Greedy is Optimal for Online Restricted Assignment and Smart Grid Scheduling for Unit Size Jobs

We study online scheduling of unit-sized jobs in two related problems, namely, restricted assignment problem and smart grid problem. The input to the two problems are in close analogy but the objective functions are different. We show that the greedy algorithm is an optimal online algorithm for both...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory of computing systems Ročník 65; číslo 6; s. 1009 - 1032
Hlavní autoři: Liu, Fu-Hong, Liu, Hsiang-Hsuan, Wong, Prudence W. H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2021
Springer Nature B.V
Témata:
ISSN:1432-4350, 1433-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study online scheduling of unit-sized jobs in two related problems, namely, restricted assignment problem and smart grid problem. The input to the two problems are in close analogy but the objective functions are different. We show that the greedy algorithm is an optimal online algorithm for both problems. Typically, an online algorithm is proved to be an optimal online algorithm through bounding its competitive ratio and showing a lower bound with matching competitive ratio. However, our analysis does not take this approach. Instead, we prove the optimality without giving the exact bounds on competitive ratio. Roughly speaking, given any online algorithm and a job instance, we show the existence of another job instance for greedy such that (i) the two instances admit the same optimal offline schedule; (ii) the cost of the online algorithm is at least that of the greedy algorithm on the respective job instance. With these properties, we can show that the competitive ratio of the greedy algorithm is the smallest possible.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-021-10037-w