Math Oper Res doi: 10.1287/moor.3.3.177 – ident: CR5 – ident: CR7 – ident: CR24 – ident: 951_CR31 doi: 10.1109/ICDCS.2019.00042 – volume: 83 start-page: 879 issue: 3 year: 2021 ident: 951_CR13 publication-title: Algorithmica doi: 10.1007/s00453-020-00786-4 – ident: 951_CR19 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: 951_CR27 publication-title: Oper Res Lett doi: 10.1016/S0167-6377(03)00062-2 – ident: 951_CR2 doi: 10.1145/2623330.2623637 – ident: 951_CR6 doi: 10.1145/956750.956769 – volume: 6 start-page: 53736 year: 2018 ident: 951_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2871668 – ident: 951_CR25 – ident: 951_CR3 doi: 10.1137/1.9781611973730.80 – ident: 951_CR21 – volume: 134 start-page: 516 issue: 6 year: 2008 ident: 951_CR1 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(2008)134:6(516) – volume: 8 start-page: 768 issue: 3 year: 2021 ident: 951_CR9 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2021.3061452 – ident: 951_CR7 – ident: 951_CR5 doi: 10.1145/1835804.1835934 – volume: 31 start-page: 1327 issue: 7 year: 2018 ident: 951_CR28 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2854182 – ident: 951_CR15 – ident: 951_CR11 – ident: 951_CR16 doi: 10.1137/1.9781611973105.88 – ident: 951_CR17 doi: 10.1137/1.9781611973068.60 – ident: 951_CR18 doi: 10.1145/1281192.1281239 – volume: 15 start-page: 1 issue: 5 year: 2021 ident: 951_CR10 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3447396 – volume: 172 start-page: 539 issue: 1 year: 2018 ident: 951_CR26 publication-title: Math Program doi: 10.1007/s10107-018-1324-y – ident: 951_CR24 – volume: 83 start-page: 313 issue: 1 year: 1998 ident: 951_CR20 publication-title: Math Program doi: 10.1007/BF02680565 – volume: 7 start-page: 2775 issue: 4 year: 2020 ident: 951_CR8 publication-title: IEEE Trans Netw Sc Eng doi: 10.1109/TNSE.2020.2993042 – volume: 3 start-page: 177 issue: 3 year: 1978 ident: 951_CR23 publication-title: Math Oper Res doi: 10.1287/moor.3.3.177 – volume: 7 start-page: 410 issue: 3 year: 1982 ident: 951_CR29 publication-title: Math Oper Res doi: 10.1287/moor.7.3.410 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 951_CR22 publication-title: Math Program doi: 10.1007/BF01588971 – ident: 951_CR14 – ident: 951_CR4 – ident: 951_CR12 |
| SSID | ssj0009054 |
| Score | 2.2877207 |
| Snippet | Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 15 |
| SubjectTerms | Algorithms Approximation Combinatorial analysis Combinatorics Complexity Constraints Convex and Discrete Geometry Design Integers Lower bounds Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Maximization Operations Research/Decision Theory Optimization Sensors Theory of Computation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZg4wAH3ojBQD1wg4ilTbv2AgK0iQNMEwJptypJXQlNe7AWxM_HaVMKSHDh1jZSVMWJ_dmOPwOcpL6KuOYpuSVcMeFiwJR0kWmhE-RCdTgWlPl33cEgHI2ioQ24ZfZaZaUTC0WdzLSJkZ97hridfANfXM5fmOkaZbKrtoXGMjQNU5loQPO6Nxg-1LS7Hb9sa0s4kvxA35bN2OK50LDLkjNW4AzGv5umGm_-SJEWlqe_8d9_3oR1izmdq3KTbMESTrdh7QsTIb3df9K3ZjtwYXLVckIjTkb2cpaYu6rORL4_T2zZpmNqzxZOwsZTOc-kHjvaAE3TbyLPduGp33u8uWW20QLTbreTs24qsCg5Va7S0tCzKIFh6ie-DiMkUEFfyU2TwgsSjSrAQIUYSZ6mBA4QXW8PGtPZFPfBIb2LoUdemK8jkdATdxOCXJ7nhyiElC04rdY4npd8GnHNnGwkEpNE4kIiMW9Bu1rY2J6tLK5XtQVnlWjq4d9nO_h7tkNYNb3ky_hKGxr54hWPYEW_5c_Z4tjurA_4w9TH priority: 102 providerName: ProQuest |
| Title | Streaming submodular maximization under d-knapsack constraints |
| URI | https://link.springer.com/article/10.1007/s10878-022-00951-1 https://www.proquest.com/docview/3254699854 |
| Volume | 45 |
| WOSCitedRecordID | wos000917086300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-2886 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2886 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2886 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-2886 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o5kEP_hanc_TgTQtLm6ztRVCZeHBjbCrDS0nSVxhj3Vir-Of70rVuih70EtqmhPJI8r6vL-97AOexUAHTLCZawpTNHWzZSjpoa64jZFw1GeaS-Q9et-sPh0GvSApLy9PuZUgy36lXkt18owZL5CnHBTZxniq5O98sx_7geSm12xSLUraEHYn7iSJV5ucxvrqjJcb8FhbNvc3dzv--cxe2C3RpXS-mwx6sYbIPWyuag3TX-RRqTQ_gykSl5YR6rJQ84zQyp1KtiXwfTYoETctkmc2tyB4ncpZKPba0gZSmskSWHsLTXfvx9t4uSirY2vGame3FHPPkUuUoLY0Qi-LoxyIS2g-Q4AM9JUImuduKNKoWtpSPgWRxTDAA0XGPoJJMEzwGi3ZY9F3iW0IHPKIr5kQErlxX-Mi5lDW4KC0bzhbKGeFSI9nYKCQbhbmNQlaDemn8sFhFaegasX7ig4LX4LI09rL799FO_vb6KWyaKvKLPyt1qGTzVzyDDf2WjdJ5A6o37W6v34D1jtMzrTegtideGvm8-wCSsM3O |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBfXgW1yfPehJg5s03W0PKuIDxd3Fg4K3mqRTWGQfbtfXn_I3OunDqqA3D97aBgLtTGa-r8l8A7AVezrghsdES7hmUmCNaSWQGWki5FJXOaaS-Y16q-Xf3gZXI_BW1MLYY5VFTEwDddQz9h_5nmuF24kbePKw_8Bs1yi7u1q00Mjc4hJfn4myJfsXJ2TfbSHOTq-Pz1neVYAZUa8OWT2WmNZXaqGNslokWqIfe5Fn_AApg9JT4iRKurXIoK5hTfsYKB7HlAkRrdABhfwxSUzIrqumuCpFfqte1kSXUCuxTi8v0slL9XyrZUvUL0U1jH9NhCW6_bYhm-a5s5n_9oVmYTpH1M5RtgTmYAS78zD1SWeR7pof4rTJAhzYnXjVoREnITTQi-xJXKejXtqdvCjVsZV1Aydi913VT5S5d4yF0babxjBZhJs_eZ0lGO32urgMDmUV9F3imJ4JZERXXEQEKF3X81FKpSqwU9g07GdqIWGpC209ICQPCFMPCHkF1gpDhnnkSMLSihXYLVyhHP55tpXfZ9uEifPrZiNsXLQuV2FSEFbL_iStwehw8IjrMG6ehu1ksJH6tAN3f-0i79tWMno |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZxO7YNvGra0Sde-CKIOxTkGXthbyeUUxlg31ir-fE96cVP0QXxrmxLKadrzfUm-7xByGgsVMs1ipCVMUe6CT5V0gWquDTCumgxyy_xOq9sN-v2wN6fiz3e7V0uShabBujQlWWNi4sac8C2wzrBIpHKMQJH_LHFbNMjy9ceXme1uUxRlbRFHIg8UpWzm5z6-pqYZ3vy2RJpnnvbG_595k6yXqNO5LIbJFlmAZJuszXkR4tnDp4FrukMu7Gq1HGGLk2LGHBu7W9UZyffBqBRuOlZ9NnUMHSZykko9dLSFmrbiRJbukuf2zdPVLS1LLVDttpoZbcUcctGpcpWW1qBFcQhiYYQOQkBYgVeRqEnu-UaD8sFXAYSSxTHCAwDX2yOLyTiBfeLgnxcCD3mY0CE3eMRcg6DL80QAnEtZI2dVlKNJ4agRzbyTbYwijFGUxyhiNVKvXkRUfl1p5FkTf-SJgtfIeRX4WfPvvR387fYTstK7bkedu-79IVm1heaLyZc6Wcymr3BElvVbNkinx_mg-wC2E9UU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streaming+submodular+maximization+under+d-knapsack+constraints&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Chen%2C+Zihan&rft.au=Liu%2C+Bin&rft.au=Du%2C+Hongmin+W.&rft.date=2023-01-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1007%2Fs10878-022-00951-1&rft.externalDocID=10_1007_s10878_022_00951_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |