Maximum Matching Sans Maximal Matching: A New Approach for Finding Maximum Matchings in the Data Stream Model

The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science. Despite a significant body of work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass semi-strea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 86; číslo 4; s. 1173 - 1209
Hlavní autoři: Feldman, Moran, Szarf, Ariel
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2024
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science. Despite a significant body of work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass semi-streaming algorithm for it is still a simple greedy algorithm that computes a maximal matching, and this way obtains 1 / 2 -approximation. Some previous works described two/three-pass algorithms that improve over this approximation ratio by using their second and third passes to improve the above mentioned maximal matching. One contribution of this paper continues this line of work by presenting new three-pass semi-streaming algorithms that work along these lines and obtain improved approximation ratios of 0.6111 and 0.5694 for triangle-free and general graphs, respectively. Unfortunately, a recent work Konrad and Naidu (Approximation, randomization, and combinatorial optimization. Algorithms and techniques, APPROX/RANDOM 2021, August 16–18, 2021. LIPIcs, vol 207, pp 19:1–19:18, 2021. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19 ) shows that the strategy of constructing a maximal matching in the first pass and then improving it in further passes has limitations. Additionally, this technique is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a better than 1 / 2 -approximation. Therefore, it is interesting to come up with algorithms that do something else with their first pass (we term such algorithms non-maximal-matching-first algorithms). No such algorithms were previously known, and the main contribution of this paper is describing such algorithms that obtain approximation ratios of 0.5384 and 0.5555 in two and three passes, respectively, for general graphs. The main significance of our results is not in the numerical improvements, but in demonstrating the potential of non-maximal-matching-first algorithms.
AbstractList The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science. Despite a significant body of work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass semi-streaming algorithm for it is still a simple greedy algorithm that computes a maximal matching, and this way obtains 1/2-approximation. Some previous works described two/three-pass algorithms that improve over this approximation ratio by using their second and third passes to improve the above mentioned maximal matching. One contribution of this paper continues this line of work by presenting new three-pass semi-streaming algorithms that work along these lines and obtain improved approximation ratios of 0.6111 and 0.5694 for triangle-free and general graphs, respectively. Unfortunately, a recent work Konrad and Naidu (Approximation, randomization, and combinatorial optimization. Algorithms and techniques, APPROX/RANDOM 2021, August 16–18, 2021. LIPIcs, vol 207, pp 19:1–19:18, 2021. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19) shows that the strategy of constructing a maximal matching in the first pass and then improving it in further passes has limitations. Additionally, this technique is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a better than 1/2-approximation. Therefore, it is interesting to come up with algorithms that do something else with their first pass (we term such algorithms non-maximal-matching-first algorithms). No such algorithms were previously known, and the main contribution of this paper is describing such algorithms that obtain approximation ratios of 0.5384 and 0.5555 in two and three passes, respectively, for general graphs. The main significance of our results is not in the numerical improvements, but in demonstrating the potential of non-maximal-matching-first algorithms.
The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science. Despite a significant body of work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass semi-streaming algorithm for it is still a simple greedy algorithm that computes a maximal matching, and this way obtains 1 / 2 -approximation. Some previous works described two/three-pass algorithms that improve over this approximation ratio by using their second and third passes to improve the above mentioned maximal matching. One contribution of this paper continues this line of work by presenting new three-pass semi-streaming algorithms that work along these lines and obtain improved approximation ratios of 0.6111 and 0.5694 for triangle-free and general graphs, respectively. Unfortunately, a recent work Konrad and Naidu (Approximation, randomization, and combinatorial optimization. Algorithms and techniques, APPROX/RANDOM 2021, August 16–18, 2021. LIPIcs, vol 207, pp 19:1–19:18, 2021. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19 ) shows that the strategy of constructing a maximal matching in the first pass and then improving it in further passes has limitations. Additionally, this technique is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a better than 1 / 2 -approximation. Therefore, it is interesting to come up with algorithms that do something else with their first pass (we term such algorithms non-maximal-matching-first algorithms). No such algorithms were previously known, and the main contribution of this paper is describing such algorithms that obtain approximation ratios of 0.5384 and 0.5555 in two and three passes, respectively, for general graphs. The main significance of our results is not in the numerical improvements, but in demonstrating the potential of non-maximal-matching-first algorithms.
Author Szarf, Ariel
Feldman, Moran
Author_xml – sequence: 1
  givenname: Moran
  orcidid: 0000-0002-1535-2979
  surname: Feldman
  fullname: Feldman, Moran
  email: moranfe3@gmail.com
  organization: Department of Computer Science, University of Haifa
– sequence: 2
  givenname: Ariel
  surname: Szarf
  fullname: Szarf, Ariel
  organization: Department of Mathematics and Computer Science, Open University of Israel
BookMark eNp9UMtOwzAQtFCRaAs_wMkS58D6ESfmVhUKSAUOhbPlOHYfap1ipwL-HrdBIHHgsFppdmZ2dwao5xtvEToncEkAiqsIwHOWAU1FiISMH6E-4YxmkHPSQ30gRZlxQYoTNIhxBUBoIUUfbR71x3Kz2-BH3ZrF0s_xTPuID6he_6DXeISf7Dsebbeh0WaBXRPwZOnrveKvRcRLj9uFxTe61XjWBqvTsKnt-hQdO72O9uy7D9Hr5PZlfJ9Nn-8exqNpZmgBbcarmuVFWYEzeamNA1GBECUT1rFaUus4z2VBjLBgDWPOSimJc4ZCLXReUTZEF51vuvZtZ2OrVs0u-LRSMSAcaC65TCzasUxoYgzWqW1IX4dPRUDtY1VdrCrFqg6xKp5ErBPFRPZzG36t_1F9Ae1Ue94
Cites_doi 10.4230/LIPIcs.ICALP.2021.19
10.1145/3564246.3585110
10.4230/LIPIcs.APPROX-RANDOM.2016.17
10.1145/3230819
10.1145/3154855
10.4230/LIPIcs.MFCS.2018.74
10.4230/LIPIcs.ESA.2017.29
10.1137/1.9781611974782.113
10.1145/3583668.3594570
10.4230/LIPIcs.ICALP.2020.12
10.1137/1.9781611973105.121
10.1109/ICDMW.2016.0092
10.4230/OASIcs.SOSA.2018.14
10.1109/FOCS46700.2020.00041
10.1137/1.9781611973099.41
10.1145/3519935.3520039
10.4230/LIPIcs.APPROX-RANDOM.2014.96
10.1137/1.9781611976465.112
10.48550/arXiv.2307.02968
10.4230/LIPIcs.APPROX-RANDOM.2017.15
10.1007/978-3-642-32512-0_20
10.1145/3406325.3451113
10.1137/1.9781611977073.32
10.1137/1.9781611976496.18
10.48550/arXiv.2307.08772
10.1137/1.9781611973402.55
10.1145/3274668
10.1007/11538462_15
10.4230/LIPIcs.APPROX/RANDOM.2021.19
10.1002/net.3230210203
10.1137/1.9781611974331.ch92
10.1016/j.tcs.2005.09.013
10.1007/s00453-010-9438-5
10.1137/100801901
10.1145/3406325.3451110
10.1137/0202019
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-023-01190-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1209
ExternalDocumentID 10_1007_s00453_023_01190_4
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1357/16; 1357/16
  funderid: http://dx.doi.org/10.13039/501100003977
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c270t-4bd3578b0fc58acf06b066836ef3d92ef445971c6e0ec33fe9991ffc20d6a5b23
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119999900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:27:44 EDT 2025
Sat Nov 29 02:20:34 EST 2025
Fri Feb 21 02:44:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Maximum matching
Semi-streaming algorithms
Multi-pass algorithms
Adversarial order streams
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-4bd3578b0fc58acf06b066836ef3d92ef445971c6e0ec33fe9991ffc20d6a5b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1535-2979
PQID 3014025949
PQPubID 2043795
PageCount 37
ParticipantIDs proquest_journals_3014025949
crossref_primary_10_1007_s00453_023_01190_4
springer_journals_10_1007_s00453_023_01190_4
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Assadi, S., Jambulapati, A., Jin, Y., Sidford, A., Tian, K.: Semi-streaming bipartite matching in fewer passes and optimal space. arXiv e-prints pp. arXiv–2011 (2020)
Kapralov, M.: Better bounds for matchings in the streaming model. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2013), pp. 1679–1697. https://doi.org/10.1137/1.9781611973105.121
Assadi, S.: A simple (1-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximation semi-streaming algorithm for maximum (weighted) matching. CoRR arXiv:abs/2307.02968 (2023). https://doi.org/10.48550/arXiv.2307.02968
Fischer, M., Mitrovic, S., Uitto, J.: Deterministic (1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximate maximum matching with poly(1/ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}) passes in the semi-streaming model and beyond. In: Leonardi, S., Gupta, A. (eds.) STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pp. 248–260. ACM (2022). https://doi.org/10.1145/3519935.3520039
HopcroftJEKarpRMAn n5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{5/2}$$\end{document} algorithm for maximum matchings in bipartite graphsSIAM J. Comput.19732422523133769910.1137/0202019
Kapralov, M.: Space lower bounds for approximating maximum matching in the edge arrival model. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, January 10–13, 2021 (2021), pp. 1874–1893. https://doi.org/10.1137/1.9781611976465.112
Bernstein, A.: Improved bounds for matching in random-order streams. In: Czumaj, A. Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8–11, 2020, Saarbrücken, Germany. LIPIcs, vol. 168, (Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020), pp. 12:1–12:13. https://doi.org/10.4230/LIPIcs.ICALP.2020.12
Konrad, C., Magniez, F., Mathieu, C.: Maximum matching in semi-streaming with few passes. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques—15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15–17, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7408, pp. 231–242 (2012). https://doi.org/10.1007/978-3-642-32512-0_20
EdmondsJMaximum matching and a polyhedron with 0, 1-verticesJ. Res. Natl. Bureau Stand. B196569125–1305556183532
Cormode, G., Jowhari, H., Monemizadeh, M., Muthukrishnan, S.: The sparse awakens: streaming algorithms for matching size estimation in sparse graphs. In: 25th Annual European Symposium on Algorithms, ESA 2017, September 4–6, 2017, Vienna, Austria. LIPIcs, vol. 87, pp. 29:1–29:15 (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.29
Kale, S., Tirodkar, S.: Maximum matching in two, three, and a few more passes over graph streams. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA. LIPIcs, vol. 81 (2017), pp. 15:1–15:21. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
Kapralov, M., Khanna, S., Sudan, M.: Approximating matching size from random streams. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014), pp. 734–751. https://doi.org/10.1137/1.9781611973402.55
McGregor, A., Vorotnikova, S.: Planar matching in streams revisited. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pp. 17:1–17:12 (2016). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.17
Assadi, S., Liu, S.C., Tarjan, R.E.: An auction algorithm for bipartite matching in streaming and massively parallel computation models. In: 4th Symposium on Simplicity in Algorithms (SOSA), pp. 165–171 (2021). https://doi.org/10.1137/1.9781611976496.18
ZelkeMWeighted matching in the semi-streaming modelAlgorithmica2012621–2120288603310.1007/s00453-010-9438-5
Assadi, S., Khanna, S., Li, Y.: On estimating maximum matching size in graph streams. In: Klein, P.N. (ed) Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16–19, pp. 1723–1742. SIAM (2017). https://doi.org/10.1137/1.9781611974782.113
McGregor, A.: Finding graph matchings in data streams. In: Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) and 9th International Workshop on Randomization and Computation (RANDOM) (2005), pp. 170–181. https://doi.org/10.1007/11538462_15
Esfandiari, H., Hajiaghayi, M., Monemizadeh, M.: Finding large matchings in semi-streaming. In: Domeniconi, C., Gullo, F., Bonchi, F., Domingo-Ferrer, J., Baeza-Yates, R., Zhou, Z., Wu, X. (eds.) IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12–15, 2016, Barcelona, Spain, pp. 608–614. IEEE Computer Society (2016). https://doi.org/10.1109/ICDMW.2016.0092
Assadi, S., Kol, G., Saxena, R.R., Yu, H.: Multi-pass graph streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In: Irani, S. (ed) 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 354–364. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00041
FeigenbaumJKannanSMcGregorASuriSZhangJOn graph problems in a semi-streaming modelTheor. Comput. Sci.20053482–3207216218137610.1016/j.tcs.2005.09.013
BalinskiMLGonzalezJMaximum matchings in bipartite graphs via strong spanning treesNetworks1991212165179109383710.1002/net.3230210203
Huang, S., Su, H.: (1-ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\varepsilon )$$\end{document}-approximate maximum weighted matching in poly(1/ε,logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/\varepsilon , \log n)$$\end{document} time in the distributed and parallel settings. In: Oshman, R., Nolin, A., Halldórsson, M.M., Balliu, A. (eds.), ACM Symposium on Principles of Distributed Computing (PODC), pp. 44–54. ACM (2023). https://doi.org/10.1145/3583668.3594570
Konrad, C.: A simple augmentation method for matchings with applications to streaming algorithms. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS). LIPIcs, vol. 117 (2018), pp. 74:1–74:16. https://doi.org/10.4230/LIPIcs.MFCS.2018.74
Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A., Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications to finding matchings and related problems in dynamic graph streams. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2016), pp. 1326–1344. https://doi.org/10.1137/1.9781611974331.ch92
McGregor, A., Vorotnikova, S.: A simple, space-efficient, streaming algorithm for matchings in low arboricity graphs. In: 1st Symposium on Simplicity in Algorithms (SOSA). OASICS, vol. 61, pp. 14:1–14:4 (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.14
Assadi, S., N, V.: Graph streaming lower bounds for parameter estimation and property testing via a streaming XOR lemma. In: Khuller, S., Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, June 21–25, 2021, pp. 612–625. ACM (2021). https://doi.org/10.1145/3406325.3451110
AhnKJGuhaSAccess to data and number of iterations: Dual primal algorithms for maximum matching under resource constraintsACM Trans. Parallel Comput.20184417:117:4010.1145/3154855
Assadi, S., Behnezhad, S.: Beating two-thirds for random-order streaming matching. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12–16, 2021. LIPIcs, vol. 198, pp. 19:1–19:13 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.19
Assadi, S., Behnezhad, S., Khanna, S., Li, H.: On regularity lemma and barriers in streaming and dynamic matching. In: Saha, B., Servedio, R.A. (eds.) 55th Annual ACM Symposium on Theory of Computing (STOC), pp. 131–144. ACM (2023). https://doi.org/10.1145/3564246.3585110
Konrad, C., Naidu, K.K.: On two-pass streaming algorithms for maximum bipartite matching. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16–18, 2021. LIPIcs, vol. 207 (2021), pp. 19:1–19:18. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19
Assadi, S.: A two-pass (conditional) lower bound for semi-streaming maximum matching. In: Naor, J.S., Buchbinder, N. (eds.) ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 708–742. SIAM (2022). https://doi.org/10.1137/1.9781611977073.32
PazASchwartzmanGA (2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{ma
1190_CR24
H Esfandiari (1190_CR17) 2018; 14
1190_CR23
1190_CR25
1190_CR28
1190_CR27
1190_CR29
1190_CR20
1190_CR22
1190_CR21
KJ Ahn (1190_CR26) 2018; 4
J Edmonds (1190_CR3) 1965; 69
ML Balinski (1190_CR2) 1991; 21
1190_CR9
1190_CR8
1190_CR7
1190_CR6
1190_CR13
1190_CR12
1190_CR34
1190_CR15
JE Hopcroft (1190_CR4) 1973; 2
1190_CR14
J Feigenbaum (1190_CR5) 2005; 348
1190_CR1
1190_CR16
1190_CR38
1190_CR19
1190_CR18
1190_CR31
1190_CR30
L Epstein (1190_CR35) 2011; 25
1190_CR11
1190_CR33
A Paz (1190_CR37) 2019; 15
1190_CR10
1190_CR32
M Zelke (1190_CR36) 2012; 62
References_xml – reference: Konrad, C.: A simple augmentation method for matchings with applications to streaming algorithms. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS). LIPIcs, vol. 117 (2018), pp. 74:1–74:16. https://doi.org/10.4230/LIPIcs.MFCS.2018.74
– reference: Azarmehr, A., Behnezhad, S., Roghani, M.: Fully dynamic matching: (2-√\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\surd $$\end{document}2)-approximation in polylog update time. CoRR arXiv:abs/2307.08772 (2023). https://doi.org/10.48550/arXiv.2307.08772
– reference: McGregor, A.: Finding graph matchings in data streams. In: Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) and 9th International Workshop on Randomization and Computation (RANDOM) (2005), pp. 170–181. https://doi.org/10.1007/11538462_15
– reference: Assadi, S., Jambulapati, A., Jin, Y., Sidford, A., Tian, K.: Semi-streaming bipartite matching in fewer passes and optimal space. arXiv e-prints pp. arXiv–2011 (2020)
– reference: McGregor, A., Vorotnikova, S.: Planar matching in streams revisited. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pp. 17:1–17:12 (2016). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.17
– reference: Huang, S., Su, H.: (1-ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\varepsilon )$$\end{document}-approximate maximum weighted matching in poly(1/ε,logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/\varepsilon , \log n)$$\end{document} time in the distributed and parallel settings. In: Oshman, R., Nolin, A., Halldórsson, M.M., Balliu, A. (eds.), ACM Symposium on Principles of Distributed Computing (PODC), pp. 44–54. ACM (2023). https://doi.org/10.1145/3583668.3594570
– reference: EsfandiariHHajiaghayiMLiaghatVMonemizadehMOnakKStreaming algorithms for estimating the matching size in planar graphs and beyondACM Trans. Algorithms201814448:148:23387432010.1145/3230819
– reference: Kale, S., Tirodkar, S.: Maximum matching in two, three, and a few more passes over graph streams. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA. LIPIcs, vol. 81 (2017), pp. 15:1–15:21. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
– reference: Konrad, C., Magniez, F., Mathieu, C.: Maximum matching in semi-streaming with few passes. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques—15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15–17, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7408, pp. 231–242 (2012). https://doi.org/10.1007/978-3-642-32512-0_20
– reference: Bernstein, A., Dudeja, A., Langley, Z.: A framework for dynamic matching in weighted graphs. In: Khuller, S., Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, June 21–25, 2021, pp. 668–681. ACM (2021). https://doi.org/10.1145/3406325.3451113
– reference: Crouch, M.S., Stubbs, D.M.: Improved streaming algorithms for weighted matching, via unweighted matching. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM). LIPIcs, vol. 28, pp. 96–104 (2014). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
– reference: McGregor, A., Vorotnikova, S.: A simple, space-efficient, streaming algorithm for matchings in low arboricity graphs. In: 1st Symposium on Simplicity in Algorithms (SOSA). OASICS, vol. 61, pp. 14:1–14:4 (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.14
– reference: Assadi, S.: A simple (1-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximation semi-streaming algorithm for maximum (weighted) matching. CoRR arXiv:abs/2307.02968 (2023). https://doi.org/10.48550/arXiv.2307.02968
– reference: Assadi, S., N, V.: Graph streaming lower bounds for parameter estimation and property testing via a streaming XOR lemma. In: Khuller, S., Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, June 21–25, 2021, pp. 612–625. ACM (2021). https://doi.org/10.1145/3406325.3451110
– reference: Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A., Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications to finding matchings and related problems in dynamic graph streams. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2016), pp. 1326–1344. https://doi.org/10.1137/1.9781611974331.ch92
– reference: Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum bipartite matching. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2012), pp. 468–485. https://doi.org/10.1137/1.9781611973099.41
– reference: Assadi, S., Behnezhad, S., Khanna, S., Li, H.: On regularity lemma and barriers in streaming and dynamic matching. In: Saha, B., Servedio, R.A. (eds.) 55th Annual ACM Symposium on Theory of Computing (STOC), pp. 131–144. ACM (2023). https://doi.org/10.1145/3564246.3585110
– reference: HopcroftJEKarpRMAn n5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{5/2}$$\end{document} algorithm for maximum matchings in bipartite graphsSIAM J. Comput.19732422523133769910.1137/0202019
– reference: Cormode, G., Jowhari, H., Monemizadeh, M., Muthukrishnan, S.: The sparse awakens: streaming algorithms for matching size estimation in sparse graphs. In: 25th Annual European Symposium on Algorithms, ESA 2017, September 4–6, 2017, Vienna, Austria. LIPIcs, vol. 87, pp. 29:1–29:15 (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.29
– reference: AhnKJGuhaSAccess to data and number of iterations: Dual primal algorithms for maximum matching under resource constraintsACM Trans. Parallel Comput.20184417:117:4010.1145/3154855
– reference: EpsteinLLevinAMestreJSegevDImproved approximation guarantees for weighted matching in the semi-streaming modelSIAM J. Discrete Math.201125312511265283759510.1137/100801901
– reference: Assadi, S., Liu, S.C., Tarjan, R.E.: An auction algorithm for bipartite matching in streaming and massively parallel computation models. In: 4th Symposium on Simplicity in Algorithms (SOSA), pp. 165–171 (2021). https://doi.org/10.1137/1.9781611976496.18
– reference: Assadi, S., Kol, G., Saxena, R.R., Yu, H.: Multi-pass graph streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In: Irani, S. (ed) 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 354–364. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00041
– reference: BalinskiMLGonzalezJMaximum matchings in bipartite graphs via strong spanning treesNetworks1991212165179109383710.1002/net.3230210203
– reference: FeigenbaumJKannanSMcGregorASuriSZhangJOn graph problems in a semi-streaming modelTheor. Comput. Sci.20053482–3207216218137610.1016/j.tcs.2005.09.013
– reference: Esfandiari, H., Hajiaghayi, M., Monemizadeh, M.: Finding large matchings in semi-streaming. In: Domeniconi, C., Gullo, F., Bonchi, F., Domingo-Ferrer, J., Baeza-Yates, R., Zhou, Z., Wu, X. (eds.) IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12–15, 2016, Barcelona, Spain, pp. 608–614. IEEE Computer Society (2016). https://doi.org/10.1109/ICDMW.2016.0092
– reference: Kapralov, M.: Better bounds for matchings in the streaming model. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2013), pp. 1679–1697. https://doi.org/10.1137/1.9781611973105.121
– reference: Kapralov, M., Khanna, S., Sudan, M.: Approximating matching size from random streams. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014), pp. 734–751. https://doi.org/10.1137/1.9781611973402.55
– reference: Assadi, S., Behnezhad, S.: Beating two-thirds for random-order streaming matching. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12–16, 2021. LIPIcs, vol. 198, pp. 19:1–19:13 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.19
– reference: PazASchwartzmanGA (2+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 + \epsilon $$\end{document})-approximation for maximum weight matching in the semi-streaming modelACM Trans. Algorithms201915218:118:15395109110.1145/3274668
– reference: Bernstein, A.: Improved bounds for matching in random-order streams. In: Czumaj, A. Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8–11, 2020, Saarbrücken, Germany. LIPIcs, vol. 168, (Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020), pp. 12:1–12:13. https://doi.org/10.4230/LIPIcs.ICALP.2020.12
– reference: Kapralov, M.: Space lower bounds for approximating maximum matching in the edge arrival model. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, January 10–13, 2021 (2021), pp. 1874–1893. https://doi.org/10.1137/1.9781611976465.112
– reference: Assadi, S., Khanna, S., Li, Y.: On estimating maximum matching size in graph streams. In: Klein, P.N. (ed) Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16–19, pp. 1723–1742. SIAM (2017). https://doi.org/10.1137/1.9781611974782.113
– reference: EdmondsJMaximum matching and a polyhedron with 0, 1-verticesJ. Res. Natl. Bureau Stand. B196569125–1305556183532
– reference: Assadi, S.: A two-pass (conditional) lower bound for semi-streaming maximum matching. In: Naor, J.S., Buchbinder, N. (eds.) ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 708–742. SIAM (2022). https://doi.org/10.1137/1.9781611977073.32
– reference: ZelkeMWeighted matching in the semi-streaming modelAlgorithmica2012621–2120288603310.1007/s00453-010-9438-5
– reference: Konrad, C., Naidu, K.K.: On two-pass streaming algorithms for maximum bipartite matching. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16–18, 2021. LIPIcs, vol. 207 (2021), pp. 19:1–19:18. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19
– reference: Fischer, M., Mitrovic, S., Uitto, J.: Deterministic (1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximate maximum matching with poly(1/ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}) passes in the semi-streaming model and beyond. In: Leonardi, S., Gupta, A. (eds.) STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pp. 248–260. ACM (2022). https://doi.org/10.1145/3519935.3520039
– ident: 1190_CR32
  doi: 10.4230/LIPIcs.ICALP.2021.19
– ident: 1190_CR24
  doi: 10.1145/3564246.3585110
– ident: 1190_CR18
  doi: 10.4230/LIPIcs.APPROX-RANDOM.2016.17
– volume: 14
  start-page: 48:1
  issue: 4
  year: 2018
  ident: 1190_CR17
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3230819
– volume: 4
  start-page: 17:1
  issue: 4
  year: 2018
  ident: 1190_CR26
  publication-title: ACM Trans. Parallel Comput.
  doi: 10.1145/3154855
– ident: 1190_CR9
  doi: 10.4230/LIPIcs.MFCS.2018.74
– ident: 1190_CR16
  doi: 10.4230/LIPIcs.ESA.2017.29
– ident: 1190_CR20
  doi: 10.1137/1.9781611974782.113
– ident: 1190_CR30
  doi: 10.1145/3583668.3594570
– ident: 1190_CR33
  doi: 10.4230/LIPIcs.ICALP.2020.12
– ident: 1190_CR8
  doi: 10.1137/1.9781611973105.121
– ident: 1190_CR12
  doi: 10.1109/ICDMW.2016.0092
– ident: 1190_CR19
  doi: 10.4230/OASIcs.SOSA.2018.14
– ident: 1190_CR21
  doi: 10.1109/FOCS46700.2020.00041
– ident: 1190_CR7
  doi: 10.1137/1.9781611973099.41
– ident: 1190_CR29
  doi: 10.1145/3519935.3520039
– ident: 1190_CR34
  doi: 10.4230/LIPIcs.APPROX-RANDOM.2014.96
– ident: 1190_CR6
  doi: 10.1137/1.9781611976465.112
– ident: 1190_CR31
  doi: 10.48550/arXiv.2307.02968
– ident: 1190_CR10
  doi: 10.4230/LIPIcs.APPROX-RANDOM.2017.15
– ident: 1190_CR11
  doi: 10.1007/978-3-642-32512-0_20
– ident: 1190_CR38
  doi: 10.1145/3406325.3451113
– ident: 1190_CR13
  doi: 10.1137/1.9781611977073.32
– ident: 1190_CR27
– ident: 1190_CR28
  doi: 10.1137/1.9781611976496.18
– ident: 1190_CR14
  doi: 10.48550/arXiv.2307.08772
– ident: 1190_CR15
  doi: 10.1137/1.9781611973402.55
– volume: 15
  start-page: 18:1
  issue: 2
  year: 2019
  ident: 1190_CR37
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3274668
– ident: 1190_CR25
  doi: 10.1007/11538462_15
– ident: 1190_CR1
  doi: 10.4230/LIPIcs.APPROX/RANDOM.2021.19
– volume: 21
  start-page: 165
  issue: 2
  year: 1991
  ident: 1190_CR2
  publication-title: Networks
  doi: 10.1002/net.3230210203
– volume: 69
  start-page: 55
  issue: 125–130
  year: 1965
  ident: 1190_CR3
  publication-title: J. Res. Natl. Bureau Stand. B
– ident: 1190_CR23
  doi: 10.1137/1.9781611974331.ch92
– volume: 348
  start-page: 207
  issue: 2–3
  year: 2005
  ident: 1190_CR5
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.09.013
– volume: 62
  start-page: 1
  issue: 1–2
  year: 2012
  ident: 1190_CR36
  publication-title: Algorithmica
  doi: 10.1007/s00453-010-9438-5
– volume: 25
  start-page: 1251
  issue: 3
  year: 2011
  ident: 1190_CR35
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/100801901
– ident: 1190_CR22
  doi: 10.1145/3406325.3451110
– volume: 2
  start-page: 225
  issue: 4
  year: 1973
  ident: 1190_CR4
  publication-title: SIAM J. Comput.
  doi: 10.1137/0202019
SSID ssj0012796
Score 2.3899024
Snippet The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science....
The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1173
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Combinatorial analysis
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Data transmission
Graphs
Greedy algorithms
Matching
Mathematical analysis
Mathematics of Computing
Theory of Computation
Title Maximum Matching Sans Maximal Matching: A New Approach for Finding Maximum Matchings in the Data Stream Model
URI https://link.springer.com/article/10.1007/s00453-023-01190-4
https://www.proquest.com/docview/3014025949
Volume 86
WOSCitedRecordID wos001119999900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWhIA9sYCkPJ3HYKqBioBWigLpFtmNLHRpQkyJ-Pmc3aQWCAVa_FJ3tu-9yvvsAzmPOtcylT3WYK8oinlJhuKa-tGxISYIK0CUK3yfDIR-P04c6KaxsXrs3IUmnqZfJbhZ92Jijff9jE6DZOmygueOWsOFx9LKMHQSJY-WyvPOUoYGuU2V-XuOrOVphzG9hUWdt-u3_fecObNfokvQWx2EX1nSxB-2GuYHUF3kfpgPxMZnOp2SAmtj-gyIjNFnEteL8pvWK9AhqQdKrC48TRLikP3GJMOT7EiWZFAThJLkRlSA22i2w0xLtHMBz__bp-o7WxAtUBYlXUSZzWwRHekZFXCjjxRKRCQ9jbcI8DbRhDP0QX8Xa0yoMjbYo0xgVeHksIhmEh9AqXgt9BMQEIvHxoGgmQ2bQOdE4TsQp02mkDOMduGjkn70t6mtky0rKTpIZSjJzksxYB7rNFmX1XSsz5ySiF8fSDlw2W7Lq_n21478NP4GtABHN4tlOF1rVbK5PYVO9V5NydubO4CfcwdXW
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4omuhFfEYUdQ_etElpty9vRCUYgRhBw22z3e4mPVANLcaf7-zSQiR60Ou-0szOznzTeQFc-mEo4yRuWdJNhEW9MLK4CqXVinU3pCBAAWgShXvBYBCOx9FTmRSWV9HulUvSSOpFsptGH9rnqON_dAI0XYcNihpLV8x_Hr4ufAdOYLpy6b7zFkUFXabK_HzGd3W0xJgrblGjbTr1_33nLuyU6JK05-ywB2sy24d61bmBlA_5ACZ9_plOZhPSR0ms_0GRIaosYkZxfzV6Q9oEpSBpl4XHCSJc0klNIgxZPSInaUYQTpI7XnCivd0cJ3WjnUN46dyPbrtW2XjBEk5gFxaNE10EJ7aV8EIulO3HiExC15fKTSJHKkrRDmkJX9pSuK6SGmUqJRw78bkXO-4R1LK3TB4DUQ4PWsgoksYuVWicSFzH_YjKyBOKhg24qujP3uf1NdiikrKhJENKMkNJRhvQrK6IlW8tZ8ZIRCuORg24rq5kOf37aSd_W34BW91Rv8d6D4PHU9h2EN3MQ3iaUCumM3kGm-KjSPPpueHHL-wg2Lo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RSDATlwg2p9ZH1wm4AKxDZNGqDdqjRNpB5Wpq1D_HyctN1gggPimpeqOIk_1_5sgEvX90WcxJYhnIQbtO0HBpO-MKxYVUPyPHwANVG46_X7_mgUDL6w-HW0e-WSLDgNKktTlrcmiWwtiG8KiSj_o4oFUmRoug4bVAXSK3t9-LrwI9iertClatAbFJV1SZv5eY3vqmmJN1dcpFrzhPX_f_Mu7JSok3SKY7IHayLbh3pV0YGUF_wAxj32kY7nY9LDF1r9myJDVGVEt-L8qvWGdAi-jqRTJiQniHxJmGqCDFldYkbSjCDMJHcsZ0R5wRl2qgI8h_AS3j_fPhhlQQaD256ZGzROVHKc2JS87TMuTTdGxOI7rpBOEthCUor2icVdYQruOFIo9Cklt83EZe3Ydo6glr1l4hiItJln4QESNHaoRKNF4DjmBlQEbS6p34CrShbRpMi7ES0yLOudjHAnI72TEW1AsxJXVN7BWaSNR7TuaNCA60o8y-7fVzv52_AL2BrchVH3sf90Cts2gp4isqcJtXw6F2ewyd_zdDY910fzE4ny4Z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Matching+Sans+Maximal+Matching%3A+A+New+Approach+for+Finding+Maximum+Matchings+in+the+Data+Stream+Model&rft.jtitle=Algorithmica&rft.au=Feldman+Moran&rft.au=Szarf+Ariel&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=86&rft.issue=4&rft.spage=1173&rft.epage=1209&rft_id=info:doi/10.1007%2Fs00453-023-01190-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon