Greedy is Optimal for Online Restricted Assignment and Smart Grid Scheduling for Unit Size Jobs
We study online scheduling of unit-sized jobs in two related problems, namely, restricted assignment problem and smart grid problem. The input to the two problems are in close analogy but the objective functions are different. We show that the greedy algorithm is an optimal online algorithm for both...
Uloženo v:
| Vydáno v: | Theory of computing systems Ročník 65; číslo 6; s. 1009 - 1032 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-4350, 1433-0490 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study online scheduling of unit-sized jobs in two related problems, namely, restricted assignment problem and smart grid problem. The input to the two problems are in close analogy but the objective functions are different. We show that the greedy algorithm is an optimal online algorithm for both problems. Typically, an online algorithm is proved to be an optimal online algorithm through bounding its competitive ratio and showing a lower bound with matching competitive ratio. However, our analysis does not take this approach. Instead, we prove the optimality without giving the exact bounds on competitive ratio. Roughly speaking, given any online algorithm and a job instance, we show the existence of another job instance for greedy such that (i) the two instances admit the same optimal offline schedule; (ii) the cost of the online algorithm is at least that of the greedy algorithm on the respective job instance. With these properties, we can show that the competitive ratio of the greedy algorithm is the smallest possible. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-4350 1433-0490 |
| DOI: | 10.1007/s00224-021-10037-w |