Discovering interpretable structure in longitudinal predictors via coefficient trees

We consider the regression setting in which the response variable is not longitudinal (i.e., it is observed once for each case), but it is assumed to depend functionally on a set of predictors that are observed longitudinally, which is a specific form of functional predictors. In this situation, we...

Full description

Saved in:
Bibliographic Details
Published in:Advances in data analysis and classification Vol. 18; no. 4; pp. 911 - 951
Main Authors: Sürer, Özge, Apley, Daniel W., Malthouse, Edward C.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects:
ISSN:1862-5347, 1862-5355
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the regression setting in which the response variable is not longitudinal (i.e., it is observed once for each case), but it is assumed to depend functionally on a set of predictors that are observed longitudinally, which is a specific form of functional predictors. In this situation, we often expect that the same predictor observed at nearby time points are more likely to be associated with the response in the same way. In such situations, we can exploit those aspects and discover groups of predictors that share the same (or similar) coefficient according to their temporal proximity. We propose a new algorithm called coefficient tree regression for data in which the non-longitudinal response depends on longitudinal predictors to efficiently discover the underlying temporal characteristics of the data. The approach results in a simple and highly interpretable tree structure from which the hierarchical relationships between groups of predictors that affect the response in a similar manner based on their temporal proximity can be observed, and we demonstrate with a real example that it can provide a clear and concise interpretation of the data. In numerical comparisons over a variety of examples, we show that our approach achieves substantially better predictive accuracy than existing competitors, most likely due to its inherent form of dimensionality reduction that is automatically discovered when fitting the model, in addition to having interpretability advantages and lower computational expense.
AbstractList We consider the regression setting in which the response variable is not longitudinal (i.e., it is observed once for each case), but it is assumed to depend functionally on a set of predictors that are observed longitudinally, which is a specific form of functional predictors. In this situation, we often expect that the same predictor observed at nearby time points are more likely to be associated with the response in the same way. In such situations, we can exploit those aspects and discover groups of predictors that share the same (or similar) coefficient according to their temporal proximity. We propose a new algorithm called coefficient tree regression for data in which the non-longitudinal response depends on longitudinal predictors to efficiently discover the underlying temporal characteristics of the data. The approach results in a simple and highly interpretable tree structure from which the hierarchical relationships between groups of predictors that affect the response in a similar manner based on their temporal proximity can be observed, and we demonstrate with a real example that it can provide a clear and concise interpretation of the data. In numerical comparisons over a variety of examples, we show that our approach achieves substantially better predictive accuracy than existing competitors, most likely due to its inherent form of dimensionality reduction that is automatically discovered when fitting the model, in addition to having interpretability advantages and lower computational expense.
Author Malthouse, Edward C.
Apley, Daniel W.
Sürer, Özge
Author_xml – sequence: 1
  givenname: Özge
  orcidid: 0000-0003-4854-9759
  surname: Sürer
  fullname: Sürer, Özge
  email: surero@miamioh.edu
  organization: Department of Information Systems and Analytics, Miami University
– sequence: 2
  givenname: Daniel W.
  surname: Apley
  fullname: Apley, Daniel W.
  organization: Industrial Engineering and Management Sciences, Northwestern University
– sequence: 3
  givenname: Edward C.
  surname: Malthouse
  fullname: Malthouse, Edward C.
  organization: Industrial Engineering and Management Sciences, Northwestern University
BookMark eNp9kE9LAzEUxINUsFa_gKcFz6tJXrJpj1L_QsFLPYds9qWkrJs1yRb89m5d0ZunNzxmhuF3TmZd6JCQK0ZvGKXqNjFWgSgph5JSWfGyOiFzthyFBClnv1qoM3Ke0p7Sigoq52R775MNB4y-2xW-yxj7iNnULRYpx8HmIeL4L9rQ7XweGt-Zthgtjbc5xFQcvClsQOe89djlIkfEdEFOnWkTXv7cBXl7fNiun8vN69PL-m5TWq5oLhVfWSEUohBiZbExzIJzNTeAXNZGOFMbqNkSAKxbSaGoAgRbIbdgoGGwINdTbx_Dx4Ap630Y4rgwaeBSAEixrEYXn1w2hpQiOt1H_27ip2ZUH-npiZ4e6elvevoYgimU-iMajH_V_6S-AA3ydi4
Cites_doi 10.1080/21670811.2021.1948347
10.1145/568518.568520
10.1109/TPAMI.2013.72
10.1007/s10618-010-0179-5
10.1007/s10994-022-06179-8
10.1145/882082.882086
10.1007/3-540-44794-6_10
10.1145/3178876.3186162
10.4310/SII.2010.v3.n4.a13
10.1145/1557019.1557122
10.1007/s10618-014-0349-y
10.1145/2020408.2020587
10.1007/s11747-019-00710-5
10.1093/bioinformatics/btm125
10.1061/(ASCE)CO.1943-7862.0001047
10.1038/s42256-019-0048-x
10.1080/01621459.2014.892882
10.1016/j.eswa.2022.117423
10.4310/SII.2009.v2.n3.a10
10.1002/cem.2849
10.1007/s10994-021-06091-7
10.1111/biom.12300
10.1111/j.1467-9868.2005.00532.x
10.1002/sam.11569
10.24432/C5XS4Q
10.1016/j.dss.2019.113141
10.18637/jss.v033.i01
10.1016/j.jmva.2004.02.012
10.1016/j.cor.2023.106152
10.1007/3-540-70659-3_2
10.1111/j.1467-9868.2005.00490.x
10.1214/07-AOS584
10.1007/s10618-015-0425-y
10.1109/ICDM.2006.49
10.1145/3331184.3331247
10.1093/biomet/asp020
10.1002/sam.11534
10.32614/CRAN.package.TSrepr
10.1146/annurev-statistics-041715-033624
10.1111/j.1541-0420.2007.00843.x
10.1007/s10618-007-0064-z
10.24432/C58C86
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11634-023-00562-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Law
Computer Science
Mathematics
Statistics
Physics
EISSN 1862-5355
EndPage 951
ExternalDocumentID 10_1007_s11634_023_00562_6
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
K7-
PHGZM
PHGZT
PQGLB
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-729c447ee4449ceda1c3ffb2a3e25ba4faba3b18333cf9547073e3c6e2c3a3d13
IEDL.DBID K7-
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084568400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-5347
IngestDate Tue Dec 02 10:01:23 EST 2025
Sat Nov 29 02:25:08 EST 2025
Fri Feb 21 02:39:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Sequential data
62J05 Linear regression; mixed models
Longitudinal predictors
Functional data
Interpretability
62-08 Computational methods for problems pertaining to statistics
62H99 None of the above, but in this section
Group structure
Pattern discovery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-729c447ee4449ceda1c3ffb2a3e25ba4faba3b18333cf9547073e3c6e2c3a3d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4854-9759
PQID 3254335486
PQPubID 2045898
PageCount 41
ParticipantIDs proquest_journals_3254335486
crossref_primary_10_1007_s11634_023_00562_6
springer_journals_10_1007_s11634_023_00562_6
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Theory, Methods, and Applications in Data Science
PublicationTitle Advances in data analysis and classification
PublicationTitleAbbrev Adv Data Anal Classif
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BaydoganMGRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Discov2015292400422331246610.1007/s10618-014-0349-y
SürerOApleyDWMalthouseECCoefficient tree regression for generalized linear modelsStat Anal Data Min ASA Data Sci J202114407429432568510.1002/sam.11534
Team RC (2017) R: A language and environment for statistical computing. R foundation for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ Stat Softw201033112210.18637/jss.v033.i01
BaydoganMGRungerGTime series representation and similarity based on local autopatternsData Min Knowl Discov2016302476509345820210.1007/s10618-015-0425-y
Balakrishnan S, Madigan D (2006) Decision trees for functional variables. In: Sixth international conference on data mining (ICDM’06), pp 798–802
DettlingMBühlmannPFinding predictive gene groups from microarray dataJ Multivar Anal2004901106131206493810.1016/j.jmva.2004.02.012
ZhouNZhuJGroup variable selection via a hierarchical lasso and its oracle propertyStat Interface20103557574275475210.4310/SII.2010.v3.n4.a13
BlanqueroRCarrizosaEMolero-RíoCRomero MoralesDOn optimal regression trees to detect critical intervals for multivariate functional dataComput Oper Res2023152453760810.1016/j.cor.2023.106152
RaiAExplainable AI: from black box to glass boxJ Acad Mark Sci202048113714110.1007/s11747-019-00710-5
Sürer O, Apley DW, Malthouse EC (2021) Coefficient tree regression: fast, accurate and interpretable predictive modeling. Mach Learn 1–38
Pew Research Center for Journalism and Media: Newspapers Fact Sheet (July 9, 2019)
RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNat Mach Intell2018120621510.1038/s42256-019-0048-x
Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery. DMKD ’03. Association for Computing Machinery, New York, NY, USA, pp 2–11
Sterling G (2019) Almost 70% of digital ad spending going to google, facebook, amazon, says analyst firm. Marketingland.com. Retrieved from https://marketingland.com/almost-70-of-digital-ad-spending-going-to-google-facebook-amazon-says-analyst-firm-262565
Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’11. Association for Computing Machinery, New York, NY, USA, pp 1154–1162
Sürer O, Apley DW, Malthouse EC longitudinal coefficient tree regression R package. https://github.com/ozgesurer/LongCTR. Accessed 11 sep 2022
Laurinec P (2018) TSrepr R package: time series representations. J Open Source Softw
Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’09. Association for Computing Machinery, New York, NY, USA, pp 947–956
BondellHDReichBJSimultaneous regression shrinkage, variable selection and clustering of predictors with OSCARBiometrics2008641115123242282510.1111/j.1541-0420.2007.00843.x
RafieiMHAdeliHA novel machine learning model for estimation of sale prices of real estate unitsJ Constr Eng Manag201614220401506610.1061/(ASCE)CO.1943-7862.0001047
HuangJMaSXieHZhangC-HA group bridge approach for variable selectionBiometrika2009962339355250714710.1093/biomet/asp020
Dietterich TG (2002) Machine learning for sequential data: a review. In: Structural, syntactic, and statistical pattern recognition, pp 15–30
YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discov2011221149182276455510.1007/s10618-010-0179-5
Kim SJ, Zhou Y, Malthouse ECa (2021) In search for an audience-supported business model for local newspapers: jindings from clickstream and subscriber data. Digit Journal
Geurts P (2001) Pattern extraction for time series classification. In: Principles of data mining and knowledge discovery. Springer, Berlin, Heidelberg, pp 115–127
BertsimasDPaskovAWorld-class interpretable pokerMach Learn2022111830633083446013710.1007/s10994-022-06179-8
ZhaoPRochaGYuBThe composite absolute penalties family for grouped and hierarchical variable selectionAnn Stat2009376A34683497254956610.1214/07-AOS584
Breheny PHJPenalized methods for bi-level variable selectionStat Interface200923369380254009410.4310/SII.2009.v2.n3.a10
ChakrabartiKKeoghEMehrotraSPazzaniMLocally adaptive dimensionality reduction for indexing large time series databasesACM Trans Database Syst (TODS)200227218822810.1145/568518.568520
Miroglio B, Zeber D, Kaye J, Weiss R (2018) The effect of ad blocking on user engagement with the web. In: Proceedings of the 2018 World Wide Web Conference. WWW ’18. World Wide Web Conferences, Geneva, Switzerland, pp 813–821
Therneau T, Atkinson B (2019) Rpart: recursive partitioning and regression trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart
KeZTFanJWuYHomogeneity pursuitJ Am Stat Assoc2015110509175194333849510.1080/01621459.2014.892882
Sürer O, Apley DW, Malthouse EC (2021) Coefficient tree regression R package. https://github.com/ozgesurer/CTR.git. Accessed 10 June 2023
Lu H, Zhang M, Ma W, Wang C, xia F, Liu Y, Lin L, Ma S (2019) Effects of user negative experience in mobile news streaming. In: Proceedings of the 42Nd international ACM SIGIR conference on research and development in information retrieval. SIGIR’19. ACM, New York, NY, USA, pp 705–714
Eiras-FrancoCGuijarro-BerdiñasBAlonso-BetanzosABahamondeAA scalable decision-tree-based method to explain interactions in dyadic dataDecis Support Syst201912710.1016/j.dss.2019.113141
BelliEVantiniSMeasure inducing classification and regression trees for functional dataStat Anal Data Min ASA Data Sci J2022155553569450190810.1002/sam.11569
MöllerATutzGGertheissJRandom forests for functional covariatesJ Chemom2016301271572510.1002/cem.2849
Tan J (2017) Sales Transactions Dataset Weekly. UCI Machine Learning Repository. https://doi.org/10.24432/C5XS4Q
LalmasMO’BrienHYom-TovEMeasuring user engagementSynth Lect Inf Concepts Retr Serv2014641132
TibshiraniRSaundersMRossetSZhuJKnightKSparsity and smoothness via the fused lassoJ R Stat Soc Ser B (Stat Methodol)200567191108213664110.1111/j.1467-9868.2005.00490.x
WangLChenGLiHGroup SCAD regression analysis for microarray time course gene expression dataBioinformatics200723121486149410.1093/bioinformatics/btm125
WangJ-LChiouJ-MMüllerH-GFunctional data analysisAnnu Rev Stat Appl20163125729510.1146/annurev-statistics-041715-033624
LinJKeoghEWeiLLonardiSExperiencing sax: a novel symbolic representation of time seriesData Min Knowl Discov2007152107144240978310.1007/s10618-007-0064-z
CarrizosaEMortensenLHRomero MoralesDSillero-DenamielMRThe tree based linear regression model for hierarchical categorical variablesExpert Syst Appl202220310.1016/j.eswa.2022.117423
Trindade A (2015) Electricity load diagrams 2011–2014. UCI Machine Learning Repository. https://doi.org/10.24432/C58C86
AbernathyPMThe expanding news desert2018Chapel Hill, NCUniversity of North Carolina Press
BrehenyPThe group exponential lasso for bi-level variable selectionBiometrics2015713731740340260910.1111/biom.12300
BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72
YuanMLinYModel selection and estimation in regression with grouped variablesJ R Stat Soc Ser B (Stat Methodol)20066814967221257410.1111/j.1467-9868.2005.00532.x
GoodmanBFlaxmanSEuropean Union regulations on algorithmic decision-making and a right to explanationAI Mag20173835057
562_CR31
562_CR30
562_CR35
E Belli (562_CR6) 2022; 15
P Zhao (562_CR50) 2009; 37
J Huang (562_CR20) 2009; 96
M Lalmas (562_CR23) 2014; 6
R Tibshirani (562_CR43) 2005; 67
M Dettling (562_CR14) 2004; 90
P Breheny (562_CR11) 2015; 71
N Zhou (562_CR51) 2010; 3
562_CR28
562_CR27
562_CR26
C Rudin (562_CR34) 2018; 1
562_CR42
562_CR41
K Chakrabarti (562_CR13) 2002; 27
562_CR40
MG Baydogan (562_CR4) 2016; 30
HD Bondell (562_CR9) 2008; 64
B Goodman (562_CR19) 2017; 38
MH Rafiei (562_CR32) 2016; 142
562_CR44
HJ Breheny P (562_CR10) 2009; 2
L Ye (562_CR47) 2011; 22
562_CR2
ZT Ke (562_CR21) 2015; 110
J-L Wang (562_CR46) 2016; 3
MG Baydogan (562_CR5) 2013; 35
562_CR39
562_CR38
J Lin (562_CR25) 2007; 15
562_CR37
L Wang (562_CR45) 2007; 23
M Yuan (562_CR49) 2006; 68
R Blanquero (562_CR8) 2023; 152
E Carrizosa (562_CR12) 2022; 203
D Bertsimas (562_CR7) 2022; 111
A Rai (562_CR33) 2020; 48
A Möller (562_CR29) 2016; 30
O Sürer (562_CR36) 2021; 14
562_CR48
C Eiras-Franco (562_CR16) 2019; 127
562_CR24
562_CR22
J Friedman (562_CR17) 2010; 33
PM Abernathy (562_CR1) 2018
562_CR15
MG Baydogan (562_CR3) 2015; 29
562_CR18
References_xml – reference: AbernathyPMThe expanding news desert2018Chapel Hill, NCUniversity of North Carolina Press
– reference: Geurts P (2001) Pattern extraction for time series classification. In: Principles of data mining and knowledge discovery. Springer, Berlin, Heidelberg, pp 115–127
– reference: RaiAExplainable AI: from black box to glass boxJ Acad Mark Sci202048113714110.1007/s11747-019-00710-5
– reference: ZhaoPRochaGYuBThe composite absolute penalties family for grouped and hierarchical variable selectionAnn Stat2009376A34683497254956610.1214/07-AOS584
– reference: WangJ-LChiouJ-MMüllerH-GFunctional data analysisAnnu Rev Stat Appl20163125729510.1146/annurev-statistics-041715-033624
– reference: BelliEVantiniSMeasure inducing classification and regression trees for functional dataStat Anal Data Min ASA Data Sci J2022155553569450190810.1002/sam.11569
– reference: KeZTFanJWuYHomogeneity pursuitJ Am Stat Assoc2015110509175194333849510.1080/01621459.2014.892882
– reference: LinJKeoghEWeiLLonardiSExperiencing sax: a novel symbolic representation of time seriesData Min Knowl Discov2007152107144240978310.1007/s10618-007-0064-z
– reference: RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNat Mach Intell2018120621510.1038/s42256-019-0048-x
– reference: Team RC (2017) R: A language and environment for statistical computing. R foundation for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
– reference: Miroglio B, Zeber D, Kaye J, Weiss R (2018) The effect of ad blocking on user engagement with the web. In: Proceedings of the 2018 World Wide Web Conference. WWW ’18. World Wide Web Conferences, Geneva, Switzerland, pp 813–821
– reference: GoodmanBFlaxmanSEuropean Union regulations on algorithmic decision-making and a right to explanationAI Mag20173835057
– reference: Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’11. Association for Computing Machinery, New York, NY, USA, pp 1154–1162
– reference: BaydoganMGRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Discov2015292400422331246610.1007/s10618-014-0349-y
– reference: ChakrabartiKKeoghEMehrotraSPazzaniMLocally adaptive dimensionality reduction for indexing large time series databasesACM Trans Database Syst (TODS)200227218822810.1145/568518.568520
– reference: HuangJMaSXieHZhangC-HA group bridge approach for variable selectionBiometrika2009962339355250714710.1093/biomet/asp020
– reference: Sürer O, Apley DW, Malthouse EC (2021) Coefficient tree regression R package. https://github.com/ozgesurer/CTR.git. Accessed 10 June 2023
– reference: BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72
– reference: TibshiraniRSaundersMRossetSZhuJKnightKSparsity and smoothness via the fused lassoJ R Stat Soc Ser B (Stat Methodol)200567191108213664110.1111/j.1467-9868.2005.00490.x
– reference: Therneau T, Atkinson B (2019) Rpart: recursive partitioning and regression trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart
– reference: Eiras-FrancoCGuijarro-BerdiñasBAlonso-BetanzosABahamondeAA scalable decision-tree-based method to explain interactions in dyadic dataDecis Support Syst201912710.1016/j.dss.2019.113141
– reference: YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discov2011221149182276455510.1007/s10618-010-0179-5
– reference: Trindade A (2015) Electricity load diagrams 2011–2014. UCI Machine Learning Repository. https://doi.org/10.24432/C58C86
– reference: Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’09. Association for Computing Machinery, New York, NY, USA, pp 947–956
– reference: DettlingMBühlmannPFinding predictive gene groups from microarray dataJ Multivar Anal2004901106131206493810.1016/j.jmva.2004.02.012
– reference: ZhouNZhuJGroup variable selection via a hierarchical lasso and its oracle propertyStat Interface20103557574275475210.4310/SII.2010.v3.n4.a13
– reference: BrehenyPThe group exponential lasso for bi-level variable selectionBiometrics2015713731740340260910.1111/biom.12300
– reference: SürerOApleyDWMalthouseECCoefficient tree regression for generalized linear modelsStat Anal Data Min ASA Data Sci J202114407429432568510.1002/sam.11534
– reference: Dietterich TG (2002) Machine learning for sequential data: a review. In: Structural, syntactic, and statistical pattern recognition, pp 15–30
– reference: Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery. DMKD ’03. Association for Computing Machinery, New York, NY, USA, pp 2–11
– reference: Sürer O, Apley DW, Malthouse EC longitudinal coefficient tree regression R package. https://github.com/ozgesurer/LongCTR. Accessed 11 sep 2022
– reference: BondellHDReichBJSimultaneous regression shrinkage, variable selection and clustering of predictors with OSCARBiometrics2008641115123242282510.1111/j.1541-0420.2007.00843.x
– reference: Kim SJ, Zhou Y, Malthouse ECa (2021) In search for an audience-supported business model for local newspapers: jindings from clickstream and subscriber data. Digit Journal
– reference: Lu H, Zhang M, Ma W, Wang C, xia F, Liu Y, Lin L, Ma S (2019) Effects of user negative experience in mobile news streaming. In: Proceedings of the 42Nd international ACM SIGIR conference on research and development in information retrieval. SIGIR’19. ACM, New York, NY, USA, pp 705–714
– reference: BaydoganMGRungerGTime series representation and similarity based on local autopatternsData Min Knowl Discov2016302476509345820210.1007/s10618-015-0425-y
– reference: Laurinec P (2018) TSrepr R package: time series representations. J Open Source Softw
– reference: CarrizosaEMortensenLHRomero MoralesDSillero-DenamielMRThe tree based linear regression model for hierarchical categorical variablesExpert Syst Appl202220310.1016/j.eswa.2022.117423
– reference: YuanMLinYModel selection and estimation in regression with grouped variablesJ R Stat Soc Ser B (Stat Methodol)20066814967221257410.1111/j.1467-9868.2005.00532.x
– reference: BertsimasDPaskovAWorld-class interpretable pokerMach Learn2022111830633083446013710.1007/s10994-022-06179-8
– reference: WangLChenGLiHGroup SCAD regression analysis for microarray time course gene expression dataBioinformatics200723121486149410.1093/bioinformatics/btm125
– reference: Pew Research Center for Journalism and Media: Newspapers Fact Sheet (July 9, 2019)
– reference: BlanqueroRCarrizosaEMolero-RíoCRomero MoralesDOn optimal regression trees to detect critical intervals for multivariate functional dataComput Oper Res2023152453760810.1016/j.cor.2023.106152
– reference: FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ Stat Softw201033112210.18637/jss.v033.i01
– reference: Sürer O, Apley DW, Malthouse EC (2021) Coefficient tree regression: fast, accurate and interpretable predictive modeling. Mach Learn 1–38
– reference: Breheny PHJPenalized methods for bi-level variable selectionStat Interface200923369380254009410.4310/SII.2009.v2.n3.a10
– reference: LalmasMO’BrienHYom-TovEMeasuring user engagementSynth Lect Inf Concepts Retr Serv2014641132
– reference: MöllerATutzGGertheissJRandom forests for functional covariatesJ Chemom2016301271572510.1002/cem.2849
– reference: RafieiMHAdeliHA novel machine learning model for estimation of sale prices of real estate unitsJ Constr Eng Manag201614220401506610.1061/(ASCE)CO.1943-7862.0001047
– reference: Balakrishnan S, Madigan D (2006) Decision trees for functional variables. In: Sixth international conference on data mining (ICDM’06), pp 798–802
– reference: Tan J (2017) Sales Transactions Dataset Weekly. UCI Machine Learning Repository. https://doi.org/10.24432/C5XS4Q
– reference: Sterling G (2019) Almost 70% of digital ad spending going to google, facebook, amazon, says analyst firm. Marketingland.com. Retrieved from https://marketingland.com/almost-70-of-digital-ad-spending-going-to-google-facebook-amazon-says-analyst-firm-262565
– ident: 562_CR22
  doi: 10.1080/21670811.2021.1948347
– volume: 27
  start-page: 188
  issue: 2
  year: 2002
  ident: 562_CR13
  publication-title: ACM Trans Database Syst (TODS)
  doi: 10.1145/568518.568520
– volume: 35
  start-page: 2796
  issue: 11
  year: 2013
  ident: 562_CR5
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.72
– volume: 22
  start-page: 149
  issue: 1
  year: 2011
  ident: 562_CR47
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-010-0179-5
– volume: 111
  start-page: 3063
  issue: 8
  year: 2022
  ident: 562_CR7
  publication-title: Mach Learn
  doi: 10.1007/s10994-022-06179-8
– ident: 562_CR37
– volume-title: The expanding news desert
  year: 2018
  ident: 562_CR1
– ident: 562_CR26
  doi: 10.1145/882082.882086
– ident: 562_CR18
  doi: 10.1007/3-540-44794-6_10
– ident: 562_CR28
  doi: 10.1145/3178876.3186162
– volume: 3
  start-page: 557
  year: 2010
  ident: 562_CR51
  publication-title: Stat Interface
  doi: 10.4310/SII.2010.v3.n4.a13
– ident: 562_CR48
  doi: 10.1145/1557019.1557122
– volume: 29
  start-page: 400
  issue: 2
  year: 2015
  ident: 562_CR3
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0349-y
– ident: 562_CR30
  doi: 10.1145/2020408.2020587
– volume: 48
  start-page: 137
  issue: 1
  year: 2020
  ident: 562_CR33
  publication-title: J Acad Mark Sci
  doi: 10.1007/s11747-019-00710-5
– volume: 23
  start-page: 1486
  issue: 12
  year: 2007
  ident: 562_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm125
– volume: 142
  start-page: 04015066
  issue: 2
  year: 2016
  ident: 562_CR32
  publication-title: J Constr Eng Manag
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– volume: 1
  start-page: 206
  year: 2018
  ident: 562_CR34
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– volume: 6
  start-page: 1
  issue: 4
  year: 2014
  ident: 562_CR23
  publication-title: Synth Lect Inf Concepts Retr Serv
– volume: 110
  start-page: 175
  issue: 509
  year: 2015
  ident: 562_CR21
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2014.892882
– volume: 203
  year: 2022
  ident: 562_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117423
– volume: 2
  start-page: 369
  issue: 3
  year: 2009
  ident: 562_CR10
  publication-title: Stat Interface
  doi: 10.4310/SII.2009.v2.n3.a10
– volume: 38
  start-page: 50
  issue: 3
  year: 2017
  ident: 562_CR19
  publication-title: AI Mag
– volume: 30
  start-page: 715
  issue: 12
  year: 2016
  ident: 562_CR29
  publication-title: J Chemom
  doi: 10.1002/cem.2849
– ident: 562_CR41
– ident: 562_CR38
  doi: 10.1007/s10994-021-06091-7
– volume: 71
  start-page: 731
  issue: 3
  year: 2015
  ident: 562_CR11
  publication-title: Biometrics
  doi: 10.1111/biom.12300
– ident: 562_CR35
– ident: 562_CR39
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  ident: 562_CR49
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 15
  start-page: 553
  issue: 5
  year: 2022
  ident: 562_CR6
  publication-title: Stat Anal Data Min ASA Data Sci J
  doi: 10.1002/sam.11569
– ident: 562_CR31
– ident: 562_CR40
  doi: 10.24432/C5XS4Q
– volume: 127
  year: 2019
  ident: 562_CR16
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2019.113141
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 562_CR17
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 90
  start-page: 106
  issue: 1
  year: 2004
  ident: 562_CR14
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2004.02.012
– volume: 152
  year: 2023
  ident: 562_CR8
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2023.106152
– ident: 562_CR15
  doi: 10.1007/3-540-70659-3_2
– ident: 562_CR42
– volume: 67
  start-page: 91
  issue: 1
  year: 2005
  ident: 562_CR43
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2005.00490.x
– volume: 37
  start-page: 3468
  issue: 6A
  year: 2009
  ident: 562_CR50
  publication-title: Ann Stat
  doi: 10.1214/07-AOS584
– volume: 30
  start-page: 476
  issue: 2
  year: 2016
  ident: 562_CR4
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-015-0425-y
– ident: 562_CR2
  doi: 10.1109/ICDM.2006.49
– ident: 562_CR27
  doi: 10.1145/3331184.3331247
– volume: 96
  start-page: 339
  issue: 2
  year: 2009
  ident: 562_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/asp020
– volume: 14
  start-page: 407
  year: 2021
  ident: 562_CR36
  publication-title: Stat Anal Data Min ASA Data Sci J
  doi: 10.1002/sam.11534
– ident: 562_CR24
  doi: 10.32614/CRAN.package.TSrepr
– volume: 3
  start-page: 257
  issue: 1
  year: 2016
  ident: 562_CR46
  publication-title: Annu Rev Stat Appl
  doi: 10.1146/annurev-statistics-041715-033624
– volume: 64
  start-page: 115
  issue: 1
  year: 2008
  ident: 562_CR9
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00843.x
– volume: 15
  start-page: 107
  issue: 2
  year: 2007
  ident: 562_CR25
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-007-0064-z
– ident: 562_CR44
  doi: 10.24432/C58C86
SSID ssj0060405
Score 2.3141158
Snippet We consider the regression setting in which the response variable is not longitudinal (i.e., it is observed once for each case), but it is assumed to depend...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 911
SubjectTerms Basketball
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Datasets
Dimensional analysis
Economics
Finance
Health Sciences
Households
Humanities
Insurance
Law
Management
Mathematics and Statistics
Medicine
Physics
Regression analysis
Regular Article
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
Time series
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60vurB6qr4qJKDNw3sbrLZ7VHU4sEW0Sq9LUk2C4XSStfWv-9kH10UPeg1L8LMZOYL8wK4QBHwNMJ-qkXIKVeRoMoTBn8paRQIZVxtVN5sIuz3o-Gw81gmhWVVtHvlksw1dZ3shtCBU7Qx1Nav9KlYhTU0d5F9jk_Pr5X-FSiWNnDRQ6xOA8bDMlXm5zO-mqMaY35zi-bWptv63z13YadEl-S6EIc9WDETB1pV5wZSPmQHtqp85MyB1Qf54cB2b1m_Fcc2e6XL3YGNPEbUDjYtMC3qOu_D4HaUaRv-iVcjo2XkohobUpSknc8MjpPx1DZEmie2-RbBJXis7e9DFiNJ9NTkBSzQ7hHrHM8O4KV7N7i5p2WHBqr90H23fXCR0aExnPOONon0NEtT5Utm_EBJnkolmUKtwZhOOwEPUaEYpoXxNZMs8dghNCbTiTkC4iZulCTaIKLBTwvuQtwjVao140kYJOIYLitGxW9FIY64LrlsSR4jyeOc5DGuble8jMtHmcXMJv4z_KLh9FXFu3r699NO_rb8FJo-Qp8i6KUNDaS6OYN1vUAezc5zYf0EcUPjdA
  priority: 102
  providerName: Springer Nature
Title Discovering interpretable structure in longitudinal predictors via coefficient trees
URI https://link.springer.com/article/10.1007/s11634-023-00562-6
https://www.proquest.com/docview/3254335486
Volume 18
WOSCitedRecordID wos001084568400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1862-5355
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0060405
  issn: 1862-5347
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1862-5355
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0060405
  issn: 1862-5347
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1862-5355
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0060405
  issn: 1862-5347
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1862-5355
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060405
  issn: 1862-5347
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZYCBN6JQKg9sYNHYjpNOiEcrJERVlYIqlih-RIpUNaVp-_s559EIJFhYPCSOZd1d7j7b5_sQugQTcBTAfqKExwmXviDSEQZWKZHvCmnaysiMbMLr9_3xuDMoNtzSIq2y9ImZo9aJsnvkN8ze2maAr8Xt7JNY1ih7ulpQaGyiukOpY-382SOlJxZgoDaF0QHUTlzGveLSTH51DoAIJxCxiK2GSYn4HpgqtPnjgDSLO729_854H-0WiBPf5SZygDbM9BDtvKzLtaZHaPQYp8rmcsIMcLxOQ5QTg_P6ssu5ged4klh2o6W2TFoYuug4I-vBqzjEKjFZNQoIYtiedKfH6K3XHT08kYJugSjqtReW1Ba05hnDOe8oo0NHsSiSNGSGujLkUShDJsEFMKaijss98A6GKWGoYiHTDjtBtWkyNacIt3Xb11oZgCewAoGvAMSEMlKKce25WjTQVSnrYJZX1Qiq-slWMwFoJsg0E0DvZingoPjD0qCSbgNdlyqqXv8-2tnfo52jbQq4Jc9YaaIaSNlcoC21WsTpvIXq993-YNjK7AzagfsB7fD1_Qs7Uds0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CurBt_h2D3rSxSa72bQHEbGKohYPFYqXmN2dQEBabVrFP-VvdDZpLAp68-A12SzJzjev7Ox8ALsEAc9Q2M-NCiWXuqa49hRSlpLUAqWxalDnZBNhs1lrt-u3Y_BenoVxZZWlTcwNte0a94_8ULhT24Lia3X89Mwda5TbXS0pNApYXOHbK6Vs2dFlg-S75_vnZ63TCz5kFeDGD6t9x91KLxciSinrBm3sGZEk2o8F-oGOZRLrWGhCuhAmqQcyJCVAYRT6RsTCeoLmHYcJKSlZIv25De5Ly69IIVzJpEdZAg-EDIeHdIqjehT4SE4ekrvumz5XXx3hKLr9tiGb-7nzuf-2QvMwO4yo2UmhAgswhp1FmLn5bEebLUGrkWbG1arSF7P0s8xSPyIr-ucOekjX2WPXsTcNrGMKYzTEpjkZEXtJY2a6mHfbICfN3E5-tgx3f_JZK1DpdDu4CqxqqzVrDVL4RRkWPUVBWqwTY4S0YWDVGuyXso2eiq4h0ag_tENCREiIciRENHqzFGg0tCBZNJLmGhyUkBjd_nm29d9n24Gpi9bNdXR92bzagGmfYrSiOmcTKrTiuAWT5qWfZr3tHNsMHv4aKh_qyzaG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4IKupBdNX4QO3Bmzaw2-4uHI1INAIhEQ23TV-bkBAgoPj3ne5D1OjBeG27Tbczbb_JzHwDcIEq4CqE_VQFIadc1gMq3cCglRLX_UCamjIyKTYRdrv1waDR-5TFn0S75y7JNKfBsjSNX6pTHVeXiW8IIzjF94ZaLkuPBgVY5bZokLXXH5_zuzhAFbVBjC7iduozHmZpMz_P8fVpWuLNby7S5OVplf-_5h3YzlAnuU7VZBdWzNiBcl7RgWQH3IGNPE957kChLd4c2Op88LpiW6mTueIdWE9iR23jpgWsKd_zHvSbw7myYaG4TDL8iGiUI0NSqtrXmcF2MprYQkmv2hblIjgEp7V1f8hiKIiamITYAv-NWKf5fB-eWrf9mzuaVW6gygtrL7Y-LipAaAznvKGMFq5icSw9wYznS8FjIQWTeJswpuKGz0O8aAxTgfEUE0y77ACK48nYHAKp6Vpda2UQ6aAxg18hHhIyVopxHfo6OILLXGjRNCXoiJZUzHbLI9zyKNnyCEdXcrlG2WGdR8wSAjA03bD7Kpfjsvv32Y7_NvwcSr1mK2rfdx9OYNNDdJTGxVSgiAIwp7CmFiiu2Vmiw-8pfe88
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+interpretable+structure+in+longitudinal+predictors+via+coefficient+trees&rft.jtitle=Advances+in+data+analysis+and+classification&rft.au=S%C3%BCrer%2C+%C3%96zge&rft.au=Apley%2C+Daniel+W.&rft.au=Malthouse%2C+Edward+C.&rft.date=2024-12-01&rft.issn=1862-5347&rft.eissn=1862-5355&rft.volume=18&rft.issue=4&rft.spage=911&rft.epage=951&rft_id=info:doi/10.1007%2Fs11634-023-00562-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11634_023_00562_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-5347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-5347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-5347&client=summon