Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms
Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This st...
Uloženo v:
| Vydáno v: | Building and environment Ročník 217; s. 109066 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.06.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0360-1323, 1873-684X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This study aims to assess and predict the seasonal (summer and winter) UTFVI scenario to evaluate the thermal characteristics of Sylhet city, Bangladesh. Landsat 4–5 TM and 8 OLI images from 1995 to 2020 were used to assess the previous status of LULC and UTFVI and predict the future changes for 2025 and 2030 using cellular automata and artificial neural network machine learning algorithms. Prediction results indicate a substantial increase in urban built-up areas by 42% and 44% in 2025 and 2035, followed by reductions in green cover (21% and 22%), bare land (20% and 21%) and water bodies (1%). The rapid expansion of built-up areas will lead to 13 km2 and 14 km2 stronger UTFVI zones in the predicted years. The study provides effective strategies for mitigating the UTFVI effects by avoiding dense infrastructural development, increasing plantation and water bodies, rooftop gardening and using white colour roofs in construction. The findings of this study will allow the urban planners, policymakers and local government to ensure an eco-friendly, inclusive and sustainable urban development through functional modification and replacement of the LULC distribution depending on the present and future circumstances.
[Display omitted]
•Directional changes of LULC and seasonal UTFVI shift in Sylhet city were analyzed.•Reduction of green cover significantly increase UTFVI effect.•LULC vs UTFVI relationship better explain impacts of different land cover on thermal environment.•Seasonal UTFVI prediction exhibit a gradual decrease in overall thermal characteristics.•Predicted UTFVI vs LULC demonstrated the highest UTFVI concentration in the built-up area. |
|---|---|
| AbstractList | Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This study aims to assess and predict the seasonal (summer and winter) UTFVI scenario to evaluate the thermal characteristics of Sylhet city, Bangladesh. Landsat 4–5 TM and 8 OLI images from 1995 to 2020 were used to assess the previous status of LULC and UTFVI and predict the future changes for 2025 and 2030 using cellular automata and artificial neural network machine learning algorithms. Prediction results indicate a substantial increase in urban built-up areas by 42% and 44% in 2025 and 2035, followed by reductions in green cover (21% and 22%), bare land (20% and 21%) and water bodies (1%). The rapid expansion of built-up areas will lead to 13 km2 and 14 km2 stronger UTFVI zones in the predicted years. The study provides effective strategies for mitigating the UTFVI effects by avoiding dense infrastructural development, increasing plantation and water bodies, rooftop gardening and using white colour roofs in construction. The findings of this study will allow the urban planners, policymakers and local government to ensure an eco-friendly, inclusive and sustainable urban development through functional modification and replacement of the LULC distribution depending on the present and future circumstances. Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI) effects. The urban thermal field variance index (UTFVI) can effectively describe any city's UHI (thermal characteristics) effect. This study aims to assess and predict the seasonal (summer and winter) UTFVI scenario to evaluate the thermal characteristics of Sylhet city, Bangladesh. Landsat 4–5 TM and 8 OLI images from 1995 to 2020 were used to assess the previous status of LULC and UTFVI and predict the future changes for 2025 and 2030 using cellular automata and artificial neural network machine learning algorithms. Prediction results indicate a substantial increase in urban built-up areas by 42% and 44% in 2025 and 2035, followed by reductions in green cover (21% and 22%), bare land (20% and 21%) and water bodies (1%). The rapid expansion of built-up areas will lead to 13 km2 and 14 km2 stronger UTFVI zones in the predicted years. The study provides effective strategies for mitigating the UTFVI effects by avoiding dense infrastructural development, increasing plantation and water bodies, rooftop gardening and using white colour roofs in construction. The findings of this study will allow the urban planners, policymakers and local government to ensure an eco-friendly, inclusive and sustainable urban development through functional modification and replacement of the LULC distribution depending on the present and future circumstances. [Display omitted] •Directional changes of LULC and seasonal UTFVI shift in Sylhet city were analyzed.•Reduction of green cover significantly increase UTFVI effect.•LULC vs UTFVI relationship better explain impacts of different land cover on thermal environment.•Seasonal UTFVI prediction exhibit a gradual decrease in overall thermal characteristics.•Predicted UTFVI vs LULC demonstrated the highest UTFVI concentration in the built-up area. |
| ArticleNumber | 109066 |
| Author | Rahman, Muhammad Tauhidur AlDousari, Ahmad E. Ahasan, Md Ahasanul Karim Rahaman, Sk Nafiz Kafy, Abdulla - Al Saha, Milan Liu, Desheng Rahaman, Zullyadini A. Fattah, Md. Abdul Faisal, Abdullah-Al Hasan, Md Zakaria Al Rakib, Abdullah |
| Author_xml | – sequence: 1 givenname: Abdulla - Al surname: Kafy fullname: Kafy, Abdulla - Al email: abdulla-al.kafy@localpathways.org organization: Department of Urban & Regional Planning, Rajshahi University of Engineering & Technology (RUET), Rajshahi, 6204, Bangladesh – sequence: 2 givenname: Milan surname: Saha fullname: Saha, Milan email: milansaha023@gmail.com organization: Department of Urban & Regional Planning, Bangladesh University of Engineering & Technology (BUET), Dhaka, Bangladesh – sequence: 3 givenname: Abdullah-Al surname: Faisal fullname: Faisal, Abdullah-Al email: abdullah-al-faisal@localpathways.org organization: Department of Urban & Regional Planning, Rajshahi University of Engineering & Technology (RUET), Rajshahi, 6204, Bangladesh – sequence: 4 givenname: Zullyadini A. orcidid: 0000-0003-2529-6525 surname: Rahaman fullname: Rahaman, Zullyadini A. email: zully@fsk.upsi.edu.my organization: Department of Geography & Environment, Faculty of Human Sciences, Sultan Idris Education University, Tanjung Malim, 35900, Malaysia – sequence: 5 givenname: Muhammad Tauhidur surname: Rahman fullname: Rahman, Muhammad Tauhidur email: mtr@kfupm.edu.sa organization: Department of City and Regional Planning, King Fahd University of Petroleum & Minerals, KFUPM Box 5053, Dhahran, 31261, Saudi Arabia – sequence: 6 givenname: Desheng surname: Liu fullname: Liu, Desheng email: liu.738@osu.edu organization: Department of Geography, Ohio State University, Columbus, OH, United States – sequence: 7 givenname: Md. Abdul surname: Fattah fullname: Fattah, Md. Abdul email: mafattah.kuet@gmail.com organization: Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh – sequence: 8 givenname: Abdullah surname: Al Rakib fullname: Al Rakib, Abdullah email: abdullahalrakib310@gmail.com organization: Department of Urban & Regional Planning, Rajshahi University of Engineering & Technology (RUET), Rajshahi, 6204, Bangladesh – sequence: 9 givenname: Ahmad E. surname: AlDousari fullname: AlDousari, Ahmad E. email: dr.dousari@ku.edu.kw organization: Department of Geography, Kuwait University, Kuwait City, Kuwait – sequence: 10 givenname: Sk Nafiz surname: Rahaman fullname: Rahaman, Sk Nafiz email: sknafizrahaman1@gmail.com organization: Urban and Rural Planning Discipline, Khulna University, Khulna, 9208, Bangladesh – sequence: 11 givenname: Md Zakaria surname: Hasan fullname: Hasan, Md Zakaria email: zakariahasan062@gmail.com organization: Department of Geography & Environmental Studies, University of Chittagong, Bangladesh – sequence: 12 givenname: Md Ahasanul Karim surname: Ahasan fullname: Ahasan, Md Ahasanul Karim email: ahasan.karim47@gmail.com organization: Department of Computer Science, Dalhousie University, Canada |
| BookMark | eNqFkUFrFDEYhoNUcFv9CxLwPNtMspPsgAelaCsU9GCht5D55pvdLDPJ-iWz0KP_3Iyrl156SvLlfV7Ik0t2EWJAxt7XYl2LWl8f1t3sxx7DaS2FlGXYCq1fsVW9NarS283jBVsJpUVVK6nesMuUDqKArdqs2O8fhL2H7MOO5z1yPx0d5MTjwEcXej4nvP67gXhC4rB3YYflOvCELsXgRj5T58IC01ROJUGlAcmn7CGVgqV6crD3AfmIjsIycOMuks_7Kb1lrwc3Jnz3b71iD1-__Ly5q-6_3367-XxfgTQiV6Zreo2NNko0KCX0qgfYIJpt07UgQJsaWgWDA40dmAb00LaixaGknRukumIfzr1Hir9mTNke4kzlAclKvdWyNkqaktLnFFBMiXCwR_KToydbC7votgf7X7dddNuz7gJ-fAaCzy77GDI5P76MfzrjWBScPJJN4DFA-RxCyLaP_qWKP1_Dpmo |
| CitedBy_id | crossref_primary_10_1186_s13717_023_00446_9 crossref_primary_10_1016_j_ecolind_2023_111444 crossref_primary_10_1016_j_jenvman_2023_119376 crossref_primary_10_1016_j_resenv_2025_100240 crossref_primary_10_1016_j_scs_2023_104653 crossref_primary_10_3390_rs17142474 crossref_primary_10_1016_j_apr_2025_102742 crossref_primary_10_1038_s41598_023_46437_w crossref_primary_10_1016_j_jenvman_2025_124602 crossref_primary_10_1016_j_resourpol_2023_104180 crossref_primary_10_1080_10106049_2024_2392881 crossref_primary_10_3390_atmos13101574 crossref_primary_10_1016_j_asr_2023_06_048 crossref_primary_10_1016_j_buildenv_2024_111639 crossref_primary_10_1007_s11356_023_27702_x crossref_primary_10_1016_j_rsase_2024_101275 crossref_primary_10_1016_j_asr_2025_08_021 crossref_primary_10_3390_rs16183374 crossref_primary_10_1007_s12665_025_12340_y crossref_primary_10_1016_j_buildenv_2024_111840 crossref_primary_10_1016_j_scs_2025_106797 crossref_primary_10_1016_j_buildenv_2022_109723 crossref_primary_10_1016_j_jenvman_2024_123123 crossref_primary_10_1016_j_scs_2024_105345 crossref_primary_10_3390_ijgi12110450 crossref_primary_10_1007_s13762_025_06569_0 crossref_primary_10_1016_j_ecolind_2024_112658 crossref_primary_10_1016_j_scitotenv_2025_178925 crossref_primary_10_3390_cli10100158 crossref_primary_10_3390_rs17101730 crossref_primary_10_1016_j_buildenv_2023_110192 crossref_primary_10_1016_j_uclim_2024_102073 crossref_primary_10_1016_j_ufug_2024_128629 crossref_primary_10_1016_j_ecolind_2025_113418 crossref_primary_10_1007_s12145_022_00918_0 crossref_primary_10_1016_j_envc_2024_100866 crossref_primary_10_3390_rs16050928 crossref_primary_10_1007_s10661_025_14388_6 crossref_primary_10_1016_j_buildenv_2023_110468 crossref_primary_10_1016_j_jenvman_2025_126168 crossref_primary_10_1007_s41748_024_00418_9 crossref_primary_10_1016_j_jobe_2025_113660 crossref_primary_10_1016_j_scs_2025_106445 crossref_primary_10_1016_j_rsase_2024_101180 crossref_primary_10_3390_su142315663 crossref_primary_10_1016_j_scs_2025_106721 crossref_primary_10_1016_j_buildenv_2023_110185 crossref_primary_10_1016_j_asr_2024_11_016 crossref_primary_10_1016_j_sftr_2025_101154 crossref_primary_10_3390_en16010368 crossref_primary_10_1016_j_apr_2025_102484 crossref_primary_10_1007_s12518_024_00549_8 crossref_primary_10_1007_s12524_025_02209_9 crossref_primary_10_1016_j_pce_2022_103356 crossref_primary_10_1007_s11252_022_01297_6 crossref_primary_10_1109_JSTARS_2024_3397496 crossref_primary_10_1016_j_scs_2024_105482 crossref_primary_10_1080_10095020_2024_2374996 crossref_primary_10_1016_j_envres_2025_121860 crossref_primary_10_1016_j_scs_2024_105880 crossref_primary_10_1007_s41748_024_00468_z crossref_primary_10_1016_j_icheatmasstransfer_2023_107092 crossref_primary_10_1016_j_buildenv_2022_109625 crossref_primary_10_1016_j_scs_2023_105003 crossref_primary_10_1016_j_rsase_2023_101011 crossref_primary_10_1016_j_rsase_2024_101257 crossref_primary_10_1016_j_scs_2022_104107 crossref_primary_10_1016_j_scs_2024_105716 crossref_primary_10_1080_10106049_2023_2268059 crossref_primary_10_1016_j_jenvman_2024_121787 crossref_primary_10_17645_up_9217 crossref_primary_10_1007_s40808_024_02107_y crossref_primary_10_3390_urbansci9070234 crossref_primary_10_14358_PERS_23_00067R2 crossref_primary_10_1088_2515_7620_ad9145 crossref_primary_10_3390_rs16163032 crossref_primary_10_1016_j_uclim_2023_101467 crossref_primary_10_1007_s13132_024_01941_w crossref_primary_10_1016_j_uclim_2022_101336 crossref_primary_10_1038_s41598_025_13167_0 crossref_primary_10_3390_s23157013 crossref_primary_10_18502_kss_v9i6_15261 crossref_primary_10_1016_j_scs_2024_105231 crossref_primary_10_1080_17538947_2024_2323174 crossref_primary_10_1007_s11356_025_36273_y crossref_primary_10_1007_s41748_023_00340_6 crossref_primary_10_1016_j_jenvman_2022_116524 crossref_primary_10_1016_j_ecoinf_2023_102075 crossref_primary_10_1016_j_ecolind_2025_114127 |
| Cites_doi | 10.1016/j.buildenv.2021.108573 10.1007/s11336-009-9135-y 10.3390/cli7080099 10.1080/10106049.2014.997308 10.1016/j.landurbplan.2010.03.001 10.1016/j.rse.2011.06.023 10.1117/1.JRS.13.026516 10.1038/nclimate3301 10.1016/S0168-9002(00)00756-7 10.3390/rs12071135 10.1080/22797254.2018.1474494 10.3390/su11195492 10.1080/2150704X.2019.1704304 10.3390/rs3071535 10.1126/sciadv.1603322 10.3390/rs11070801 10.1016/j.apgeog.2021.102533 10.3390/rs13214469 10.1016/j.jum.2018.12.001 10.1016/j.apgeog.2018.07.012 10.1016/j.isprsjprs.2010.11.001 10.17208/jkpa.2014.02.49.1.263 10.1016/j.envres.2019.109102 10.1007/s12518-021-00390-3 10.1016/j.isprsjprs.2017.06.001 10.1007/s42452-021-04351-8 10.1016/j.jenvman.2019.05.063 10.1016/j.buildenv.2018.03.041 10.1016/j.landurbplan.2020.103989 10.1016/j.scs.2019.101432 10.1016/j.jastp.2020.105328 10.1080/10705511.2012.687671 10.1016/j.envc.2021.100084 10.1016/j.scitotenv.2020.139445 10.1016/j.landusepol.2019.104414 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2022 |
| DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
| DOI | 10.1016/j.buildenv.2022.109066 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-684X |
| ExternalDocumentID | 10_1016_j_buildenv_2022_109066 S0360132322003055 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET SEW VH1 WUQ ZMT ~HD 7ST 8FD AGCQF C1K F28 FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c270t-7b5d6e567305e22cd3dcc4ee785b9c0c671c93cfac6ebc75c6f9909ef5e2aaf23 |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793772400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-1323 |
| IngestDate | Wed Aug 13 10:35:34 EDT 2025 Tue Nov 18 22:25:25 EST 2025 Sat Nov 29 07:18:59 EST 2025 Fri Feb 23 02:40:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal comfort Machine learning algorithms Urban heat island Land cover change Prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c270t-7b5d6e567305e22cd3dcc4ee785b9c0c671c93cfac6ebc75c6f9909ef5e2aaf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2529-6525 |
| PQID | 2686217327 |
| PQPubID | 2045275 |
| ParticipantIDs | proquest_journals_2686217327 crossref_primary_10_1016_j_buildenv_2022_109066 crossref_citationtrail_10_1016_j_buildenv_2022_109066 elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109066 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Building and environment |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Fernando (bib46) 2018; 8 Kafy (bib6) 2021; 4 Sejati, Buchori, Rudiarto (bib25) 2019; 46 Mundhe, Jaybhaye, Mundhe (bib5) 2014; 5 Hauschild, Jentschel (bib42) 2001; 457 Dey, Al Rakib, Kafy, Raikwar (bib48) 2021; 4 Faisal (bib7) 2021; 4 Pyrgou, Hadjinicolaou, Santamouris (bib15) 2020; 182 Dewan, Kiselev, Botje, Mahmud, Bhuian, Hassan (bib18) 2021; 71 Dewan, Kiselev, Botje (bib12) 2021; 135 Cao, Liu, Chen, Gao, Wang, Zhang (bib49) 2019; 11 Rasool, Fayaz, ul Shafiq, Singh, Ahmed (bib1) 2021; 125 Silva, da Silva, Santos (bib47) 2018; 136 Fattah, Morshed, Morshed (bib38) 2021; 3 Wittke, Yu, Karjalainen, Hyyppä, Puttonen (bib21) 2019; 76 (bib27) 2011; vol. 3 Guha, Govil, Dey, Gill (bib11) 2018; 51 Najafzadeh, Mohammadzadeh, Ghorbanian, Jamali (bib8) 2021; 13 Shastri, Singh, Verma, Kumar Rai, Singh (bib4) 2020; 13 Ma, Li, Ma, Cheng, Du, Liu (bib23) 2017; 130 Yang (bib16) 2020; 736 Lee, Jung (bib37) 2014; 49 Al-sharif, Pradhan (bib41) 2015; 30 Santé, García, Miranda, Crecente (bib32) 2010; 96 Tang, Di, Rahman, Yu (bib3) 2019; 13 Anand, Oinam (bib45) 2020; 11 Gupta, Islam, Hasan (bib28) 2018; 98 Satorra, Bentler (bib40) 2010; 75 Halder, Bandyopadhyay (bib2) 2021; 5 Kabano, Lindley, Harris (bib17) 2021; 206 Al Kafy, Dey, Al Rakib, Rahaman, Nasher, Bhatt (bib50) 2021; 4 Kafy, Naim, Subramanyam, Ahmed, Al Rakib, Kona, Sattar (bib51) 2021; 4 Kafy (bib52) 2021; 208 Ullah, Ahmad, Sajjad, Abbasi, Nazeer, Tahir (bib34) 2019; 245 Rahman (bib53) 2019; 8 Estrada, Botzen, Tol (bib13) 2017; 7 Ullah (bib35) 2019; 11 Liu, Weng (bib31) 2012; 117 Mansour, Al-Belushi, Al-Awadhi (bib33) 2020; 91 Sekertekin, Arslan, Bilgili (bib39) 2020; 206 Kafy (bib9) 2021; 64 Naim, Kafy (bib19) 2021; 4 Mountrakis, Im, Ogole (bib24) 2011; 66 Dissanayake, Morimoto, Ranagalage, Murayama (bib10) 2019; 7 Liu, Zhang (bib30) 2011; 3 Im, Pal, Eltahir (bib14) 2017; 3 bib26 Viana, Oliveira, Oliveira, Rocha (bib20) 2019 Bryant, Satorra (bib43) 2012; 19 Talukdar (bib22) 2020; 12 Kafy (bib36) 2021; 13 Rahman (10.1016/j.buildenv.2022.109066_bib53) 2019; 8 Liu (10.1016/j.buildenv.2022.109066_bib31) 2012; 117 Guha (10.1016/j.buildenv.2022.109066_bib11) 2018; 51 Bryant (10.1016/j.buildenv.2022.109066_bib43) 2012; 19 Ullah (10.1016/j.buildenv.2022.109066_bib34) 2019; 245 Al Kafy (10.1016/j.buildenv.2022.109066_bib50) 2021; 4 Pyrgou (10.1016/j.buildenv.2022.109066_bib15) 2020; 182 Fernando (10.1016/j.buildenv.2022.109066_bib46) 2018; 8 Faisal (10.1016/j.buildenv.2022.109066_bib7) 2021; 4 Im (10.1016/j.buildenv.2022.109066_bib14) 2017; 3 Talukdar (10.1016/j.buildenv.2022.109066_bib22) 2020; 12 Anand (10.1016/j.buildenv.2022.109066_bib45) 2020; 11 Viana (10.1016/j.buildenv.2022.109066_bib20) 2019 Dey (10.1016/j.buildenv.2022.109066_bib48) 2021; 4 Kafy (10.1016/j.buildenv.2022.109066_bib9) 2021; 64 Rasool (10.1016/j.buildenv.2022.109066_bib1) 2021; 125 Najafzadeh (10.1016/j.buildenv.2022.109066_bib8) 2021; 13 Gupta (10.1016/j.buildenv.2022.109066_bib28) 2018; 98 Kafy (10.1016/j.buildenv.2022.109066_bib52) 2021; 208 Kabano (10.1016/j.buildenv.2022.109066_bib17) 2021; 206 Ma (10.1016/j.buildenv.2022.109066_bib23) 2017; 130 Shastri (10.1016/j.buildenv.2022.109066_bib4) 2020; 13 Yang (10.1016/j.buildenv.2022.109066_bib16) 2020; 736 Naim (10.1016/j.buildenv.2022.109066_bib19) 2021; 4 Sejati (10.1016/j.buildenv.2022.109066_bib25) 2019; 46 Mundhe (10.1016/j.buildenv.2022.109066_bib5) 2014; 5 Sekertekin (10.1016/j.buildenv.2022.109066_bib39) 2020; 206 Tang (10.1016/j.buildenv.2022.109066_bib3) 2019; 13 Satorra (10.1016/j.buildenv.2022.109066_bib40) 2010; 75 Estrada (10.1016/j.buildenv.2022.109066_bib13) 2017; 7 Dewan (10.1016/j.buildenv.2022.109066_bib18) 2021; 71 Halder (10.1016/j.buildenv.2022.109066_bib2) 2021; 5 Mansour (10.1016/j.buildenv.2022.109066_bib33) 2020; 91 Lee (10.1016/j.buildenv.2022.109066_bib37) 2014; 49 Al-sharif (10.1016/j.buildenv.2022.109066_bib41) 2015; 30 Hauschild (10.1016/j.buildenv.2022.109066_bib42) 2001; 457 Kafy (10.1016/j.buildenv.2022.109066_bib36) 2021; 13 Liu (10.1016/j.buildenv.2022.109066_bib30) 2011; 3 Silva (10.1016/j.buildenv.2022.109066_bib47) 2018; 136 Dissanayake (10.1016/j.buildenv.2022.109066_bib10) 2019; 7 Mountrakis (10.1016/j.buildenv.2022.109066_bib24) 2011; 66 Fattah (10.1016/j.buildenv.2022.109066_bib38) 2021; 3 Kafy (10.1016/j.buildenv.2022.109066_bib6) 2021; 4 Wittke (10.1016/j.buildenv.2022.109066_bib21) 2019; 76 Dewan (10.1016/j.buildenv.2022.109066_bib12) 2021; 135 Cao (10.1016/j.buildenv.2022.109066_bib49) 2019; 11 Santé (10.1016/j.buildenv.2022.109066_bib32) 2010; 96 Ullah (10.1016/j.buildenv.2022.109066_bib35) 2019; 11 (10.1016/j.buildenv.2022.109066_bib27) 2011; vol. 3 Kafy (10.1016/j.buildenv.2022.109066_bib51) 2021; 4 |
| References_xml | – volume: 75 start-page: 243 year: 2010 end-page: 248 ident: bib40 article-title: Ensuring possitiveness of the scaled chi-square test statistic publication-title: Psychometrika – volume: 208 start-page: 108573 year: 2021 ident: bib52 article-title: Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh publication-title: Build. Environ. – volume: 130 start-page: 277 year: 2017 end-page: 293 ident: bib23 article-title: A review of supervised object-based land-cover image classification publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 11 start-page: 801 year: 2019 ident: bib49 article-title: Spatiotemporal patterns of urban land use change in typical cities in the greater mekong subregion (GMS) publication-title: Rem. Sens. – volume: 5 start-page: 50 year: 2014 end-page: 60 ident: bib5 article-title: Impact of urbanization on land use/land covers change using Geo-spatial techniques publication-title: Int. J. Geomatics Geosci. – volume: 206 year: 2020 ident: bib39 article-title: Modeling diurnal land surface temperature on a local scale of an arid environment using artificial neural network (ANN) and time series of landsat-8 derived spectral indexes publication-title: J. Atmos. Sol. Terr. Phys. – ident: bib26 article-title: Sylhet | Bangladesh | Britannica – volume: 4 year: 2021 ident: bib51 article-title: Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh publication-title: Environmental Challenges – volume: 4 year: 2021 ident: bib48 article-title: Geospatial modelling of changes in land use/land cover dynamics using Multi-layer perception Markov chain model in Rajshahi City, Bangladesh publication-title: Environ. Challenges – volume: 46 year: 2019 ident: bib25 article-title: The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region publication-title: Sustain. Cities Soc. – volume: 206 year: 2021 ident: bib17 article-title: Evidence of urban heat island impacts on the vegetation growing season length in a tropical city publication-title: Landsc. Urban Plann. – volume: 49 start-page: 263 year: 2014 ident: bib37 article-title: The application of a prediction model on land surface temperature using Artificial Neural Network and Scenario: focused on Changwon in South Korea publication-title: J. korea Planners Assoc. – volume: 13 start-page: 21 year: 2021 ident: bib8 article-title: Spatial and temporal analysis of surface urban heat island and thermal comfort using landsat satellite images between 1989 and 2019: a case study in tehran publication-title: Rem. Sens. – volume: 11 start-page: 225 year: 2020 end-page: 234 ident: bib45 article-title: Future land use land cover prediction with special emphasis on urbanization and wetlands publication-title: Remote Sens. Lett. – volume: 13 start-page: 1 year: 2020 end-page: 13 ident: bib4 article-title: Land cover change dynamics and their impacts on thermal environment of Dadri block, Gautam budh Nagar, India publication-title: J. Landsc. Ecol. Republic) – volume: 66 start-page: 247 year: 2011 end-page: 259 ident: bib24 article-title: Support vector machines in remote sensing: a review publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 11 start-page: 5492 year: 2019 ident: bib35 article-title: Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region publication-title: Sustainability – start-page: 621 year: 2019 end-page: 651 ident: bib20 article-title: Land use/land cover change detection and urban sprawl analysis publication-title: Spat. Model. GIS R Earth Environ. Sci. – volume: 4 year: 2021 ident: bib7 article-title: Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area publication-title: Environ. Challenges – volume: 7 start-page: 403 year: 2017 end-page: 406 ident: bib13 article-title: A global economic assessment of city policies to reduce climate change impacts publication-title: Nat. Clim. Change – volume: 117 start-page: 57 year: 2012 end-page: 71 ident: bib31 article-title: Enhancing temporal resolution of satellite imagery for public health studies: a case study of West Nile Virus outbreak in Los Angeles in 2007 publication-title: Remote Sens. Environ. – volume: 8 start-page: 206 year: 2019 end-page: 224 ident: bib53 article-title: Classification of cities in Bangladesh based on remote sensing derived spatial characteristics publication-title: J. Urban Manag. – volume: vol. 3 year: 2011 ident: bib27 publication-title: Bangladesh Population and Housing Census 2011 – volume: 135 year: 2021 ident: bib12 article-title: Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities publication-title: Appl. Geogr. – volume: 136 start-page: 279 year: 2018 end-page: 292 ident: bib47 article-title: Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil publication-title: Build. Environ. – volume: 7 start-page: 1 year: 2019 end-page: 20 ident: bib10 article-title: Land-use/land-cover changes and their impact on surface urban heat islands: case study of Kandy City, Sri Lanka publication-title: Climate – volume: 96 start-page: 108 year: 2010 end-page: 122 ident: bib32 article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis publication-title: Landsc. Urban Plann. – volume: 5 year: 2021 ident: bib2 article-title: Evaluating the impact of climate change on urban environment using geospatial technologies in the planning area of Bilaspur, India publication-title: Environ. Challenges – volume: 98 start-page: 156 year: 2018 end-page: 165 ident: bib28 article-title: Analysis of impervious land-cover expansion using remote sensing and GIS: a case study of Sylhet sadar upazila publication-title: Appl. Geogr. – volume: 71 year: 2021 ident: bib18 article-title: Surface urban heat island intensity in five major cities of Bangladesh: patterns, drivers and trends publication-title: Sustain. Cities Soc. – volume: 4 year: 2021 ident: bib50 article-title: Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm publication-title: Environ. Challenges – volume: 51 start-page: 667 year: 2018 end-page: 678 ident: bib11 article-title: Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy publication-title: Eur. J. Remote Sens. – volume: 64 year: 2021 ident: bib9 article-title: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh publication-title: Sustain. Cities Soc. – volume: 13 start-page: 1 year: 2019 ident: bib3 article-title: Spatial–temporal landscape pattern change under rapid urbanization publication-title: J. Appl. Remote Sens. – volume: 19 start-page: 372 year: 2012 end-page: 398 ident: bib43 article-title: Principles and practice of scaled difference chi-square testing publication-title: Struct. Equ. Model. – volume: 3 year: 2017 ident: bib14 article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia publication-title: Sci. Adv. – volume: 76 start-page: 167 year: 2019 end-page: 178 ident: bib21 article-title: Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 457 start-page: 384 year: 2001 end-page: 401 ident: bib42 article-title: Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. – volume: 8 year: 2018 ident: bib46 article-title: Identification of urban heat islands &its relationship withVegetation cover: a case study of colombo & gampaha districts in Sri Lanka publication-title: J. Trop. For. Environ. – volume: 91 year: 2020 ident: bib33 article-title: Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques publication-title: Land Use Pol. – volume: 125 year: 2021 ident: bib1 article-title: Land use land cover change in Kashmir Himalaya: linking remote sensing with an indicator based DPSIR approach publication-title: Ecol. Indicat. – volume: 3 year: 2011 ident: bib30 article-title: Urban heat island analysis using the landsat TM data and ASTER Data: a case study in Hong Kong publication-title: Rem. Sens. – volume: 245 start-page: 348 year: 2019 end-page: 357 ident: bib34 article-title: Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region publication-title: J. Environ. Manag. – volume: 4 year: 2021 ident: bib19 article-title: Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: a remote sensing and statistical approach publication-title: Environ. Challenges – volume: 182 year: 2020 ident: bib15 article-title: Urban-rural moisture contrast: regulator of the urban heat island and heatwaves' synergy over a mediterranean city publication-title: Environ. Res. – volume: 12 start-page: 1135 year: 2020 ident: bib22 article-title: Land-use land-cover classification by machine learning classifiers for satellite observations-A review publication-title: Rem. Sens. – volume: 4 year: 2021 ident: bib6 article-title: Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in Rajshahi City, Bangladesh publication-title: Environ. Challenges – volume: 30 start-page: 858 year: 2015 end-page: 881 ident: bib41 article-title: A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS publication-title: Geocarto Int. – volume: 13 start-page: 793 year: 2021 end-page: 816 ident: bib36 article-title: The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh publication-title: Appl. Geomatics – volume: 736 year: 2020 ident: bib16 article-title: Modulations of surface thermal environment and agricultural activity on intraseasonal variations of summer diurnal temperature range in the Yangtze River Delta of China publication-title: Sci. Total Environ. – volume: 3 start-page: 1 year: 2021 end-page: 22 ident: bib38 article-title: Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature publication-title: SN Appl. Sci. – volume: 208 start-page: 108573 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib52 article-title: Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108573 – volume: 75 start-page: 243 issue: 2 year: 2010 ident: 10.1016/j.buildenv.2022.109066_bib40 article-title: Ensuring possitiveness of the scaled chi-square test statistic publication-title: Psychometrika doi: 10.1007/s11336-009-9135-y – volume: 7 start-page: 1 issue: 8 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib10 article-title: Land-use/land-cover changes and their impact on surface urban heat islands: case study of Kandy City, Sri Lanka publication-title: Climate doi: 10.3390/cli7080099 – volume: 5 issue: September year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib2 article-title: Evaluating the impact of climate change on urban environment using geospatial technologies in the planning area of Bilaspur, India publication-title: Environ. Challenges – volume: 30 start-page: 858 issue: 8 year: 2015 ident: 10.1016/j.buildenv.2022.109066_bib41 article-title: A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS publication-title: Geocarto Int. doi: 10.1080/10106049.2014.997308 – volume: 96 start-page: 108 issue: 2 year: 2010 ident: 10.1016/j.buildenv.2022.109066_bib32 article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2010.03.001 – volume: 117 start-page: 57 year: 2012 ident: 10.1016/j.buildenv.2022.109066_bib31 article-title: Enhancing temporal resolution of satellite imagery for public health studies: a case study of West Nile Virus outbreak in Los Angeles in 2007 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.023 – volume: 13 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib3 article-title: Spatial–temporal landscape pattern change under rapid urbanization publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.13.026516 – volume: 7 start-page: 403 issue: 6 year: 2017 ident: 10.1016/j.buildenv.2022.109066_bib13 article-title: A global economic assessment of city policies to reduce climate change impacts publication-title: Nat. Clim. Change doi: 10.1038/nclimate3301 – volume: 8 issue: 2 year: 2018 ident: 10.1016/j.buildenv.2022.109066_bib46 article-title: Identification of urban heat islands &its relationship withVegetation cover: a case study of colombo & gampaha districts in Sri Lanka publication-title: J. Trop. For. Environ. – volume: 13 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.buildenv.2022.109066_bib4 article-title: Land cover change dynamics and their impacts on thermal environment of Dadri block, Gautam budh Nagar, India publication-title: J. Landsc. Ecol. Republic) – volume: 457 start-page: 384 issue: 1–2 year: 2001 ident: 10.1016/j.buildenv.2022.109066_bib42 article-title: Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. doi: 10.1016/S0168-9002(00)00756-7 – volume: 12 start-page: 1135 issue: 7 year: 2020 ident: 10.1016/j.buildenv.2022.109066_bib22 article-title: Land-use land-cover classification by machine learning classifiers for satellite observations-A review publication-title: Rem. Sens. doi: 10.3390/rs12071135 – start-page: 621 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib20 article-title: Land use/land cover change detection and urban sprawl analysis publication-title: Spat. Model. GIS R Earth Environ. Sci. – volume: 51 start-page: 667 issue: 1 year: 2018 ident: 10.1016/j.buildenv.2022.109066_bib11 article-title: Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1474494 – volume: 11 start-page: 5492 issue: 19 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib35 article-title: Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region publication-title: Sustainability doi: 10.3390/su11195492 – volume: 11 start-page: 225 issue: 3 year: 2020 ident: 10.1016/j.buildenv.2022.109066_bib45 article-title: Future land use land cover prediction with special emphasis on urbanization and wetlands publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2019.1704304 – volume: 3 year: 2011 ident: 10.1016/j.buildenv.2022.109066_bib30 article-title: Urban heat island analysis using the landsat TM data and ASTER Data: a case study in Hong Kong publication-title: Rem. Sens. doi: 10.3390/rs3071535 – volume: 4 issue: April year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib7 article-title: Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area publication-title: Environ. Challenges – volume: 3 issue: 8 year: 2017 ident: 10.1016/j.buildenv.2022.109066_bib14 article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia publication-title: Sci. Adv. doi: 10.1126/sciadv.1603322 – volume: 11 start-page: 801 issue: 7 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib49 article-title: Spatiotemporal patterns of urban land use change in typical cities in the greater mekong subregion (GMS) publication-title: Rem. Sens. doi: 10.3390/rs11070801 – volume: 4 issue: May year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib48 article-title: Geospatial modelling of changes in land use/land cover dynamics using Multi-layer perception Markov chain model in Rajshahi City, Bangladesh publication-title: Environ. Challenges – volume: 135 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib12 article-title: Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2021.102533 – volume: 13 start-page: 21 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib8 article-title: Spatial and temporal analysis of surface urban heat island and thermal comfort using landsat satellite images between 1989 and 2019: a case study in tehran publication-title: Rem. Sens. doi: 10.3390/rs13214469 – volume: 4 issue: June year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib50 article-title: Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm publication-title: Environ. Challenges – volume: 8 start-page: 206 issue: 2 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib53 article-title: Classification of cities in Bangladesh based on remote sensing derived spatial characteristics publication-title: J. Urban Manag. doi: 10.1016/j.jum.2018.12.001 – volume: 98 start-page: 156 issue: June year: 2018 ident: 10.1016/j.buildenv.2022.109066_bib28 article-title: Analysis of impervious land-cover expansion using remote sensing and GIS: a case study of Sylhet sadar upazila publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2018.07.012 – volume: 66 start-page: 247 issue: 3 year: 2011 ident: 10.1016/j.buildenv.2022.109066_bib24 article-title: Support vector machines in remote sensing: a review publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 64 issue: September 2020 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib9 article-title: Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh publication-title: Sustain. Cities Soc. – volume: 49 start-page: 263 issue: 1 year: 2014 ident: 10.1016/j.buildenv.2022.109066_bib37 article-title: The application of a prediction model on land surface temperature using Artificial Neural Network and Scenario: focused on Changwon in South Korea publication-title: J. korea Planners Assoc. doi: 10.17208/jkpa.2014.02.49.1.263 – volume: 5 start-page: 50 issue: 1 year: 2014 ident: 10.1016/j.buildenv.2022.109066_bib5 article-title: Impact of urbanization on land use/land covers change using Geo-spatial techniques publication-title: Int. J. Geomatics Geosci. – volume: 182 year: 2020 ident: 10.1016/j.buildenv.2022.109066_bib15 article-title: Urban-rural moisture contrast: regulator of the urban heat island and heatwaves' synergy over a mediterranean city publication-title: Environ. Res. doi: 10.1016/j.envres.2019.109102 – volume: 4 issue: April year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib19 article-title: Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: a remote sensing and statistical approach publication-title: Environ. Challenges – volume: 13 start-page: 793 issue: 4 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib36 article-title: The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh publication-title: Appl. Geomatics doi: 10.1007/s12518-021-00390-3 – volume: 130 start-page: 277 year: 2017 ident: 10.1016/j.buildenv.2022.109066_bib23 article-title: A review of supervised object-based land-cover image classification publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.001 – volume: 125 issue: August 2020 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib1 article-title: Land use land cover change in Kashmir Himalaya: linking remote sensing with an indicator based DPSIR approach publication-title: Ecol. Indicat. – volume: 3 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib38 article-title: Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature publication-title: SN Appl. Sci. doi: 10.1007/s42452-021-04351-8 – volume: 245 start-page: 348 issue: February year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib34 article-title: Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.05.063 – volume: 136 start-page: 279 year: 2018 ident: 10.1016/j.buildenv.2022.109066_bib47 article-title: Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.03.041 – volume: 206 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib17 article-title: Evidence of urban heat island impacts on the vegetation growing season length in a tropical city publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2020.103989 – volume: 76 start-page: 167 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib21 article-title: Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 71 issue: April year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib18 article-title: Surface urban heat island intensity in five major cities of Bangladesh: patterns, drivers and trends publication-title: Sustain. Cities Soc. – volume: 46 year: 2019 ident: 10.1016/j.buildenv.2022.109066_bib25 article-title: The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101432 – volume: vol. 3 year: 2011 ident: 10.1016/j.buildenv.2022.109066_bib27 – volume: 206 year: 2020 ident: 10.1016/j.buildenv.2022.109066_bib39 article-title: Modeling diurnal land surface temperature on a local scale of an arid environment using artificial neural network (ANN) and time series of landsat-8 derived spectral indexes publication-title: J. Atmos. Sol. Terr. Phys. doi: 10.1016/j.jastp.2020.105328 – volume: 19 start-page: 372 issue: 3 year: 2012 ident: 10.1016/j.buildenv.2022.109066_bib43 article-title: Principles and practice of scaled difference chi-square testing publication-title: Struct. Equ. Model. doi: 10.1080/10705511.2012.687671 – volume: 4 issue: March year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib6 article-title: Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in Rajshahi City, Bangladesh publication-title: Environ. Challenges – volume: 4 year: 2021 ident: 10.1016/j.buildenv.2022.109066_bib51 article-title: Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh publication-title: Environmental Challenges doi: 10.1016/j.envc.2021.100084 – volume: 736 year: 2020 ident: 10.1016/j.buildenv.2022.109066_bib16 article-title: Modulations of surface thermal environment and agricultural activity on intraseasonal variations of summer diurnal temperature range in the Yangtze River Delta of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139445 – volume: 91 year: 2020 ident: 10.1016/j.buildenv.2022.109066_bib33 article-title: Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques publication-title: Land Use Pol. doi: 10.1016/j.landusepol.2019.104414 |
| SSID | ssj0016934 |
| Score | 2.6187708 |
| Snippet | Changes in land use/land cover (LULC) and land surface temperatures (LST) contribute significantly to the formation and intensity of urban heat islands (UHI)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109066 |
| SubjectTerms | Algorithms Artificial neural networks Cellular automata Gardening Impact prediction Land cover Land cover change Land surface temperature Land use Landsat Learning algorithms Local government Machine learning Machine learning algorithms Neural networks Prediction Remote sensing Sustainable development Thermal comfort Urban areas Urban development Urban heat island Urban heat islands Urban planning |
| Title | Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms |
| URI | https://dx.doi.org/10.1016/j.buildenv.2022.109066 https://www.proquest.com/docview/2686217327 |
| Volume | 217 |
| WOSCitedRecordID | wos000793772400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE9RKGgPiEu0rbOOvetjhBLxKKFCKYq4rNbrdZvKOCGPqhz5a_wyZl9OqAKFAxfLsncTx_NldnZmvhmEXsCWq5RgtxOW6oR0YQ0kXHcp0bSIKEzivChtswk2HPLxODtutX4ELsxFxeqaX15ms_8qargGwjbU2X8Qd_OhcAHOQehwBLHD8a8Efzw3sZdloEE5GqRN2DBJjO2V6aQ4qBydDX6cp_7aqIFxGFrP4GqeSxtEALVdmRG_FHVeWf_CF5uGqUPfidO2rE6n88nyzNc_D5Fi33fbRik2aHUN0qr2O1laUffyYuV6IDmnj3TBqPeTag3hgZwsZLUx-oz0miSRj4b17Ty6n-HeN8MPmHhvrfdswKa4ycBy7raGcvNpQynGaURgB-2UonZKm7OYpNxlegatTh0l1OvlztbVwjkuzg9y8ybgDRyYpzAFtqJ0S3nu4QcxODk6EqP-ePRy9pWYzmUmwu_buNxAu5QlGWjW3d6b_vhtE8tKs9gXMXNPvsFT3_7VvzORrhgL1gIa3UV3_NYF9xzk7qGWru-j2xsFLR-g72vwYUAP9uDD0xIbxGEA36E9sdDDHnp4WuMAPWyhhz308BXoYQs97KGHA_TwGnoP0cmgP3r1mvgmH0RRFi0Jy5MC1EQKK02iKVVFXCjV1ZrxJM9UpFLWUVmsSqlSnSuWqLQEAyrTJYyWsqTxI7RTT2v9GOEiz7pZUVBecNnlpjVqqqK4TBVNaA779j2UhPcqlK-AbxqxVCKkOp6LIA9h5CGcPPbQYTNv5mrAXDsjC2IT3pJ1FqoA6F07dz_IWXi1shDUELk6LKbsyZ9vP0W31n-lfbSznK_0M3RTXSwni_lzD82fgoPQYg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+impacts+of+land+use%2Fland+cover+changes+on+seasonal+urban+thermal+characteristics+using+machine+learning+algorithms&rft.jtitle=Building+and+environment&rft.au=Al+Kafy%2C+Abdulla&rft.au=Saha%2C+Milan&rft.au=Faisal%2C+Abdullah-Al&rft.au=Rahaman%2C+Zullyadini+A&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=217&rft.spage=1&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109066&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |