An iterative method to compute minimum norm solutions of ill-posed problems in Hilbert spaces

We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule. This algorithm results from straightly applying the LSQR method to the main problem before discretizing. In fact, the p...

Full description

Saved in:
Bibliographic Details
Published in:Afrika mathematica Vol. 30; no. 5-6; pp. 797 - 816
Main Authors: Jozi, Meisam, Karimi, Saeed, Salkuyeh, Davod Khojasteh
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects:
ISSN:1012-9405, 2190-7668
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule. This algorithm results from straightly applying the LSQR method to the main problem before discretizing. In fact, the proposed algorithm obtains a sequence of approximate solutions of the original problem. In order to test the new algorithm, it is implemented to solve system of linear integral equations of the first kind and some examples are given. Moreover, we compare the presented algorithm with the Tikhonov regularization method to compute the least norm solution when there are more than one solution.
AbstractList We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule. This algorithm results from straightly applying the LSQR method to the main problem before discretizing. In fact, the proposed algorithm obtains a sequence of approximate solutions of the original problem. In order to test the new algorithm, it is implemented to solve system of linear integral equations of the first kind and some examples are given. Moreover, we compare the presented algorithm with the Tikhonov regularization method to compute the least norm solution when there are more than one solution.
Author Karimi, Saeed
Jozi, Meisam
Salkuyeh, Davod Khojasteh
Author_xml – sequence: 1
  givenname: Meisam
  surname: Jozi
  fullname: Jozi, Meisam
  organization: Department of Mathematics, Persian Gulf University
– sequence: 2
  givenname: Saeed
  orcidid: 0000-0001-6279-5230
  surname: Karimi
  fullname: Karimi, Saeed
  email: karimi@pgu.ac.ir, karimijafarbigloo@gmail.com
  organization: Department of Mathematics, Persian Gulf University
– sequence: 3
  givenname: Davod Khojasteh
  surname: Salkuyeh
  fullname: Salkuyeh, Davod Khojasteh
  organization: Faculty of Mathematical Sciences, University of Guilan
BookMark eNp9kE9LAzEQxYNUsNZ-AU8Bz9FJ9k-6x1LUCgUvepSQbLKaspusSVbw2xtdwZtzmWF4783wO0cL551B6JLCNQXgN5EWBQcCtCEA9aYicIKWjDZAeF1vFmhJgTLSlFCdoXWMR8hV1rSuiiV62Tpskwky2Q-DB5PevMbJ49YP45Tyxjo7TAN2Pgw4-n5K1ruIfYdt35PRR6PxGLzqzRCxdXhve2VCwnGUrYkX6LSTfTTr375Cz3e3T7s9OTzeP-y2B9IyDolwqhWlpZQKgG1kAe2GMs0Z11qVpoKa5qFrNDVtY6quppVWUrKy7RRXlW6KFbqac_Mr75OJSRz9FFw-KRjjZd00ULKsYrOqDT7GYDoxBjvI8CkoiG-SYiYpMknxQ1JANhWzKWaxezXhL_of1xe3iHlS
Cites_doi 10.1145/355984.355989
10.1002/nla.1874
10.1137/1.9780898718836
10.1017/CBO9780511626340
10.1016/j.matcom.2011.01.016
10.1090/S0025-5718-1974-0461895-1
10.1007/978-1-4614-9593-2
10.1007/BF01389450
10.1007/s11425-015-0568-4
10.3846/1392-6292.2007.12.61-70
10.1007/s40314-014-0174-3
10.1137/0715071
10.1007/978-1-4612-5280-1
10.1007/978-3-642-21449-3
10.1007/BF00941281
10.1137/0904012
10.1007/s11075-012-9612-8
10.1007/BF01932285
10.1016/0022-247X(72)90002-9
10.1088/0031-9155/52/5/005
10.1007/BF01385727
10.1007/978-1-4419-8474-6
10.1007/s10543-010-0275-3
10.1137/1.9780898719697
ContentType Journal Article
Copyright African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s13370-019-00685-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2190-7668
EndPage 816
ExternalDocumentID 10_1007_s13370_019_00685_0
GroupedDBID -EM
06D
0R~
0VY
203
2KG
30V
4.4
406
408
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PT4
R9I
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z81
ZMTXR
~A9
AAAVM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABULA
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFLOW
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
FEDTE
FINBP
FSGXE
GNUQQ
H13
HCIFZ
HF~
HVGLF
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c270t-71db114aab0028a30c812d727ddb4e5061ddbf9d1ec9e5f615dbaa24cfb7b5d93
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481806000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-9405
IngestDate Wed Sep 17 23:59:07 EDT 2025
Sat Nov 29 03:13:35 EST 2025
Fri Feb 21 02:31:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Regularization method
45A05
Minimum norm
45P05
47B38
45Q05
First kind equations
45N05
47B34
Ill-posed problem
algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-71db114aab0028a30c812d727ddb4e5061ddbf9d1ec9e5f615dbaa24cfb7b5d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6279-5230
PQID 2274699042
PQPubID 2043797
PageCount 20
ParticipantIDs proquest_journals_2274699042
crossref_primary_10_1007_s13370_019_00685_0
springer_journals_10_1007_s13370_019_00685_0
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Afrika mathematica
PublicationTitleAbbrev Afr. Mat
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HuangYJiaZSome results on the regularization of LSQR for large-scale discrete ill-posed problemsSci. China Math.201760701718362949110.1007/s11425-015-0568-406855824
HämarikUPalmROn rules for stopping the conjugate gradient type methods in ill-posed problemsMath. Model Anal.2007126170229303910.3846/1392-6292.2007.12.61-701121.65059
BauerFLukasMAComparing parameter choice methods for regularization of ill-posed problemsMath. Comput. Simul.20118117951841279972910.1016/j.matcom.2011.01.0161220.65063
MartiJTAn algorithm for computing minimum norm solutions of Fredholm integral equations of the first kindSIAM J. Numer. Anal.1978151071107651268310.1137/07150710399.65093
MorozovVAMethods for Solving Incorrectly Posed Problems1984BerlinSpringer10.1007/978-1-4612-5280-1
KressRLinear Integral Equations2014BerlinSpringer10.1007/978-1-4614-9593-21328.45001
EnglHWDiscrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence ratesJ. Optim. Theory Appl.19872520921587919810.1007/BF009412810586.65045
ReichelLRodriguezGOld and new parameter choice rules for discrete ill-posed problemsNumer. Algorithm2013636587304040310.1007/s11075-012-9612-81267.65045
GolubGHVan LoanCFMatrix Computation1996BaltimoreJohns Hopkins University Press0865.65009
Eld̀enLAlgorithms for the regularization of ill-conditioned least squares problemsBIT Numer. Math.19771713414547491210.1007/BF01932285
KirschAAn Introduction to the Mathematical Theory of Inverse Problems2011New YorkSpringer10.1007/978-1-4419-8474-61213.35004
AtkinsonKEThe Numerical Solution of Integral Equations of the Second Kind1997New YorkCambridge University Press10.1017/CBO97805116263400899.65077
BorgesLSBazánFSVCunhaMCCAutomatic stopping rule for iterative methods in discrete ill-posed problemsComput. Appl. Math.20153411751197339753210.1007/s40314-014-0174-31337.65034
BazánFSVBorgesLSGKB-FP: an algorithm for large-scale discrete ill-posed problemsBIT Numer. Math.201050481507271982510.1007/s10543-010-0275-31207.65039
van der SluisAvan der VorstHAThe rate of convergence of conjugate gradientsNumer. Math.19864854356083961610.1007/BF013894500596.65015
VarahJMPitfalls in the numerical solution of linear ill-posed problemsSIAM J. Sci. Stat. Comput.1983416417669717110.1137/09040120533.65082
HankeMAccelerated Landweber iterations for the solution of ill-posed equationsNumer. Math.199160341373113719810.1007/BF013857270745.65038
WazwazAMlinear and Nonlinear Integral Equations Methods and Applications2011ChicagoSpringer10.1007/978-3-642-21449-31227.45002
TikhonovANSolution of incorrectly formulated problems and the regularization methodSoviet Math. Dokl19635103510380141.11001
PaigeCCSaundersMALSQR: an algorithm for sparse linear equations and sparse least squaresACM Trans. Math. Softw.19828437166112110.1145/355984.3559890478.65016
TikhonovANRegularization of incorrectly posed problemsSoviet Math. Dokl19634162416270183.11601
EnglHWNeubauerAAn improved version of Marti’s method for solving ill-posed linear integral equationsMath. Comput.1985454054168049320578.65135
KarimiSJoziMA new iterative method for solving linear Fredholm integral equations using the least squares methodAppl. Math. Comput.201525074475832855781328.65273
NashedMZWahbaGConvergence rates of approximate least squares solution of linear integral and operator equations of the first kindMath. Comput.197428698046189510.1090/S0025-5718-1974-0461895-10273.45012
HansenPCRank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion1998PhiladelphiaSIAM10.1137/1.9780898719697
JiangMXiaLShouGTangMCombination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problemPhys. Med. Biol.2007521277129410.1088/0031-9155/52/5/005
HansenPCDiscrete Inverse Problems: Insight and Algorithms2010PhiladelphiaSIAM10.1137/1.97808987188361197.65054
BazánFSVCunhaMCCBorgesLSExtension of GKB-FP algorithm to large-scale general-form Tikhonov regularizationNumer. Linear Algebra Appl.201421316339320557910.1002/nla.18741340.65071
KammererWNashedMZIterative methods for best approximate solutions of integral equations of the first and second kindsJ. Math. Anal. Appl.19724054757332067710.1016/0022-247X(72)90002-90246.45015
HämarikUKaltenbacherBKangroUResmeritaERegularization by discretization in Banach spacesInverse Probl20163212834706471382.65160
S Karimi (685_CR18) 2015; 250
U Hämarik (685_CR13) 2007; 12
R Kress (685_CR20) 2014
M Hanke (685_CR11) 1991; 60
A Sluis van der (685_CR28) 1986; 48
LS Borges (685_CR5) 2015; 34
GH Golub (685_CR9) 1996
U Hämarik (685_CR12) 2016; 32
AM Wazwaz (685_CR30) 2011
AN Tikhonov (685_CR27) 1963; 5
Y Huang (685_CR10) 2017; 60
JM Varah (685_CR29) 1983; 4
PC Hansen (685_CR15) 1998
VA Morozov (685_CR22) 1984
W Kammerer (685_CR17) 1972; 40
CC Paige (685_CR24) 1982; 8
F Bauer (685_CR2) 2011; 81
AN Tikhonov (685_CR26) 1963; 4
M Jiang (685_CR16) 2007; 52
L Reichel (685_CR25) 2013; 63
MZ Nashed (685_CR23) 1974; 28
HW Engl (685_CR8) 1985; 45
FSV Bazán (685_CR4) 2010; 50
L Eld̀en (685_CR6) 1977; 17
FSV Bazán (685_CR3) 2014; 21
A Kirsch (685_CR19) 2011
PC Hansen (685_CR14) 2010
JT Marti (685_CR21) 1978; 15
KE Atkinson (685_CR1) 1997
HW Engl (685_CR7) 1987; 25
References_xml – reference: HämarikUPalmROn rules for stopping the conjugate gradient type methods in ill-posed problemsMath. Model Anal.2007126170229303910.3846/1392-6292.2007.12.61-701121.65059
– reference: JiangMXiaLShouGTangMCombination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problemPhys. Med. Biol.2007521277129410.1088/0031-9155/52/5/005
– reference: PaigeCCSaundersMALSQR: an algorithm for sparse linear equations and sparse least squaresACM Trans. Math. Softw.19828437166112110.1145/355984.3559890478.65016
– reference: EnglHWDiscrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence ratesJ. Optim. Theory Appl.19872520921587919810.1007/BF009412810586.65045
– reference: Eld̀enLAlgorithms for the regularization of ill-conditioned least squares problemsBIT Numer. Math.19771713414547491210.1007/BF01932285
– reference: MorozovVAMethods for Solving Incorrectly Posed Problems1984BerlinSpringer10.1007/978-1-4612-5280-1
– reference: BazánFSVCunhaMCCBorgesLSExtension of GKB-FP algorithm to large-scale general-form Tikhonov regularizationNumer. Linear Algebra Appl.201421316339320557910.1002/nla.18741340.65071
– reference: GolubGHVan LoanCFMatrix Computation1996BaltimoreJohns Hopkins University Press0865.65009
– reference: KammererWNashedMZIterative methods for best approximate solutions of integral equations of the first and second kindsJ. Math. Anal. Appl.19724054757332067710.1016/0022-247X(72)90002-90246.45015
– reference: KirschAAn Introduction to the Mathematical Theory of Inverse Problems2011New YorkSpringer10.1007/978-1-4419-8474-61213.35004
– reference: KressRLinear Integral Equations2014BerlinSpringer10.1007/978-1-4614-9593-21328.45001
– reference: HämarikUKaltenbacherBKangroUResmeritaERegularization by discretization in Banach spacesInverse Probl20163212834706471382.65160
– reference: TikhonovANSolution of incorrectly formulated problems and the regularization methodSoviet Math. Dokl19635103510380141.11001
– reference: HansenPCRank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion1998PhiladelphiaSIAM10.1137/1.9780898719697
– reference: van der SluisAvan der VorstHAThe rate of convergence of conjugate gradientsNumer. Math.19864854356083961610.1007/BF013894500596.65015
– reference: HansenPCDiscrete Inverse Problems: Insight and Algorithms2010PhiladelphiaSIAM10.1137/1.97808987188361197.65054
– reference: EnglHWNeubauerAAn improved version of Marti’s method for solving ill-posed linear integral equationsMath. Comput.1985454054168049320578.65135
– reference: TikhonovANRegularization of incorrectly posed problemsSoviet Math. Dokl19634162416270183.11601
– reference: VarahJMPitfalls in the numerical solution of linear ill-posed problemsSIAM J. Sci. Stat. Comput.1983416417669717110.1137/09040120533.65082
– reference: BauerFLukasMAComparing parameter choice methods for regularization of ill-posed problemsMath. Comput. Simul.20118117951841279972910.1016/j.matcom.2011.01.0161220.65063
– reference: HankeMAccelerated Landweber iterations for the solution of ill-posed equationsNumer. Math.199160341373113719810.1007/BF013857270745.65038
– reference: BazánFSVBorgesLSGKB-FP: an algorithm for large-scale discrete ill-posed problemsBIT Numer. Math.201050481507271982510.1007/s10543-010-0275-31207.65039
– reference: MartiJTAn algorithm for computing minimum norm solutions of Fredholm integral equations of the first kindSIAM J. Numer. Anal.1978151071107651268310.1137/07150710399.65093
– reference: NashedMZWahbaGConvergence rates of approximate least squares solution of linear integral and operator equations of the first kindMath. Comput.197428698046189510.1090/S0025-5718-1974-0461895-10273.45012
– reference: WazwazAMlinear and Nonlinear Integral Equations Methods and Applications2011ChicagoSpringer10.1007/978-3-642-21449-31227.45002
– reference: AtkinsonKEThe Numerical Solution of Integral Equations of the Second Kind1997New YorkCambridge University Press10.1017/CBO97805116263400899.65077
– reference: ReichelLRodriguezGOld and new parameter choice rules for discrete ill-posed problemsNumer. Algorithm2013636587304040310.1007/s11075-012-9612-81267.65045
– reference: BorgesLSBazánFSVCunhaMCCAutomatic stopping rule for iterative methods in discrete ill-posed problemsComput. Appl. Math.20153411751197339753210.1007/s40314-014-0174-31337.65034
– reference: HuangYJiaZSome results on the regularization of LSQR for large-scale discrete ill-posed problemsSci. China Math.201760701718362949110.1007/s11425-015-0568-406855824
– reference: KarimiSJoziMA new iterative method for solving linear Fredholm integral equations using the least squares methodAppl. Math. Comput.201525074475832855781328.65273
– volume: 8
  start-page: 43
  year: 1982
  ident: 685_CR24
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355984.355989
– volume: 21
  start-page: 316
  year: 2014
  ident: 685_CR3
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1874
– volume-title: Discrete Inverse Problems: Insight and Algorithms
  year: 2010
  ident: 685_CR14
  doi: 10.1137/1.9780898718836
– volume-title: The Numerical Solution of Integral Equations of the Second Kind
  year: 1997
  ident: 685_CR1
  doi: 10.1017/CBO9780511626340
– volume: 81
  start-page: 1795
  year: 2011
  ident: 685_CR2
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2011.01.016
– volume: 28
  start-page: 69
  year: 1974
  ident: 685_CR23
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0461895-1
– volume: 32
  start-page: 1
  year: 2016
  ident: 685_CR12
  publication-title: Inverse Probl
– volume: 250
  start-page: 744
  year: 2015
  ident: 685_CR18
  publication-title: Appl. Math. Comput.
– volume-title: Linear Integral Equations
  year: 2014
  ident: 685_CR20
  doi: 10.1007/978-1-4614-9593-2
– volume: 48
  start-page: 543
  year: 1986
  ident: 685_CR28
  publication-title: Numer. Math.
  doi: 10.1007/BF01389450
– volume: 60
  start-page: 701
  year: 2017
  ident: 685_CR10
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-015-0568-4
– volume: 12
  start-page: 61
  year: 2007
  ident: 685_CR13
  publication-title: Math. Model Anal.
  doi: 10.3846/1392-6292.2007.12.61-70
– volume: 4
  start-page: 1624
  year: 1963
  ident: 685_CR26
  publication-title: Soviet Math. Dokl
– volume-title: Matrix Computation
  year: 1996
  ident: 685_CR9
– volume: 34
  start-page: 1175
  year: 2015
  ident: 685_CR5
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-014-0174-3
– volume: 15
  start-page: 1071
  year: 1978
  ident: 685_CR21
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715071
– volume-title: Methods for Solving Incorrectly Posed Problems
  year: 1984
  ident: 685_CR22
  doi: 10.1007/978-1-4612-5280-1
– volume: 45
  start-page: 405
  year: 1985
  ident: 685_CR8
  publication-title: Math. Comput.
– volume-title: linear and Nonlinear Integral Equations Methods and Applications
  year: 2011
  ident: 685_CR30
  doi: 10.1007/978-3-642-21449-3
– volume: 25
  start-page: 209
  year: 1987
  ident: 685_CR7
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941281
– volume: 4
  start-page: 164
  year: 1983
  ident: 685_CR29
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0904012
– volume: 63
  start-page: 65
  year: 2013
  ident: 685_CR25
  publication-title: Numer. Algorithm
  doi: 10.1007/s11075-012-9612-8
– volume: 17
  start-page: 134
  year: 1977
  ident: 685_CR6
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01932285
– volume: 40
  start-page: 547
  year: 1972
  ident: 685_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(72)90002-9
– volume: 52
  start-page: 1277
  year: 2007
  ident: 685_CR16
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/5/005
– volume: 60
  start-page: 341
  year: 1991
  ident: 685_CR11
  publication-title: Numer. Math.
  doi: 10.1007/BF01385727
– volume-title: An Introduction to the Mathematical Theory of Inverse Problems
  year: 2011
  ident: 685_CR19
  doi: 10.1007/978-1-4419-8474-6
– volume: 50
  start-page: 481
  year: 2010
  ident: 685_CR4
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-010-0275-3
– volume-title: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
  year: 1998
  ident: 685_CR15
  doi: 10.1137/1.9780898719697
– volume: 5
  start-page: 1035
  year: 1963
  ident: 685_CR27
  publication-title: Soviet Math. Dokl
SSID ssj0000461653
Score 2.1058016
Snippet We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 797
SubjectTerms Algorithms
Applications of Mathematics
Hilbert space
History of Mathematical Sciences
Ill posed problems
Integral equations
Iterative methods
Mathematics
Mathematics and Statistics
Mathematics Education
Regularization
Regularization methods
Title An iterative method to compute minimum norm solutions of ill-posed problems in Hilbert spaces
URI https://link.springer.com/article/10.1007/s13370-019-00685-0
https://www.proquest.com/docview/2274699042
Volume 30
WOSCitedRecordID wos000481806000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 2190-7668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461653
  issn: 1012-9405
  databaseCode: RSV
  dateStart: 20110401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6ketCDb7FaZQ_edCGbTTbJsYilBy3ii14k7CsQaJPSpP5-Z_NoUPSgt0DCEmYm832T3fkGoSuhKfOYYUTQRBDIfgkRgASEUuMlYSh8LipP3weTSTidRo9NU1jRnnZvtySrTN01uzFmh6TYphuHhz6BQn0T4C60Axuent_Wf1ashDj365P11CURUJKmW-bnZb4iUkczv-2MVoAz2vvfq-6j3YZg4mEdEQdow2SHaOdhrc5aHKH3YYZrNWVIdbieIY3LHKt6wgO2ciPz1RxnwGfxOjZxnuB0NiOLvDAaN4NoCpxmeJxaoawSQ3KCrHOMXkd3L7dj0oxZIMoNnJIEVEuoioSoCjDBHAWgr4HXaC094wPgw0USaWpUZPwEKJCWAhyqEhlIX0fsBPWyPDOnCHPuSsaVRzWXVgleKsUdQYVvojBh2uuj69bU8aJW04g73WRrtBiMFldGi50-GrTeiJsvq4hdKKM5QKjn9tFNa_3u9u-rnf3t8XO07VYOtMfJBqhXLlfmAm2pjzItlpdVxH0CrCTQng
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6igvrgb3E6NQ--aaBp2rR9HOKYuA3RKXuRkiYpFLZ2rJ1_v5f-2FD0Qd8KLaHcXe_7rsl9h9C1UJQ5TDMiaCwIZL-YCEACQql2Yt8XLhelp_vecOiPx8FT3RSWN6fdmy3JMlOvmt0YM0NSTNONxX2XQKG-4QBiGcX855e35Z8VIyHO3epkPbVJAJSk7pb5eZmviLSimd92RkvA6e7971X30W5NMHGniogDtKbTQ7QzWKqz5kfovZPiSk0ZUh2uZkjjIsOymvCAjdzIdDHFKfBZvIxNnMU4mUzILMu1wvUgmhwnKe4lRiirwJCcIOsco9fu_eiuR-oxC0TanlUQj6oIqiIhygJMMEsC6CvgNUpFjnYB8OEiDhTVMtBuDBRIRQIcKuPIi1wVsBO0nmapPkWYcztiXDpU8cgowUdScktQ4erAj5lyWuimMXU4q9Q0wpVusjFaCEYLS6OFVgu1G2-E9ZeVhzaU0Rwg1LFb6Lax_ur276ud_e3xK7TVGw36Yf9h-HiOtu3SmeZoWRutF_OFvkCb8qNI8vllGX2ffOPTgg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ERfTgW6xW3YM3XZrNJtvkWNRSsZaCD3qRsNkHBNq0NKm_39kkbVX0IN4CG5YwM5n5ZnfmG4QuhaLMY5oRQY0g4P0MERAJCKXaM0EgfC4KTXebvV4wGIT9T138RbX7_Eqy7GmwLE1p3pgo01g2vjFmB6bYBhyHBz6BpH3Ns4X0Nl9_el2cslg6ce6XVfbUJSHAk6pz5udtvkanJeT8dktaBJ_2zv8_exdtV8ATt0pL2UMrOt1HW48L1tbsAL21UlyyLIMLxOVsaZyPsSwnP2BLQzKajXAKOBcvbBaPDU6GQzIZZ1rhakBNhpMUdxJLoJVjcFrgjQ7RS_vu-aZDqvELRLpNJydNqmLIloQoEjPBHAlgQAHeUSr2tA9AAB5MqKiWofYNQCMVC1C0NHEz9lXIjtBqOk71McKcuzHj0qOKx5YhPpaSO4IKX4eBYcqroau52KNJybIRLfmUrdAiEFpUCC1yaqg-10xU_XFZ5EJ6zSG0em4NXc81sVz-fbeTv71-gTb6t-2oe997OEWbbqFLW3FWR6v5dKbP0Lp8z5Nsel4Y4gdvbtxm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+iterative+method+to+compute+minimum+norm+solutions+of+ill-posed+problems+in+Hilbert+spaces&rft.jtitle=Afrika+mathematica&rft.au=Jozi%2C+Meisam&rft.au=Karimi%2C+Saeed&rft.au=Davod+Khojasteh+Salkuyeh&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-9405&rft.eissn=2190-7668&rft.volume=30&rft.issue=5&rft.spage=797&rft.epage=816&rft_id=info:doi/10.1007%2Fs13370-019-00685-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-9405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-9405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-9405&client=summon