An iterative method to compute minimum norm solutions of ill-posed problems in Hilbert spaces
We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule. This algorithm results from straightly applying the LSQR method to the main problem before discretizing. In fact, the p...
Uloženo v:
| Vydáno v: | Afrika mathematica Ročník 30; číslo 5-6; s. 797 - 816 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 1012-9405, 2190-7668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule. This algorithm results from straightly applying the LSQR method to the main problem before discretizing. In fact, the proposed algorithm obtains a sequence of approximate solutions of the original problem. In order to test the new algorithm, it is implemented to solve system of linear integral equations of the first kind and some examples are given. Moreover, we compare the presented algorithm with the Tikhonov regularization method to compute the least norm solution when there are more than one solution. |
|---|---|
| AbstractList | We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule. This algorithm results from straightly applying the LSQR method to the main problem before discretizing. In fact, the proposed algorithm obtains a sequence of approximate solutions of the original problem. In order to test the new algorithm, it is implemented to solve system of linear integral equations of the first kind and some examples are given. Moreover, we compare the presented algorithm with the Tikhonov regularization method to compute the least norm solution when there are more than one solution. |
| Author | Karimi, Saeed Jozi, Meisam Salkuyeh, Davod Khojasteh |
| Author_xml | – sequence: 1 givenname: Meisam surname: Jozi fullname: Jozi, Meisam organization: Department of Mathematics, Persian Gulf University – sequence: 2 givenname: Saeed orcidid: 0000-0001-6279-5230 surname: Karimi fullname: Karimi, Saeed email: karimi@pgu.ac.ir, karimijafarbigloo@gmail.com organization: Department of Mathematics, Persian Gulf University – sequence: 3 givenname: Davod Khojasteh surname: Salkuyeh fullname: Salkuyeh, Davod Khojasteh organization: Faculty of Mathematical Sciences, University of Guilan |
| BookMark | eNp9kE9LAzEQxYNUsNZ-AU8Bz9FJ9k-6x1LUCgUvepSQbLKaspusSVbw2xtdwZtzmWF4783wO0cL551B6JLCNQXgN5EWBQcCtCEA9aYicIKWjDZAeF1vFmhJgTLSlFCdoXWMR8hV1rSuiiV62Tpskwky2Q-DB5PevMbJ49YP45Tyxjo7TAN2Pgw4-n5K1ruIfYdt35PRR6PxGLzqzRCxdXhve2VCwnGUrYkX6LSTfTTr375Cz3e3T7s9OTzeP-y2B9IyDolwqhWlpZQKgG1kAe2GMs0Z11qVpoKa5qFrNDVtY6quppVWUrKy7RRXlW6KFbqac_Mr75OJSRz9FFw-KRjjZd00ULKsYrOqDT7GYDoxBjvI8CkoiG-SYiYpMknxQ1JANhWzKWaxezXhL_of1xe3iHlS |
| Cites_doi | 10.1145/355984.355989 10.1002/nla.1874 10.1137/1.9780898718836 10.1017/CBO9780511626340 10.1016/j.matcom.2011.01.016 10.1090/S0025-5718-1974-0461895-1 10.1007/978-1-4614-9593-2 10.1007/BF01389450 10.1007/s11425-015-0568-4 10.3846/1392-6292.2007.12.61-70 10.1007/s40314-014-0174-3 10.1137/0715071 10.1007/978-1-4612-5280-1 10.1007/978-3-642-21449-3 10.1007/BF00941281 10.1137/0904012 10.1007/s11075-012-9612-8 10.1007/BF01932285 10.1016/0022-247X(72)90002-9 10.1088/0031-9155/52/5/005 10.1007/BF01385727 10.1007/978-1-4419-8474-6 10.1007/s10543-010-0275-3 10.1137/1.9780898719697 |
| ContentType | Journal Article |
| Copyright | African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13370-019-00685-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2190-7668 |
| EndPage | 816 |
| ExternalDocumentID | 10_1007_s13370_019_00685_0 |
| GroupedDBID | -EM 06D 0R~ 0VY 203 2KG 30V 4.4 406 408 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BAPOH BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FNLPD FRRFC FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P9R PT4 R9I RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 Z81 ZMTXR ~A9 AAAVM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ABULA ACSTC AEBTG AEKMD AEZWR AFDZB AFFHD AFHIU AFKRA AFLOW AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO FEDTE FINBP FSGXE GNUQQ H13 HCIFZ HF~ HVGLF M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c270t-71db114aab0028a30c812d727ddb4e5061ddbf9d1ec9e5f615dbaa24cfb7b5d93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481806000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1012-9405 |
| IngestDate | Wed Sep 17 23:59:07 EDT 2025 Sat Nov 29 03:13:35 EST 2025 Fri Feb 21 02:31:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Keywords | Regularization method 45A05 Minimum norm 45P05 47B38 45Q05 First kind equations 45N05 47B34 Ill-posed problem algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-71db114aab0028a30c812d727ddb4e5061ddbf9d1ec9e5f615dbaa24cfb7b5d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6279-5230 |
| PQID | 2274699042 |
| PQPubID | 2043797 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2274699042 crossref_primary_10_1007_s13370_019_00685_0 springer_journals_10_1007_s13370_019_00685_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Afrika mathematica |
| PublicationTitleAbbrev | Afr. Mat |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | HuangYJiaZSome results on the regularization of LSQR for large-scale discrete ill-posed problemsSci. China Math.201760701718362949110.1007/s11425-015-0568-406855824 HämarikUPalmROn rules for stopping the conjugate gradient type methods in ill-posed problemsMath. Model Anal.2007126170229303910.3846/1392-6292.2007.12.61-701121.65059 BauerFLukasMAComparing parameter choice methods for regularization of ill-posed problemsMath. Comput. Simul.20118117951841279972910.1016/j.matcom.2011.01.0161220.65063 MartiJTAn algorithm for computing minimum norm solutions of Fredholm integral equations of the first kindSIAM J. Numer. Anal.1978151071107651268310.1137/07150710399.65093 MorozovVAMethods for Solving Incorrectly Posed Problems1984BerlinSpringer10.1007/978-1-4612-5280-1 KressRLinear Integral Equations2014BerlinSpringer10.1007/978-1-4614-9593-21328.45001 EnglHWDiscrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence ratesJ. Optim. Theory Appl.19872520921587919810.1007/BF009412810586.65045 ReichelLRodriguezGOld and new parameter choice rules for discrete ill-posed problemsNumer. Algorithm2013636587304040310.1007/s11075-012-9612-81267.65045 GolubGHVan LoanCFMatrix Computation1996BaltimoreJohns Hopkins University Press0865.65009 Eld̀enLAlgorithms for the regularization of ill-conditioned least squares problemsBIT Numer. Math.19771713414547491210.1007/BF01932285 KirschAAn Introduction to the Mathematical Theory of Inverse Problems2011New YorkSpringer10.1007/978-1-4419-8474-61213.35004 AtkinsonKEThe Numerical Solution of Integral Equations of the Second Kind1997New YorkCambridge University Press10.1017/CBO97805116263400899.65077 BorgesLSBazánFSVCunhaMCCAutomatic stopping rule for iterative methods in discrete ill-posed problemsComput. Appl. Math.20153411751197339753210.1007/s40314-014-0174-31337.65034 BazánFSVBorgesLSGKB-FP: an algorithm for large-scale discrete ill-posed problemsBIT Numer. Math.201050481507271982510.1007/s10543-010-0275-31207.65039 van der SluisAvan der VorstHAThe rate of convergence of conjugate gradientsNumer. Math.19864854356083961610.1007/BF013894500596.65015 VarahJMPitfalls in the numerical solution of linear ill-posed problemsSIAM J. Sci. Stat. Comput.1983416417669717110.1137/09040120533.65082 HankeMAccelerated Landweber iterations for the solution of ill-posed equationsNumer. Math.199160341373113719810.1007/BF013857270745.65038 WazwazAMlinear and Nonlinear Integral Equations Methods and Applications2011ChicagoSpringer10.1007/978-3-642-21449-31227.45002 TikhonovANSolution of incorrectly formulated problems and the regularization methodSoviet Math. Dokl19635103510380141.11001 PaigeCCSaundersMALSQR: an algorithm for sparse linear equations and sparse least squaresACM Trans. Math. Softw.19828437166112110.1145/355984.3559890478.65016 TikhonovANRegularization of incorrectly posed problemsSoviet Math. Dokl19634162416270183.11601 EnglHWNeubauerAAn improved version of Marti’s method for solving ill-posed linear integral equationsMath. Comput.1985454054168049320578.65135 KarimiSJoziMA new iterative method for solving linear Fredholm integral equations using the least squares methodAppl. Math. Comput.201525074475832855781328.65273 NashedMZWahbaGConvergence rates of approximate least squares solution of linear integral and operator equations of the first kindMath. Comput.197428698046189510.1090/S0025-5718-1974-0461895-10273.45012 HansenPCRank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion1998PhiladelphiaSIAM10.1137/1.9780898719697 JiangMXiaLShouGTangMCombination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problemPhys. Med. Biol.2007521277129410.1088/0031-9155/52/5/005 HansenPCDiscrete Inverse Problems: Insight and Algorithms2010PhiladelphiaSIAM10.1137/1.97808987188361197.65054 BazánFSVCunhaMCCBorgesLSExtension of GKB-FP algorithm to large-scale general-form Tikhonov regularizationNumer. Linear Algebra Appl.201421316339320557910.1002/nla.18741340.65071 KammererWNashedMZIterative methods for best approximate solutions of integral equations of the first and second kindsJ. Math. Anal. Appl.19724054757332067710.1016/0022-247X(72)90002-90246.45015 HämarikUKaltenbacherBKangroUResmeritaERegularization by discretization in Banach spacesInverse Probl20163212834706471382.65160 S Karimi (685_CR18) 2015; 250 U Hämarik (685_CR13) 2007; 12 R Kress (685_CR20) 2014 M Hanke (685_CR11) 1991; 60 A Sluis van der (685_CR28) 1986; 48 LS Borges (685_CR5) 2015; 34 GH Golub (685_CR9) 1996 U Hämarik (685_CR12) 2016; 32 AM Wazwaz (685_CR30) 2011 AN Tikhonov (685_CR27) 1963; 5 Y Huang (685_CR10) 2017; 60 JM Varah (685_CR29) 1983; 4 PC Hansen (685_CR15) 1998 VA Morozov (685_CR22) 1984 W Kammerer (685_CR17) 1972; 40 CC Paige (685_CR24) 1982; 8 F Bauer (685_CR2) 2011; 81 AN Tikhonov (685_CR26) 1963; 4 M Jiang (685_CR16) 2007; 52 L Reichel (685_CR25) 2013; 63 MZ Nashed (685_CR23) 1974; 28 HW Engl (685_CR8) 1985; 45 FSV Bazán (685_CR4) 2010; 50 L Eld̀en (685_CR6) 1977; 17 FSV Bazán (685_CR3) 2014; 21 A Kirsch (685_CR19) 2011 PC Hansen (685_CR14) 2010 JT Marti (685_CR21) 1978; 15 KE Atkinson (685_CR1) 1997 HW Engl (685_CR7) 1987; 25 |
| References_xml | – reference: HämarikUPalmROn rules for stopping the conjugate gradient type methods in ill-posed problemsMath. Model Anal.2007126170229303910.3846/1392-6292.2007.12.61-701121.65059 – reference: JiangMXiaLShouGTangMCombination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problemPhys. Med. Biol.2007521277129410.1088/0031-9155/52/5/005 – reference: PaigeCCSaundersMALSQR: an algorithm for sparse linear equations and sparse least squaresACM Trans. Math. Softw.19828437166112110.1145/355984.3559890478.65016 – reference: EnglHWDiscrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence ratesJ. Optim. Theory Appl.19872520921587919810.1007/BF009412810586.65045 – reference: Eld̀enLAlgorithms for the regularization of ill-conditioned least squares problemsBIT Numer. Math.19771713414547491210.1007/BF01932285 – reference: MorozovVAMethods for Solving Incorrectly Posed Problems1984BerlinSpringer10.1007/978-1-4612-5280-1 – reference: BazánFSVCunhaMCCBorgesLSExtension of GKB-FP algorithm to large-scale general-form Tikhonov regularizationNumer. Linear Algebra Appl.201421316339320557910.1002/nla.18741340.65071 – reference: GolubGHVan LoanCFMatrix Computation1996BaltimoreJohns Hopkins University Press0865.65009 – reference: KammererWNashedMZIterative methods for best approximate solutions of integral equations of the first and second kindsJ. Math. Anal. Appl.19724054757332067710.1016/0022-247X(72)90002-90246.45015 – reference: KirschAAn Introduction to the Mathematical Theory of Inverse Problems2011New YorkSpringer10.1007/978-1-4419-8474-61213.35004 – reference: KressRLinear Integral Equations2014BerlinSpringer10.1007/978-1-4614-9593-21328.45001 – reference: HämarikUKaltenbacherBKangroUResmeritaERegularization by discretization in Banach spacesInverse Probl20163212834706471382.65160 – reference: TikhonovANSolution of incorrectly formulated problems and the regularization methodSoviet Math. Dokl19635103510380141.11001 – reference: HansenPCRank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion1998PhiladelphiaSIAM10.1137/1.9780898719697 – reference: van der SluisAvan der VorstHAThe rate of convergence of conjugate gradientsNumer. Math.19864854356083961610.1007/BF013894500596.65015 – reference: HansenPCDiscrete Inverse Problems: Insight and Algorithms2010PhiladelphiaSIAM10.1137/1.97808987188361197.65054 – reference: EnglHWNeubauerAAn improved version of Marti’s method for solving ill-posed linear integral equationsMath. Comput.1985454054168049320578.65135 – reference: TikhonovANRegularization of incorrectly posed problemsSoviet Math. Dokl19634162416270183.11601 – reference: VarahJMPitfalls in the numerical solution of linear ill-posed problemsSIAM J. Sci. Stat. Comput.1983416417669717110.1137/09040120533.65082 – reference: BauerFLukasMAComparing parameter choice methods for regularization of ill-posed problemsMath. Comput. Simul.20118117951841279972910.1016/j.matcom.2011.01.0161220.65063 – reference: HankeMAccelerated Landweber iterations for the solution of ill-posed equationsNumer. Math.199160341373113719810.1007/BF013857270745.65038 – reference: BazánFSVBorgesLSGKB-FP: an algorithm for large-scale discrete ill-posed problemsBIT Numer. Math.201050481507271982510.1007/s10543-010-0275-31207.65039 – reference: MartiJTAn algorithm for computing minimum norm solutions of Fredholm integral equations of the first kindSIAM J. Numer. Anal.1978151071107651268310.1137/07150710399.65093 – reference: NashedMZWahbaGConvergence rates of approximate least squares solution of linear integral and operator equations of the first kindMath. Comput.197428698046189510.1090/S0025-5718-1974-0461895-10273.45012 – reference: WazwazAMlinear and Nonlinear Integral Equations Methods and Applications2011ChicagoSpringer10.1007/978-3-642-21449-31227.45002 – reference: AtkinsonKEThe Numerical Solution of Integral Equations of the Second Kind1997New YorkCambridge University Press10.1017/CBO97805116263400899.65077 – reference: ReichelLRodriguezGOld and new parameter choice rules for discrete ill-posed problemsNumer. Algorithm2013636587304040310.1007/s11075-012-9612-81267.65045 – reference: BorgesLSBazánFSVCunhaMCCAutomatic stopping rule for iterative methods in discrete ill-posed problemsComput. Appl. Math.20153411751197339753210.1007/s40314-014-0174-31337.65034 – reference: HuangYJiaZSome results on the regularization of LSQR for large-scale discrete ill-posed problemsSci. China Math.201760701718362949110.1007/s11425-015-0568-406855824 – reference: KarimiSJoziMA new iterative method for solving linear Fredholm integral equations using the least squares methodAppl. Math. Comput.201525074475832855781328.65273 – volume: 8 start-page: 43 year: 1982 ident: 685_CR24 publication-title: ACM Trans. Math. Softw. doi: 10.1145/355984.355989 – volume: 21 start-page: 316 year: 2014 ident: 685_CR3 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1874 – volume-title: Discrete Inverse Problems: Insight and Algorithms year: 2010 ident: 685_CR14 doi: 10.1137/1.9780898718836 – volume-title: The Numerical Solution of Integral Equations of the Second Kind year: 1997 ident: 685_CR1 doi: 10.1017/CBO9780511626340 – volume: 81 start-page: 1795 year: 2011 ident: 685_CR2 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2011.01.016 – volume: 28 start-page: 69 year: 1974 ident: 685_CR23 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1974-0461895-1 – volume: 32 start-page: 1 year: 2016 ident: 685_CR12 publication-title: Inverse Probl – volume: 250 start-page: 744 year: 2015 ident: 685_CR18 publication-title: Appl. Math. Comput. – volume-title: Linear Integral Equations year: 2014 ident: 685_CR20 doi: 10.1007/978-1-4614-9593-2 – volume: 48 start-page: 543 year: 1986 ident: 685_CR28 publication-title: Numer. Math. doi: 10.1007/BF01389450 – volume: 60 start-page: 701 year: 2017 ident: 685_CR10 publication-title: Sci. China Math. doi: 10.1007/s11425-015-0568-4 – volume: 12 start-page: 61 year: 2007 ident: 685_CR13 publication-title: Math. Model Anal. doi: 10.3846/1392-6292.2007.12.61-70 – volume: 4 start-page: 1624 year: 1963 ident: 685_CR26 publication-title: Soviet Math. Dokl – volume-title: Matrix Computation year: 1996 ident: 685_CR9 – volume: 34 start-page: 1175 year: 2015 ident: 685_CR5 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-014-0174-3 – volume: 15 start-page: 1071 year: 1978 ident: 685_CR21 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715071 – volume-title: Methods for Solving Incorrectly Posed Problems year: 1984 ident: 685_CR22 doi: 10.1007/978-1-4612-5280-1 – volume: 45 start-page: 405 year: 1985 ident: 685_CR8 publication-title: Math. Comput. – volume-title: linear and Nonlinear Integral Equations Methods and Applications year: 2011 ident: 685_CR30 doi: 10.1007/978-3-642-21449-3 – volume: 25 start-page: 209 year: 1987 ident: 685_CR7 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00941281 – volume: 4 start-page: 164 year: 1983 ident: 685_CR29 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0904012 – volume: 63 start-page: 65 year: 2013 ident: 685_CR25 publication-title: Numer. Algorithm doi: 10.1007/s11075-012-9612-8 – volume: 17 start-page: 134 year: 1977 ident: 685_CR6 publication-title: BIT Numer. Math. doi: 10.1007/BF01932285 – volume: 40 start-page: 547 year: 1972 ident: 685_CR17 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(72)90002-9 – volume: 52 start-page: 1277 year: 2007 ident: 685_CR16 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/5/005 – volume: 60 start-page: 341 year: 1991 ident: 685_CR11 publication-title: Numer. Math. doi: 10.1007/BF01385727 – volume-title: An Introduction to the Mathematical Theory of Inverse Problems year: 2011 ident: 685_CR19 doi: 10.1007/978-1-4419-8474-6 – volume: 50 start-page: 481 year: 2010 ident: 685_CR4 publication-title: BIT Numer. Math. doi: 10.1007/s10543-010-0275-3 – volume-title: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion year: 1998 ident: 685_CR15 doi: 10.1137/1.9780898719697 – volume: 5 start-page: 1035 year: 1963 ident: 685_CR27 publication-title: Soviet Math. Dokl |
| SSID | ssj0000461653 |
| Score | 2.105908 |
| Snippet | We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 797 |
| SubjectTerms | Algorithms Applications of Mathematics Hilbert space History of Mathematical Sciences Ill posed problems Integral equations Iterative methods Mathematics Mathematics and Statistics Mathematics Education Regularization Regularization methods |
| Title | An iterative method to compute minimum norm solutions of ill-posed problems in Hilbert spaces |
| URI | https://link.springer.com/article/10.1007/s13370-019-00685-0 https://www.proquest.com/docview/2274699042 |
| Volume | 30 |
| WOSCitedRecordID | wos000481806000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2190-7668 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000461653 issn: 1012-9405 databaseCode: RSV dateStart: 20110401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EPejBt1itsgdvupDHZpM9FrH0oEV8lF4k7CsQaJPSpP5-Z_NoUPSgt0DCEGYnM99kZr5B6FoliQLUoIjHKSVUSEMkU2DLinGXhyJKKi69yUM4HkfTKX9qhsKKttu9LUlWnrobdvN9uyTFDt04LAoIJOpbEO4iu7Dh-WWy_rNiKcRZUHfWux7hAEmaaZmfxXyNSB3M_FYZrQLOcP9_r3qA9hqAiQe1RRyiDZMdod3HNTtrcYzeBxmu2ZTB1eF6hzQuc6zqDQ_Y0o3MV3OcAZ7Fa9vEeYLT2Yws8sJo3CyiKXCa4VFqibJKDM4JvM4Jehvev96NSLNmgSgvdEoSulpCViRElYAJ31EQ9DXgGq0lNQEEfLhIuHaN4iZIAAJpKYRHVSJDGWjun6LNLM_MGcKWvEv60lEuY1Qwyo1rGU2VrdVKyOF76KZVdbyo2TTijjfZKi0GpcWV0mKnh_rtacTNl1XEHqTRDEIoBWG3rfa7279LO__b4xdox6sO0LaT9dFmuVyZS7StPsq0WF5VFvcJ94bQRA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kCurBt1itugdvupDHJukei1gqtkW0ll4k7CsQaJPSpP5-Z_NoUfSgt0DCEGYnM99kZr5B6EZGkQTUIInDKCWUC02EL8GWpc9sFvB2VHDpjfvBcNieTNhzNRSW1d3udUmy8NTrYTfXNUtSzNCN5bc9Aon6JoWIZRjzX17Hqz8rhkLc98rOetshDCBJNS3zs5ivEWkNM79VRouA093_36seoL0KYOJOaRGHaEMnR2h3sGJnzY7ReyfBJZsyuDpc7pDGeYplueEBG7qR2XKGE8CzeGWbOI1wPJ2SeZpphatFNBmOE9yLDVFWjsE5gdc5QW_dh9F9j1RrFoh0Aisnga0EZEWcFwkYdy0JQV8BrlFKUO1BwIeLiClbS6a9CCCQEpw7VEYiEJ5i7ilqJGmizxA25F3CFZa0fZ9ynzJtG0ZTaWq1AnL4JrqtVR3OSzaNcM2bbJQWgtLCQmmh1USt-jTC6svKQgfSaB9CKAVhd7X217d_l3b-t8ev0XZvNOiH_cfh0wXacYrDNK1lLdTIF0t9ibbkRx5ni6vC-j4BxA3TKA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kiujBt1itugdvujSPTdI9FrVUrKWgll4kZB-BQJuUJvX3O5tHo6IH8RZIGMLMZOab7Mw3CF2JMBSAGgSxGKWEBlwR7grwZeEyk3lBJ8y59MYDbzjsTCZs9GmKP-92r44ki5kGzdIUZ-25DNv14Jtt64UpegDHcDsOgaJ9nepGel2vP49Xf1k0nbjrFF32pkUYwJNycuZnMV-zUw05v52S5smnt_v_195DOyXwxN3CU_bRmooP0PbTirU1PURv3RgXLMsQAnGxWxpnCRbF5gesaUhmyxmOAefilc_iJMTRdErmSaokLhfUpDiKcT_SBFoZhqAF0egIvfbuX277pFy_QITlGRnxTMmhWgqCvDALbEMAGJCAd6TkVDkABOAiZNJUgiknBGgkeRBYVITc445k9jFqxEmsThDWpF7c5oYwXZcGLmXK1EynQp_hcqjtm-i6Urs_L1g2_JpPWSvNB6X5udJ8o4lalWX88otLfQvKaxdSKwVhN5Ul6tu_Szv92-OXaHN01_MHD8PHM7Rl5bbUHWct1MgWS3WONsR7FqWLi9wRPwC-EtwM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+iterative+method+to+compute+minimum+norm+solutions+of+ill-posed+problems+in+Hilbert+spaces&rft.jtitle=Afrika+mathematica&rft.au=Jozi%2C+Meisam&rft.au=Karimi%2C+Saeed&rft.au=Salkuyeh%2C+Davod+Khojasteh&rft.date=2019-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1012-9405&rft.eissn=2190-7668&rft.volume=30&rft.issue=5-6&rft.spage=797&rft.epage=816&rft_id=info:doi/10.1007%2Fs13370-019-00685-0&rft.externalDocID=10_1007_s13370_019_00685_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-9405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-9405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-9405&client=summon |