Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms

Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This st...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment Vol. 217; p. 109066
Main Authors: Kafy, Abdulla - Al, Saha, Milan, Faisal, Abdullah-Al, Rahaman, Zullyadini A., Rahman, Muhammad Tauhidur, Liu, Desheng, Fattah, Md. Abdul, Al Rakib, Abdullah, AlDousari, Ahmad E., Rahaman, Sk Nafiz, Hasan, Md Zakaria, Ahasan, Md Ahasanul Karim
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.06.2022
Elsevier BV
Subjects:
ISSN:0360-1323, 1873-684X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This study aims to assess and predict the seasonal (summer and winter) UTFVI scenario to evaluate the thermal characteristics of Sylhet city, Bangladesh. Landsat 4–5 TM and 8 OLI images from 1995 to 2020 were used to assess the previous status of LULC and UTFVI and predict the future changes for 2025 and 2030 using cellular automata and artificial neural network machine learning algorithms. Prediction results indicate a substantial increase in urban built-up areas by 42% and 44% in 2025 and 2035, followed by reductions in green cover (21% and 22%), bare land (20% and 21%) and water bodies (1%). The rapid expansion of built-up areas will lead to 13 km2 and 14 km2 stronger UTFVI zones in the predicted years. The study provides effective strategies for mitigating the UTFVI effects by avoiding dense infrastructural development, increasing plantation and water bodies, rooftop gardening and using white colour roofs in construction. The findings of this study will allow the urban planners, policymakers and local government to ensure an eco-friendly, inclusive and sustainable urban development through functional modification and replacement of the LULC distribution depending on the present and future circumstances. [Display omitted] •Directional changes of LULC and seasonal UTFVI shift in Sylhet city were analyzed.•Reduction of green cover significantly increase UTFVI effect.•LULC vs UTFVI relationship better explain impacts of different land cover on thermal environment.•Seasonal UTFVI prediction exhibit a gradual decrease in overall thermal characteristics.•Predicted UTFVI vs LULC demonstrated the highest UTFVI concentration in the built-up area.
AbstractList Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This study aims to assess and predict the seasonal (summer and winter) UTFVI scenario to evaluate the thermal characteristics of Sylhet city, Bangladesh. Landsat 4–5 TM and 8 OLI images from 1995 to 2020 were used to assess the previous status of LULC and UTFVI and predict the future changes for 2025 and 2030 using cellular automata and artificial neural network machine learning algorithms. Prediction results indicate a substantial increase in urban built-up areas by 42% and 44% in 2025 and 2035, followed by reductions in green cover (21% and 22%), bare land (20% and 21%) and water bodies (1%). The rapid expansion of built-up areas will lead to 13 km2 and 14 km2 stronger UTFVI zones in the predicted years. The study provides effective strategies for mitigating the UTFVI effects by avoiding dense infrastructural development, increasing plantation and water bodies, rooftop gardening and using white colour roofs in construction. The findings of this study will allow the urban planners, policymakers and local government to ensure an eco-friendly, inclusive and sustainable urban development through functional modification and replacement of the LULC distribution depending on the present and future circumstances. [Display omitted] •Directional changes of LULC and seasonal UTFVI shift in Sylhet city were analyzed.•Reduction of green cover significantly increase UTFVI effect.•LULC vs UTFVI relationship better explain impacts of different land cover on thermal environment.•Seasonal UTFVI prediction exhibit a gradual decrease in overall thermal characteristics.•Predicted UTFVI vs LULC demonstrated the highest UTFVI concentration in the built-up area.
Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This study aims to assess and predict the seasonal (summer and winter) UTFVI scenario to evaluate the thermal characteristics of Sylhet city, Bangladesh. Landsat 4–5 TM and 8 OLI images from 1995 to 2020 were used to assess the previous status of LULC and UTFVI and predict the future changes for 2025 and 2030 using cellular automata and artificial neural network machine learning algorithms. Prediction results indicate a substantial increase in urban built-up areas by 42% and 44% in 2025 and 2035, followed by reductions in green cover (21% and 22%), bare land (20% and 21%) and water bodies (1%). The rapid expansion of built-up areas will lead to 13 km2 and 14 km2 stronger UTFVI zones in the predicted years. The study provides effective strategies for mitigating the UTFVI effects by avoiding dense infrastructural development, increasing plantation and water bodies, rooftop gardening and using white colour roofs in construction. The findings of this study will allow the urban planners, policymakers and local government to ensure an eco-friendly, inclusive and sustainable urban development through functional modification and replacement of the LULC distribution depending on the present and future circumstances.
ArticleNumber 109066
Author Rahman, Muhammad Tauhidur
AlDousari, Ahmad E.
Ahasan, Md Ahasanul Karim
Rahaman, Sk Nafiz
Kafy, Abdulla - Al
Saha, Milan
Liu, Desheng
Rahaman, Zullyadini A.
Fattah, Md. Abdul
Faisal, Abdullah-Al
Hasan, Md Zakaria
Al Rakib, Abdullah
Author_xml – sequence: 1
  givenname: Abdulla - Al
  surname: Kafy
  fullname: Kafy, Abdulla - Al
  email: abdulla-al.kafy@localpathways.org
  organization: Department of Urban & Regional Planning, Rajshahi University of Engineering & Technology (RUET), Rajshahi, 6204, Bangladesh
– sequence: 2
  givenname: Milan
  surname: Saha
  fullname: Saha, Milan
  email: milansaha023@gmail.com
  organization: Department of Urban & Regional Planning, Bangladesh University of Engineering & Technology (BUET), Dhaka, Bangladesh
– sequence: 3
  givenname: Abdullah-Al
  surname: Faisal
  fullname: Faisal, Abdullah-Al
  email: abdullah-al-faisal@localpathways.org
  organization: Department of Urban & Regional Planning, Rajshahi University of Engineering & Technology (RUET), Rajshahi, 6204, Bangladesh
– sequence: 4
  givenname: Zullyadini A.
  orcidid: 0000-0003-2529-6525
  surname: Rahaman
  fullname: Rahaman, Zullyadini A.
  email: zully@fsk.upsi.edu.my
  organization: Department of Geography & Environment, Faculty of Human Sciences, Sultan Idris Education University, Tanjung Malim, 35900, Malaysia
– sequence: 5
  givenname: Muhammad Tauhidur
  surname: Rahman
  fullname: Rahman, Muhammad Tauhidur
  email: mtr@kfupm.edu.sa
  organization: Department of City and Regional Planning, King Fahd University of Petroleum & Minerals, KFUPM Box 5053, Dhahran, 31261, Saudi Arabia
– sequence: 6
  givenname: Desheng
  surname: Liu
  fullname: Liu, Desheng
  email: liu.738@osu.edu
  organization: Department of Geography, Ohio State University, Columbus, OH, United States
– sequence: 7
  givenname: Md. Abdul
  surname: Fattah
  fullname: Fattah, Md. Abdul
  email: mafattah.kuet@gmail.com
  organization: Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh
– sequence: 8
  givenname: Abdullah
  surname: Al Rakib
  fullname: Al Rakib, Abdullah
  email: abdullahalrakib310@gmail.com
  organization: Department of Urban & Regional Planning, Rajshahi University of Engineering & Technology (RUET), Rajshahi, 6204, Bangladesh
– sequence: 9
  givenname: Ahmad E.
  surname: AlDousari
  fullname: AlDousari, Ahmad E.
  email: dr.dousari@ku.edu.kw
  organization: Department of Geography, Kuwait University, Kuwait City, Kuwait
– sequence: 10
  givenname: Sk Nafiz
  surname: Rahaman
  fullname: Rahaman, Sk Nafiz
  email: sknafizrahaman1@gmail.com
  organization: Urban and Rural Planning Discipline, Khulna University, Khulna, 9208, Bangladesh
– sequence: 11
  givenname: Md Zakaria
  surname: Hasan
  fullname: Hasan, Md Zakaria
  email: zakariahasan062@gmail.com
  organization: Department of Geography & Environmental Studies, University of Chittagong, Bangladesh
– sequence: 12
  givenname: Md Ahasanul Karim
  surname: Ahasan
  fullname: Ahasan, Md Ahasanul Karim
  email: ahasan.karim47@gmail.com
  organization: Department of Computer Science, Dalhousie University, Canada
BookMark eNqFkUFrFDEYhoNUcFv9CxLwPNtMspPsgAelaCsU9GCht5D55pvdLDPJ-iWz0KP_3Iyrl156SvLlfV7Ik0t2EWJAxt7XYl2LWl8f1t3sxx7DaS2FlGXYCq1fsVW9NarS283jBVsJpUVVK6nesMuUDqKArdqs2O8fhL2H7MOO5z1yPx0d5MTjwEcXej4nvP67gXhC4rB3YYflOvCELsXgRj5T58IC01ROJUGlAcmn7CGVgqV6crD3AfmIjsIycOMuks_7Kb1lrwc3Jnz3b71iD1-__Ly5q-6_3367-XxfgTQiV6Zreo2NNko0KCX0qgfYIJpt07UgQJsaWgWDA40dmAb00LaixaGknRukumIfzr1Hir9mTNke4kzlAclKvdWyNkqaktLnFFBMiXCwR_KToydbC7votgf7X7dddNuz7gJ-fAaCzy77GDI5P76MfzrjWBScPJJN4DFA-RxCyLaP_qWKP1_Dpmo
CitedBy_id crossref_primary_10_1186_s13717_023_00446_9
crossref_primary_10_1016_j_ecolind_2023_111444
crossref_primary_10_1016_j_jenvman_2023_119376
crossref_primary_10_1016_j_resenv_2025_100240
crossref_primary_10_1016_j_scs_2023_104653
crossref_primary_10_3390_rs17142474
crossref_primary_10_1016_j_apr_2025_102742
crossref_primary_10_1038_s41598_023_46437_w
crossref_primary_10_1016_j_jenvman_2025_124602
crossref_primary_10_1016_j_resourpol_2023_104180
crossref_primary_10_1080_10106049_2024_2392881
crossref_primary_10_3390_atmos13101574
crossref_primary_10_1016_j_asr_2023_06_048
crossref_primary_10_1016_j_buildenv_2024_111639
crossref_primary_10_1007_s11356_023_27702_x
crossref_primary_10_1016_j_rsase_2024_101275
crossref_primary_10_1016_j_asr_2025_08_021
crossref_primary_10_3390_rs16183374
crossref_primary_10_1007_s12665_025_12340_y
crossref_primary_10_1016_j_buildenv_2024_111840
crossref_primary_10_1016_j_scs_2025_106797
crossref_primary_10_1016_j_buildenv_2022_109723
crossref_primary_10_1016_j_jenvman_2024_123123
crossref_primary_10_1016_j_scs_2024_105345
crossref_primary_10_3390_ijgi12110450
crossref_primary_10_1007_s13762_025_06569_0
crossref_primary_10_1016_j_ecolind_2024_112658
crossref_primary_10_1016_j_scitotenv_2025_178925
crossref_primary_10_3390_cli10100158
crossref_primary_10_3390_rs17101730
crossref_primary_10_1016_j_buildenv_2023_110192
crossref_primary_10_1016_j_uclim_2024_102073
crossref_primary_10_1016_j_ufug_2024_128629
crossref_primary_10_1016_j_ecolind_2025_113418
crossref_primary_10_1007_s12145_022_00918_0
crossref_primary_10_1016_j_envc_2024_100866
crossref_primary_10_3390_rs16050928
crossref_primary_10_1007_s10661_025_14388_6
crossref_primary_10_1016_j_buildenv_2023_110468
crossref_primary_10_1016_j_jenvman_2025_126168
crossref_primary_10_1007_s41748_024_00418_9
crossref_primary_10_1016_j_jobe_2025_113660
crossref_primary_10_1016_j_scs_2025_106445
crossref_primary_10_1016_j_rsase_2024_101180
crossref_primary_10_3390_su142315663
crossref_primary_10_1016_j_scs_2025_106721
crossref_primary_10_1016_j_buildenv_2023_110185
crossref_primary_10_1016_j_asr_2024_11_016
crossref_primary_10_1016_j_sftr_2025_101154
crossref_primary_10_3390_en16010368
crossref_primary_10_1016_j_apr_2025_102484
crossref_primary_10_1007_s12518_024_00549_8
crossref_primary_10_1007_s12524_025_02209_9
crossref_primary_10_1016_j_pce_2022_103356
crossref_primary_10_1007_s11252_022_01297_6
crossref_primary_10_1109_JSTARS_2024_3397496
crossref_primary_10_1016_j_scs_2024_105482
crossref_primary_10_1080_10095020_2024_2374996
crossref_primary_10_1016_j_envres_2025_121860
crossref_primary_10_1016_j_scs_2024_105880
crossref_primary_10_1007_s41748_024_00468_z
crossref_primary_10_1016_j_icheatmasstransfer_2023_107092
crossref_primary_10_1016_j_buildenv_2022_109625
crossref_primary_10_1016_j_scs_2023_105003
crossref_primary_10_1016_j_rsase_2023_101011
crossref_primary_10_1016_j_rsase_2024_101257
crossref_primary_10_1016_j_scs_2022_104107
crossref_primary_10_1016_j_scs_2024_105716
crossref_primary_10_1080_10106049_2023_2268059
crossref_primary_10_1016_j_jenvman_2024_121787
crossref_primary_10_17645_up_9217
crossref_primary_10_1007_s40808_024_02107_y
crossref_primary_10_3390_urbansci9070234
crossref_primary_10_14358_PERS_23_00067R2
crossref_primary_10_1088_2515_7620_ad9145
crossref_primary_10_3390_rs16163032
crossref_primary_10_1016_j_uclim_2023_101467
crossref_primary_10_1007_s13132_024_01941_w
crossref_primary_10_1016_j_uclim_2022_101336
crossref_primary_10_1038_s41598_025_13167_0
crossref_primary_10_3390_s23157013
crossref_primary_10_18502_kss_v9i6_15261
crossref_primary_10_1016_j_scs_2024_105231
crossref_primary_10_1080_17538947_2024_2323174
crossref_primary_10_1007_s11356_025_36273_y
crossref_primary_10_1007_s41748_023_00340_6
crossref_primary_10_1016_j_jenvman_2022_116524
crossref_primary_10_1016_j_ecoinf_2023_102075
crossref_primary_10_1016_j_ecolind_2025_114127
Cites_doi 10.1016/j.buildenv.2021.108573
10.1007/s11336-009-9135-y
10.3390/cli7080099
10.1080/10106049.2014.997308
10.1016/j.landurbplan.2010.03.001
10.1016/j.rse.2011.06.023
10.1117/1.JRS.13.026516
10.1038/nclimate3301
10.1016/S0168-9002(00)00756-7
10.3390/rs12071135
10.1080/22797254.2018.1474494
10.3390/su11195492
10.1080/2150704X.2019.1704304
10.3390/rs3071535
10.1126/sciadv.1603322
10.3390/rs11070801
10.1016/j.apgeog.2021.102533
10.3390/rs13214469
10.1016/j.jum.2018.12.001
10.1016/j.apgeog.2018.07.012
10.1016/j.isprsjprs.2010.11.001
10.17208/jkpa.2014.02.49.1.263
10.1016/j.envres.2019.109102
10.1007/s12518-021-00390-3
10.1016/j.isprsjprs.2017.06.001
10.1007/s42452-021-04351-8
10.1016/j.jenvman.2019.05.063
10.1016/j.buildenv.2018.03.041
10.1016/j.landurbplan.2020.103989
10.1016/j.scs.2019.101432
10.1016/j.jastp.2020.105328
10.1080/10705511.2012.687671
10.1016/j.envc.2021.100084
10.1016/j.scitotenv.2020.139445
10.1016/j.landusepol.2019.104414
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2022
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.buildenv.2022.109066
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2022_109066
S0360132322003055
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
VH1
WUQ
ZMT
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c270t-7b5d6e567305e22cd3dcc4ee785b9c0c671c93cfac6ebc75c6f9909ef5e2aaf23
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793772400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Wed Aug 13 10:35:34 EDT 2025
Tue Nov 18 22:25:25 EST 2025
Sat Nov 29 07:18:59 EST 2025
Fri Feb 23 02:40:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal comfort
Machine learning algorithms
Urban heat island
Land cover change
Prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-7b5d6e567305e22cd3dcc4ee785b9c0c671c93cfac6ebc75c6f9909ef5e2aaf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2529-6525
PQID 2686217327
PQPubID 2045275
ParticipantIDs proquest_journals_2686217327
crossref_primary_10_1016_j_buildenv_2022_109066
crossref_citationtrail_10_1016_j_buildenv_2022_109066
elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109066
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Building and environment
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fernando (bib46) 2018; 8
Kafy (bib6) 2021; 4
Sejati, Buchori, Rudiarto (bib25) 2019; 46
Mundhe, Jaybhaye, Mundhe (bib5) 2014; 5
Hauschild, Jentschel (bib42) 2001; 457
Dey, Al Rakib, Kafy, Raikwar (bib48) 2021; 4
Faisal (bib7) 2021; 4
Pyrgou, Hadjinicolaou, Santamouris (bib15) 2020; 182
Dewan, Kiselev, Botje, Mahmud, Bhuian, Hassan (bib18) 2021; 71
Dewan, Kiselev, Botje (bib12) 2021; 135
Cao, Liu, Chen, Gao, Wang, Zhang (bib49) 2019; 11
Rasool, Fayaz, ul Shafiq, Singh, Ahmed (bib1) 2021; 125
Silva, da Silva, Santos (bib47) 2018; 136
Fattah, Morshed, Morshed (bib38) 2021; 3
Wittke, Yu, Karjalainen, Hyyppä, Puttonen (bib21) 2019; 76
(bib27) 2011; vol. 3
Guha, Govil, Dey, Gill (bib11) 2018; 51
Najafzadeh, Mohammadzadeh, Ghorbanian, Jamali (bib8) 2021; 13
Shastri, Singh, Verma, Kumar Rai, Singh (bib4) 2020; 13
Ma, Li, Ma, Cheng, Du, Liu (bib23) 2017; 130
Yang (bib16) 2020; 736
Lee, Jung (bib37) 2014; 49
Al-sharif, Pradhan (bib41) 2015; 30
Santé, García, Miranda, Crecente (bib32) 2010; 96
Tang, Di, Rahman, Yu (bib3) 2019; 13
Anand, Oinam (bib45) 2020; 11
Gupta, Islam, Hasan (bib28) 2018; 98
Satorra, Bentler (bib40) 2010; 75
Halder, Bandyopadhyay (bib2) 2021; 5
Kabano, Lindley, Harris (bib17) 2021; 206
Al Kafy, Dey, Al Rakib, Rahaman, Nasher, Bhatt (bib50) 2021; 4
Kafy, Naim, Subramanyam, Ahmed, Al Rakib, Kona, Sattar (bib51) 2021; 4
Kafy (bib52) 2021; 208
Ullah, Ahmad, Sajjad, Abbasi, Nazeer, Tahir (bib34) 2019; 245
Rahman (bib53) 2019; 8
Estrada, Botzen, Tol (bib13) 2017; 7
Ullah (bib35) 2019; 11
Liu, Weng (bib31) 2012; 117
Mansour, Al-Belushi, Al-Awadhi (bib33) 2020; 91
Sekertekin, Arslan, Bilgili (bib39) 2020; 206
Kafy (bib9) 2021; 64
Naim, Kafy (bib19) 2021; 4
Mountrakis, Im, Ogole (bib24) 2011; 66
Dissanayake, Morimoto, Ranagalage, Murayama (bib10) 2019; 7
Liu, Zhang (bib30) 2011; 3
Im, Pal, Eltahir (bib14) 2017; 3
bib26
Viana, Oliveira, Oliveira, Rocha (bib20) 2019
Bryant, Satorra (bib43) 2012; 19
Talukdar (bib22) 2020; 12
Kafy (bib36) 2021; 13
Rahman (10.1016/j.buildenv.2022.109066_bib53) 2019; 8
Liu (10.1016/j.buildenv.2022.109066_bib31) 2012; 117
Guha (10.1016/j.buildenv.2022.109066_bib11) 2018; 51
Bryant (10.1016/j.buildenv.2022.109066_bib43) 2012; 19
Ullah (10.1016/j.buildenv.2022.109066_bib34) 2019; 245
Al Kafy (10.1016/j.buildenv.2022.109066_bib50) 2021; 4
Pyrgou (10.1016/j.buildenv.2022.109066_bib15) 2020; 182
Fernando (10.1016/j.buildenv.2022.109066_bib46) 2018; 8
Faisal (10.1016/j.buildenv.2022.109066_bib7) 2021; 4
Im (10.1016/j.buildenv.2022.109066_bib14) 2017; 3
Talukdar (10.1016/j.buildenv.2022.109066_bib22) 2020; 12
Anand (10.1016/j.buildenv.2022.109066_bib45) 2020; 11
Viana (10.1016/j.buildenv.2022.109066_bib20) 2019
Dey (10.1016/j.buildenv.2022.109066_bib48) 2021; 4
Kafy (10.1016/j.buildenv.2022.109066_bib9) 2021; 64
Rasool (10.1016/j.buildenv.2022.109066_bib1) 2021; 125
Najafzadeh (10.1016/j.buildenv.2022.109066_bib8) 2021; 13
Gupta (10.1016/j.buildenv.2022.109066_bib28) 2018; 98
Kafy (10.1016/j.buildenv.2022.109066_bib52) 2021; 208
Kabano (10.1016/j.buildenv.2022.109066_bib17) 2021; 206
Ma (10.1016/j.buildenv.2022.109066_bib23) 2017; 130
Shastri (10.1016/j.buildenv.2022.109066_bib4) 2020; 13
Yang (10.1016/j.buildenv.2022.109066_bib16) 2020; 736
Naim (10.1016/j.buildenv.2022.109066_bib19) 2021; 4
Sejati (10.1016/j.buildenv.2022.109066_bib25) 2019; 46
Mundhe (10.1016/j.buildenv.2022.109066_bib5) 2014; 5
Sekertekin (10.1016/j.buildenv.2022.109066_bib39) 2020; 206
Tang (10.1016/j.buildenv.2022.109066_bib3) 2019; 13
Satorra (10.1016/j.buildenv.2022.109066_bib40) 2010; 75
Estrada (10.1016/j.buildenv.2022.109066_bib13) 2017; 7
Dewan (10.1016/j.buildenv.2022.109066_bib18) 2021; 71
Halder (10.1016/j.buildenv.2022.109066_bib2) 2021; 5
Mansour (10.1016/j.buildenv.2022.109066_bib33) 2020; 91
Lee (10.1016/j.buildenv.2022.109066_bib37) 2014; 49
Al-sharif (10.1016/j.buildenv.2022.109066_bib41) 2015; 30
Hauschild (10.1016/j.buildenv.2022.109066_bib42) 2001; 457
Kafy (10.1016/j.buildenv.2022.109066_bib36) 2021; 13
Liu (10.1016/j.buildenv.2022.109066_bib30) 2011; 3
Silva (10.1016/j.buildenv.2022.109066_bib47) 2018; 136
Dissanayake (10.1016/j.buildenv.2022.109066_bib10) 2019; 7
Mountrakis (10.1016/j.buildenv.2022.109066_bib24) 2011; 66
Fattah (10.1016/j.buildenv.2022.109066_bib38) 2021; 3
Kafy (10.1016/j.buildenv.2022.109066_bib6) 2021; 4
Wittke (10.1016/j.buildenv.2022.109066_bib21) 2019; 76
Dewan (10.1016/j.buildenv.2022.109066_bib12) 2021; 135
Cao (10.1016/j.buildenv.2022.109066_bib49) 2019; 11
Santé (10.1016/j.buildenv.2022.109066_bib32) 2010; 96
Ullah (10.1016/j.buildenv.2022.109066_bib35) 2019; 11
(10.1016/j.buildenv.2022.109066_bib27) 2011; vol. 3
Kafy (10.1016/j.buildenv.2022.109066_bib51) 2021; 4
References_xml – volume: 75
  start-page: 243
  year: 2010
  end-page: 248
  ident: bib40
  article-title: Ensuring possitiveness of the scaled chi-square test statistic
  publication-title: Psychometrika
– volume: 208
  start-page: 108573
  year: 2021
  ident: bib52
  article-title: Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh
  publication-title: Build. Environ.
– volume: 130
  start-page: 277
  year: 2017
  end-page: 293
  ident: bib23
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 11
  start-page: 801
  year: 2019
  ident: bib49
  article-title: Spatiotemporal patterns of urban land use change in typical cities in the greater mekong subregion (GMS)
  publication-title: Rem. Sens.
– volume: 5
  start-page: 50
  year: 2014
  end-page: 60
  ident: bib5
  article-title: Impact of urbanization on land use/land covers change using Geo-spatial techniques
  publication-title: Int. J. Geomatics Geosci.
– volume: 206
  year: 2020
  ident: bib39
  article-title: Modeling diurnal land surface temperature on a local scale of an arid environment using artificial neural network (ANN) and time series of landsat-8 derived spectral indexes
  publication-title: J. Atmos. Sol. Terr. Phys.
– ident: bib26
  article-title: Sylhet | Bangladesh | Britannica
– volume: 4
  year: 2021
  ident: bib51
  article-title: Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh
  publication-title: Environmental Challenges
– volume: 4
  year: 2021
  ident: bib48
  article-title: Geospatial modelling of changes in land use/land cover dynamics using Multi-layer perception Markov chain model in Rajshahi City, Bangladesh
  publication-title: Environ. Challenges
– volume: 46
  year: 2019
  ident: bib25
  article-title: The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region
  publication-title: Sustain. Cities Soc.
– volume: 206
  year: 2021
  ident: bib17
  article-title: Evidence of urban heat island impacts on the vegetation growing season length in a tropical city
  publication-title: Landsc. Urban Plann.
– volume: 49
  start-page: 263
  year: 2014
  ident: bib37
  article-title: The application of a prediction model on land surface temperature using Artificial Neural Network and Scenario: focused on Changwon in South Korea
  publication-title: J. korea Planners Assoc.
– volume: 13
  start-page: 21
  year: 2021
  ident: bib8
  article-title: Spatial and temporal analysis of surface urban heat island and thermal comfort using landsat satellite images between 1989 and 2019: a case study in tehran
  publication-title: Rem. Sens.
– volume: 11
  start-page: 225
  year: 2020
  end-page: 234
  ident: bib45
  article-title: Future land use land cover prediction with special emphasis on urbanization and wetlands
  publication-title: Remote Sens. Lett.
– volume: 13
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib4
  article-title: Land cover change dynamics and their impacts on thermal environment of Dadri block, Gautam budh Nagar, India
  publication-title: J. Landsc. Ecol. Republic)
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  ident: bib24
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 11
  start-page: 5492
  year: 2019
  ident: bib35
  article-title: Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region
  publication-title: Sustainability
– start-page: 621
  year: 2019
  end-page: 651
  ident: bib20
  article-title: Land use/land cover change detection and urban sprawl analysis
  publication-title: Spat. Model. GIS R Earth Environ. Sci.
– volume: 4
  year: 2021
  ident: bib7
  article-title: Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area
  publication-title: Environ. Challenges
– volume: 7
  start-page: 403
  year: 2017
  end-page: 406
  ident: bib13
  article-title: A global economic assessment of city policies to reduce climate change impacts
  publication-title: Nat. Clim. Change
– volume: 117
  start-page: 57
  year: 2012
  end-page: 71
  ident: bib31
  article-title: Enhancing temporal resolution of satellite imagery for public health studies: a case study of West Nile Virus outbreak in Los Angeles in 2007
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 206
  year: 2019
  end-page: 224
  ident: bib53
  article-title: Classification of cities in Bangladesh based on remote sensing derived spatial characteristics
  publication-title: J. Urban Manag.
– volume: vol. 3
  year: 2011
  ident: bib27
  publication-title: Bangladesh Population and Housing Census 2011
– volume: 135
  year: 2021
  ident: bib12
  article-title: Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities
  publication-title: Appl. Geogr.
– volume: 136
  start-page: 279
  year: 2018
  end-page: 292
  ident: bib47
  article-title: Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil
  publication-title: Build. Environ.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib10
  article-title: Land-use/land-cover changes and their impact on surface urban heat islands: case study of Kandy City, Sri Lanka
  publication-title: Climate
– volume: 96
  start-page: 108
  year: 2010
  end-page: 122
  ident: bib32
  article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis
  publication-title: Landsc. Urban Plann.
– volume: 5
  year: 2021
  ident: bib2
  article-title: Evaluating the impact of climate change on urban environment using geospatial technologies in the planning area of Bilaspur, India
  publication-title: Environ. Challenges
– volume: 98
  start-page: 156
  year: 2018
  end-page: 165
  ident: bib28
  article-title: Analysis of impervious land-cover expansion using remote sensing and GIS: a case study of Sylhet sadar upazila
  publication-title: Appl. Geogr.
– volume: 71
  year: 2021
  ident: bib18
  article-title: Surface urban heat island intensity in five major cities of Bangladesh: patterns, drivers and trends
  publication-title: Sustain. Cities Soc.
– volume: 4
  year: 2021
  ident: bib50
  article-title: Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm
  publication-title: Environ. Challenges
– volume: 51
  start-page: 667
  year: 2018
  end-page: 678
  ident: bib11
  article-title: Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy
  publication-title: Eur. J. Remote Sens.
– volume: 64
  year: 2021
  ident: bib9
  article-title: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh
  publication-title: Sustain. Cities Soc.
– volume: 13
  start-page: 1
  year: 2019
  ident: bib3
  article-title: Spatial–temporal landscape pattern change under rapid urbanization
  publication-title: J. Appl. Remote Sens.
– volume: 19
  start-page: 372
  year: 2012
  end-page: 398
  ident: bib43
  article-title: Principles and practice of scaled difference chi-square testing
  publication-title: Struct. Equ. Model.
– volume: 3
  year: 2017
  ident: bib14
  article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia
  publication-title: Sci. Adv.
– volume: 76
  start-page: 167
  year: 2019
  end-page: 178
  ident: bib21
  article-title: Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 457
  start-page: 384
  year: 2001
  end-page: 401
  ident: bib42
  article-title: Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
– volume: 8
  year: 2018
  ident: bib46
  article-title: Identification of urban heat islands &its relationship withVegetation cover: a case study of colombo & gampaha districts in Sri Lanka
  publication-title: J. Trop. For. Environ.
– volume: 91
  year: 2020
  ident: bib33
  article-title: Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques
  publication-title: Land Use Pol.
– volume: 125
  year: 2021
  ident: bib1
  article-title: Land use land cover change in Kashmir Himalaya: linking remote sensing with an indicator based DPSIR approach
  publication-title: Ecol. Indicat.
– volume: 3
  year: 2011
  ident: bib30
  article-title: Urban heat island analysis using the landsat TM data and ASTER Data: a case study in Hong Kong
  publication-title: Rem. Sens.
– volume: 245
  start-page: 348
  year: 2019
  end-page: 357
  ident: bib34
  article-title: Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region
  publication-title: J. Environ. Manag.
– volume: 4
  year: 2021
  ident: bib19
  article-title: Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: a remote sensing and statistical approach
  publication-title: Environ. Challenges
– volume: 182
  year: 2020
  ident: bib15
  article-title: Urban-rural moisture contrast: regulator of the urban heat island and heatwaves' synergy over a mediterranean city
  publication-title: Environ. Res.
– volume: 12
  start-page: 1135
  year: 2020
  ident: bib22
  article-title: Land-use land-cover classification by machine learning classifiers for satellite observations-A review
  publication-title: Rem. Sens.
– volume: 4
  year: 2021
  ident: bib6
  article-title: Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in Rajshahi City, Bangladesh
  publication-title: Environ. Challenges
– volume: 30
  start-page: 858
  year: 2015
  end-page: 881
  ident: bib41
  article-title: A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS
  publication-title: Geocarto Int.
– volume: 13
  start-page: 793
  year: 2021
  end-page: 816
  ident: bib36
  article-title: The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh
  publication-title: Appl. Geomatics
– volume: 736
  year: 2020
  ident: bib16
  article-title: Modulations of surface thermal environment and agricultural activity on intraseasonal variations of summer diurnal temperature range in the Yangtze River Delta of China
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 1
  year: 2021
  end-page: 22
  ident: bib38
  article-title: Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature
  publication-title: SN Appl. Sci.
– volume: 208
  start-page: 108573
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib52
  article-title: Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108573
– volume: 75
  start-page: 243
  issue: 2
  year: 2010
  ident: 10.1016/j.buildenv.2022.109066_bib40
  article-title: Ensuring possitiveness of the scaled chi-square test statistic
  publication-title: Psychometrika
  doi: 10.1007/s11336-009-9135-y
– volume: 7
  start-page: 1
  issue: 8
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib10
  article-title: Land-use/land-cover changes and their impact on surface urban heat islands: case study of Kandy City, Sri Lanka
  publication-title: Climate
  doi: 10.3390/cli7080099
– volume: 5
  issue: September
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib2
  article-title: Evaluating the impact of climate change on urban environment using geospatial technologies in the planning area of Bilaspur, India
  publication-title: Environ. Challenges
– volume: 30
  start-page: 858
  issue: 8
  year: 2015
  ident: 10.1016/j.buildenv.2022.109066_bib41
  article-title: A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2014.997308
– volume: 96
  start-page: 108
  issue: 2
  year: 2010
  ident: 10.1016/j.buildenv.2022.109066_bib32
  article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2010.03.001
– volume: 117
  start-page: 57
  year: 2012
  ident: 10.1016/j.buildenv.2022.109066_bib31
  article-title: Enhancing temporal resolution of satellite imagery for public health studies: a case study of West Nile Virus outbreak in Los Angeles in 2007
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.023
– volume: 13
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib3
  article-title: Spatial–temporal landscape pattern change under rapid urbanization
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.026516
– volume: 7
  start-page: 403
  issue: 6
  year: 2017
  ident: 10.1016/j.buildenv.2022.109066_bib13
  article-title: A global economic assessment of city policies to reduce climate change impacts
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3301
– volume: 8
  issue: 2
  year: 2018
  ident: 10.1016/j.buildenv.2022.109066_bib46
  article-title: Identification of urban heat islands &its relationship withVegetation cover: a case study of colombo & gampaha districts in Sri Lanka
  publication-title: J. Trop. For. Environ.
– volume: 13
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.buildenv.2022.109066_bib4
  article-title: Land cover change dynamics and their impacts on thermal environment of Dadri block, Gautam budh Nagar, India
  publication-title: J. Landsc. Ecol. Republic)
– volume: 457
  start-page: 384
  issue: 1–2
  year: 2001
  ident: 10.1016/j.buildenv.2022.109066_bib42
  article-title: Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
  doi: 10.1016/S0168-9002(00)00756-7
– volume: 12
  start-page: 1135
  issue: 7
  year: 2020
  ident: 10.1016/j.buildenv.2022.109066_bib22
  article-title: Land-use land-cover classification by machine learning classifiers for satellite observations-A review
  publication-title: Rem. Sens.
  doi: 10.3390/rs12071135
– start-page: 621
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib20
  article-title: Land use/land cover change detection and urban sprawl analysis
  publication-title: Spat. Model. GIS R Earth Environ. Sci.
– volume: 51
  start-page: 667
  issue: 1
  year: 2018
  ident: 10.1016/j.buildenv.2022.109066_bib11
  article-title: Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1474494
– volume: 11
  start-page: 5492
  issue: 19
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib35
  article-title: Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region
  publication-title: Sustainability
  doi: 10.3390/su11195492
– volume: 11
  start-page: 225
  issue: 3
  year: 2020
  ident: 10.1016/j.buildenv.2022.109066_bib45
  article-title: Future land use land cover prediction with special emphasis on urbanization and wetlands
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2019.1704304
– volume: 3
  year: 2011
  ident: 10.1016/j.buildenv.2022.109066_bib30
  article-title: Urban heat island analysis using the landsat TM data and ASTER Data: a case study in Hong Kong
  publication-title: Rem. Sens.
  doi: 10.3390/rs3071535
– volume: 4
  issue: April
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib7
  article-title: Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area
  publication-title: Environ. Challenges
– volume: 3
  issue: 8
  year: 2017
  ident: 10.1016/j.buildenv.2022.109066_bib14
  article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603322
– volume: 11
  start-page: 801
  issue: 7
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib49
  article-title: Spatiotemporal patterns of urban land use change in typical cities in the greater mekong subregion (GMS)
  publication-title: Rem. Sens.
  doi: 10.3390/rs11070801
– volume: 4
  issue: May
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib48
  article-title: Geospatial modelling of changes in land use/land cover dynamics using Multi-layer perception Markov chain model in Rajshahi City, Bangladesh
  publication-title: Environ. Challenges
– volume: 135
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib12
  article-title: Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2021.102533
– volume: 13
  start-page: 21
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib8
  article-title: Spatial and temporal analysis of surface urban heat island and thermal comfort using landsat satellite images between 1989 and 2019: a case study in tehran
  publication-title: Rem. Sens.
  doi: 10.3390/rs13214469
– volume: 4
  issue: June
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib50
  article-title: Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm
  publication-title: Environ. Challenges
– volume: 8
  start-page: 206
  issue: 2
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib53
  article-title: Classification of cities in Bangladesh based on remote sensing derived spatial characteristics
  publication-title: J. Urban Manag.
  doi: 10.1016/j.jum.2018.12.001
– volume: 98
  start-page: 156
  issue: June
  year: 2018
  ident: 10.1016/j.buildenv.2022.109066_bib28
  article-title: Analysis of impervious land-cover expansion using remote sensing and GIS: a case study of Sylhet sadar upazila
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2018.07.012
– volume: 66
  start-page: 247
  issue: 3
  year: 2011
  ident: 10.1016/j.buildenv.2022.109066_bib24
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 64
  issue: September 2020
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib9
  article-title: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh
  publication-title: Sustain. Cities Soc.
– volume: 49
  start-page: 263
  issue: 1
  year: 2014
  ident: 10.1016/j.buildenv.2022.109066_bib37
  article-title: The application of a prediction model on land surface temperature using Artificial Neural Network and Scenario: focused on Changwon in South Korea
  publication-title: J. korea Planners Assoc.
  doi: 10.17208/jkpa.2014.02.49.1.263
– volume: 5
  start-page: 50
  issue: 1
  year: 2014
  ident: 10.1016/j.buildenv.2022.109066_bib5
  article-title: Impact of urbanization on land use/land covers change using Geo-spatial techniques
  publication-title: Int. J. Geomatics Geosci.
– volume: 182
  year: 2020
  ident: 10.1016/j.buildenv.2022.109066_bib15
  article-title: Urban-rural moisture contrast: regulator of the urban heat island and heatwaves' synergy over a mediterranean city
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.109102
– volume: 4
  issue: April
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib19
  article-title: Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: a remote sensing and statistical approach
  publication-title: Environ. Challenges
– volume: 13
  start-page: 793
  issue: 4
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib36
  article-title: The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh
  publication-title: Appl. Geomatics
  doi: 10.1007/s12518-021-00390-3
– volume: 130
  start-page: 277
  year: 2017
  ident: 10.1016/j.buildenv.2022.109066_bib23
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.001
– volume: 125
  issue: August 2020
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib1
  article-title: Land use land cover change in Kashmir Himalaya: linking remote sensing with an indicator based DPSIR approach
  publication-title: Ecol. Indicat.
– volume: 3
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib38
  article-title: Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-021-04351-8
– volume: 245
  start-page: 348
  issue: February
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib34
  article-title: Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.05.063
– volume: 136
  start-page: 279
  year: 2018
  ident: 10.1016/j.buildenv.2022.109066_bib47
  article-title: Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.03.041
– volume: 206
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib17
  article-title: Evidence of urban heat island impacts on the vegetation growing season length in a tropical city
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2020.103989
– volume: 76
  start-page: 167
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib21
  article-title: Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 71
  issue: April
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib18
  article-title: Surface urban heat island intensity in five major cities of Bangladesh: patterns, drivers and trends
  publication-title: Sustain. Cities Soc.
– volume: 46
  year: 2019
  ident: 10.1016/j.buildenv.2022.109066_bib25
  article-title: The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101432
– volume: vol. 3
  year: 2011
  ident: 10.1016/j.buildenv.2022.109066_bib27
– volume: 206
  year: 2020
  ident: 10.1016/j.buildenv.2022.109066_bib39
  article-title: Modeling diurnal land surface temperature on a local scale of an arid environment using artificial neural network (ANN) and time series of landsat-8 derived spectral indexes
  publication-title: J. Atmos. Sol. Terr. Phys.
  doi: 10.1016/j.jastp.2020.105328
– volume: 19
  start-page: 372
  issue: 3
  year: 2012
  ident: 10.1016/j.buildenv.2022.109066_bib43
  article-title: Principles and practice of scaled difference chi-square testing
  publication-title: Struct. Equ. Model.
  doi: 10.1080/10705511.2012.687671
– volume: 4
  issue: March
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib6
  article-title: Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in Rajshahi City, Bangladesh
  publication-title: Environ. Challenges
– volume: 4
  year: 2021
  ident: 10.1016/j.buildenv.2022.109066_bib51
  article-title: Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh
  publication-title: Environmental Challenges
  doi: 10.1016/j.envc.2021.100084
– volume: 736
  year: 2020
  ident: 10.1016/j.buildenv.2022.109066_bib16
  article-title: Modulations of surface thermal environment and agricultural activity on intraseasonal variations of summer diurnal temperature range in the Yangtze River Delta of China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139445
– volume: 91
  year: 2020
  ident: 10.1016/j.buildenv.2022.109066_bib33
  article-title: Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques
  publication-title: Land Use Pol.
  doi: 10.1016/j.landusepol.2019.104414
SSID ssj0016934
Score 2.6187708
Snippet Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109066
SubjectTerms Algorithms
Artificial neural networks
Cellular automata
Gardening
Impact prediction
Land cover
Land cover change
Land surface temperature
Land use
Landsat
Learning algorithms
Local government
Machine learning
Machine learning algorithms
Neural networks
Prediction
Remote sensing
Sustainable development
Thermal comfort
Urban areas
Urban development
Urban heat island
Urban heat islands
Urban planning
Title Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms
URI https://dx.doi.org/10.1016/j.buildenv.2022.109066
https://www.proquest.com/docview/2686217327
Volume 217
WOSCitedRecordID wos000793772400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RWpAP3FbZJs7Gjo8r1BUgqCpa0IpLZDtOu1XIVvuo2iM_iP_I-JUsC6ggxCWKsrGdZL4dj2fmGyP0cqgSwRijkaq0jIYVExGvZByBZUskLZWMLX3s0zt2eJhPJvyo1_sWuDCXNWua_OqKX_xXUcM1ELahzv6FuNtO4QKcg9DhCGKH4x8J_mhuYi_LQINyNEibsGGSGPsrs5PiuHZ0Nng5T_21UQPjMLSewdVcChtEALVdmzt-KOq8sv6FLzYNU4d9J077oj6dzafLM1__PESK_b7bNkqxRqtrNb2orJxHsoTVsOhH_VGb9HEsXDjq_bTuQDwW04Wo15qcRV2LD4b37Xy6n-G3a8MQmPZHg3XnBqyL2yQs53ELrJsuxckxveIIVtFOMWqnuHOWRjR32Z5BsxNHC_1plnAOi_OBNF8A3nxghjaFtWK6UZbbTvTHZkAzHiGupNottE1YxkGJbo_eHEzetmErylNfr8w94Bol_dej_c4a2rALrLFzch_d86sUPHLoeoB6unmI7q7VrnyEvnY4wwAU7HGGZxU24MKAs317YlGGPcrwrMEBZdiiDHuU4Q2UYYsy7FGGA8pwh7LH6OP44OTV68jv5xEpwuJlxGRWUp1RmFQyTYgq01KpodYszyRXsaIsUTxVlVBUS8UyRSuwlbiu4G4hKpI-QVvNrNFPESZcljpNoK-SDgXn-VAmssw4zaoYTOpkB2XhuxbKF7s3e67URchqPC-CPAojj8LJYwftt-0uXLmXG1vwILbCG63OGC0AbTe23QtyLrwGWRTEcLYSlhL27B-63kV3uv_THtpazlf6ObqtLpfTxfyFx-132TTQkA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+impacts+of+land+use%2Fland+cover+changes+on+seasonal+urban+thermal+characteristics+using+machine+learning+algorithms&rft.jtitle=Building+and+environment&rft.au=Kafy%2C+Abdulla+-+Al&rft.au=Saha%2C+Milan&rft.au=Faisal%2C+Abdullah-Al&rft.au=Rahaman%2C+Zullyadini+A.&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=217&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109066&rft.externalDocID=S0360132322003055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon