Design and development of compressed video sensing technique using shuffled sailfish optimization algorithm
In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. Thi...
Gespeichert in:
| Veröffentlicht in: | Signal, image and video processing Jg. 18; H. 4; S. 3537 - 3551 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.06.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1863-1703, 1863-1711 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. This paper devises a technique, namely a Shuffled sailfish optimizer (SSFO) for compressive video sensing using an encoder and decoder. The input video is divided into various Groups of Pictures and non-key frames. The video frames are divided into non-over-blocking blocks and every block is termed a vectorized column. The measurement vectors are quantized with Space Time Quantization and the bits linked with GOP are crowded in the packet and fed to the decoder once undergoing Huffman encoding. Once the decoder obtains the packet, it rebuilds GOP, and then the joint reconstruction is done with the proposed SSFO technique. Here, the proposed SSFO is obtained by combining the shuffled shepherd optimization algorithm, and the Sailfish optimizer. It utilizes a similar measurement matrix. The proposed SSFO outperformed with the highest Peak signal to noise ratio of 54.362 dB, Second derivative like measure of enhancement of 58.081 dB and structural similarity index measure of 0.927. |
|---|---|
| AbstractList | In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. This paper devises a technique, namely a Shuffled sailfish optimizer (SSFO) for compressive video sensing using an encoder and decoder. The input video is divided into various Groups of Pictures and non-key frames. The video frames are divided into non-over-blocking blocks and every block is termed a vectorized column. The measurement vectors are quantized with Space Time Quantization and the bits linked with GOP are crowded in the packet and fed to the decoder once undergoing Huffman encoding. Once the decoder obtains the packet, it rebuilds GOP, and then the joint reconstruction is done with the proposed SSFO technique. Here, the proposed SSFO is obtained by combining the shuffled shepherd optimization algorithm, and the Sailfish optimizer. It utilizes a similar measurement matrix. The proposed SSFO outperformed with the highest Peak signal to noise ratio of 54.362 dB, Second derivative like measure of enhancement of 58.081 dB and structural similarity index measure of 0.927. In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. This paper devises a technique, namely a Shuffled sailfish optimizer (SSFO) for compressive video sensing using an encoder and decoder. The input video is divided into various Groups of Pictures and non-key frames. The video frames are divided into non-over-blocking blocks and every block is termed a vectorized column. The measurement vectors are quantized with Space Time Quantization and the bits linked with GOP are crowded in the packet and fed to the decoder once undergoing Huffman encoding. Once the decoder obtains the packet, it rebuilds GOP, and then the joint reconstruction is done with the proposed SSFO technique. Here, the proposed SSFO is obtained by combining the shuffled shepherd optimization algorithm, and the Sailfish optimizer. It utilizes a similar measurement matrix. The proposed SSFO outperformed with the highest Peak signal to noise ratio of 54.362 dB, Second derivative like measure of enhancement of 58.081 dB and structural similarity index measure of 0.927. |
| Author | Gayathri, D. PushpaLakshmi, R. |
| Author_xml | – sequence: 1 givenname: D. surname: Gayathri fullname: Gayathri, D. email: gayathrideivasikamani870@gmail.com organization: Electronics and Communication Engineering, PSNA College of Engineering and Technology – sequence: 2 givenname: R. surname: PushpaLakshmi fullname: PushpaLakshmi, R. organization: Information Technology, PSNA College of Engineering and Technology |
| BookMark | eNp9kE9PwzAMxSM0JMbYF-AUiXMhbrqmPaLxV5rEZfeoa5wto01K0k6CT0-2Irjhi_2k52frd0km1lkk5BrYLTAm7gKAyFnC0ixhnEGZwBmZQpHzBATA5Hdm_ILMQ9izWDwVRV5MyfsDBrO1tLKKKjxg47oWbU-dprVrO48hoKIHo9DRgDYYu6U91jtrPgakw0mH3aB1E22hMo02YUdd15vWfFW9cTG62Tpv-l17Rc511QSc__QZWT89rpcvyert-XV5v0rqVLA-4ViqDIVa5FkBCtVmo3gtEDJeKpHzjIGuAfRGLBa1LlkUjBVM66KGSm2Az8jNGNt5F58Mvdy7wdt4UfJ0kZdClEUWXenoqr0LwaOWnTdt5T8lMHnEKkesMmKVJ6zyGM3HpRDNdov-L_qfrW8hVH7u |
| Cites_doi | 10.1142/S0219691321500211 10.1007/s11042-016-3390-6 10.1155/2017/4589124 10.1109/TCSVT.2012.2207269 10.1016/j.neucom.2020.04.072 10.3390/s20010206 10.1155/2016/6950592 10.1504/IJMC.2019.102723 10.1109/5.959344 10.1109/TCSVT.2020.2978703 10.1016/j.dsp.2019.102591 10.1109/TSP.2011.2170977 10.1109/ACCESS.2019.2954140 10.1016/j.engappai.2019.01.001 10.1016/j.jvcir.2019.102734 10.1155/2012/352167 10.1155/2015/562840 10.1007/s11042-013-1743-y 10.1108/EC-10-2019-0481 10.1109/PROC.1985.13240 10.1109/PCS.2009.5167431 10.1109/TMM.2020.2975420 10.1109/ICIP.2009.5414631 10.1109/ICASSP.2009.4959797 10.1109/ICDSP.2007.4288604 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s11760-024-03019-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: ProQuest advanced technologies & aerospace journals url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| EndPage | 3551 |
| ExternalDocumentID | 10_1007_s11760_024_03019_1 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c270t-3e9d4e7d56481dedbbd3c7e1439d763401fc11fb755cf90fc10080ff8c1adb13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-1703 |
| IngestDate | Thu Oct 09 07:10:40 EDT 2025 Sat Nov 29 05:31:02 EST 2025 Fri Feb 21 02:45:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Compressed video sensing Decoder Space–time quantization Encoder Block partitioning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-3e9d4e7d56481dedbbd3c7e1439d763401fc11fb755cf90fc10080ff8c1adb13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256977984 |
| PQPubID | 2044169 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3256977984 crossref_primary_10_1007_s11760_024_03019_1 springer_journals_10_1007_s11760_024_03019_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Ji, Li, Wu (CR12) 2017 Kaveh, Zaerreza (CR24) 2020; 37 Li, Liu, He, Ma (CR27) 2016; 10 Chen, Chen, Qin, Kuo (CR9) 2015; 74 CR10 Angayarkanni, Radha, Akshaya (CR11) 2019; 17 Kuo, Gao, Zhang, Chen (CR14) 2017; 76 Chen, Wu, Zhou, Zhang (CR2) 2020; 20 Iliadis, Spinoulas, Katsaggelos (CR3) 2020; 96 Di Laura, Pajuelo, Kemper (CR16) 2016 Estes (CR17) 1985; 73 CR8 Song, Zhang, Tang, Tang, Yang (CR4) 2020; 406 Li, Liu, Xue, Li (CR1) 2015; 11 Chen, Chen, Su, Peng, Ling (CR6) 2020; 66 Shadravan, Naji, Bardsiri (CR25) 2019; 80 CR26 Liu, Zhu, Zhang, Cho (CR15) 2012; 8 Kumar, Sawhney, Samarasekera, Hsu, Tao, Guo, Hanna, Pope, Wildes, Hirvonen, Hansen (CR18) 2001; 89 CR22 Shi, Liu, Jiang, Zhao (CR5) 2020; 31 CR21 CR20 Zhou, Chen, Zhang, Ding, Zhang (CR7) 2019; 7 Liu, Li, Pados (CR23) 2012; 23 Do, Gan, Nguyen, Tran (CR19) 2011; 60 Sekar, Ravi (CR28) 2021; 19 Li, Lan, Yang, Xue, Zheng (CR13) 2017; 55 C Chen (3019_CR2) 2020; 20 R Sekar (3019_CR28) 2021; 19 3019_CR10 Y Kuo (3019_CR14) 2017; 76 A Kaveh (3019_CR24) 2020; 37 M Iliadis (3019_CR3) 2020; 96 C Zhou (3019_CR7) 2019; 7 Y Liu (3019_CR23) 2012; 23 S Shadravan (3019_CR25) 2019; 80 X Li (3019_CR13) 2017; 55 W Shi (3019_CR5) 2020; 31 3019_CR8 J Chen (3019_CR9) 2015; 74 TT Do (3019_CR19) 2011; 60 3019_CR21 3019_CR22 R Li (3019_CR27) 2016; 10 J Chen (3019_CR6) 2020; 66 3019_CR26 Y Liu (3019_CR15) 2012; 8 Y Song (3019_CR4) 2020; 406 V Angayarkanni (3019_CR11) 2019; 17 C Di Laura (3019_CR16) 2016 JE Estes (3019_CR17) 1985; 73 3019_CR20 R Kumar (3019_CR18) 2001; 89 R Li (3019_CR1) 2015; 11 B Ji (3019_CR12) 2017 |
| References_xml | – ident: CR22 – volume: 19 start-page: 2150021 issue: 6 year: 2021 ident: CR28 article-title: Differential pulse code modulation and motion aligned optimal reconstruction for block-based compressive video sensing using conditional autoregressive-salp swarm algorithm publication-title: Int. J. Wavelets Multiresolution Inf. Process. doi: 10.1142/S0219691321500211 – volume: 76 start-page: 7321 issue: 5 year: 2017 end-page: 7339 ident: CR14 article-title: A new multiple frames decoding and frame wise measurement for compressed video sensing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-3390-6 – year: 2017 ident: CR12 article-title: Rate-distortion and rate-energy-distortion evaluations of compressive-sensing video coding publication-title: Int. J. Digit. Multimed. Broadcast. doi: 10.1155/2017/4589124 – ident: CR10 – volume: 23 start-page: 438 issue: 3 year: 2012 end-page: 444 ident: CR23 article-title: Motion-aware decoding of compressed-sensed video publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2207269 – volume: 406 start-page: 34 year: 2020 end-page: 48 ident: CR4 article-title: Local and nonlocal constraints for compressed sensing video and multi-view image recovery publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.072 – volume: 20 start-page: 206 issue: 1 year: 2020 ident: CR2 article-title: JsrNet: a joint sampling-reconstruction frameworkfor distributed compressive video sensing publication-title: Sensors doi: 10.3390/s20010206 – volume: 10 start-page: 321 issue: 1 year: 2016 end-page: 340 ident: CR27 article-title: Space-time quantization and motion-aligned reconstruction for block-based compressive video sensing publication-title: KSII Trans. Internet Inf. Syst. (TIIS) – year: 2016 ident: CR16 article-title: A novel steganography technique for SDTV-H.264/AVC encoded video publication-title: Int. J. Digit. Multimed. Broadcast. doi: 10.1155/2016/6950592 – ident: CR8 – volume: 55 start-page: 66 year: 2017 end-page: 79 ident: CR13 article-title: A new compressive sensing video coding framework based on Gaussian mixture model publication-title: Signal Process.: Image Commun. – volume: 17 start-page: 727 issue: 6 year: 2019 end-page: 745 ident: CR11 article-title: Multi-view video codec using compressive sensing for wireless video sensor networks publication-title: Int. J. Mobile Commun. doi: 10.1504/IJMC.2019.102723 – ident: CR21 – volume: 89 start-page: 1518 issue: 10 year: 2001 end-page: 1539 ident: CR18 article-title: Aerial video surveillance and exploitation publication-title: Proc. IEEE doi: 10.1109/5.959344 – volume: 31 start-page: 425 issue: 2 year: 2020 end-page: 438 ident: CR5 article-title: Video compressed sensing using a convolutional neural network publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2020.2978703 – volume: 96 start-page: 102591 year: 2020 ident: CR3 article-title: Deepbinarymask: learning a binary mask for video compressive sensing publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2019.102591 – volume: 60 start-page: 139 issue: 1 year: 2011 end-page: 154 ident: CR19 article-title: Fast and efficient compressive sensing using structurally random matrices publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2170977 – volume: 7 start-page: 166606 year: 2019 end-page: 166613 ident: CR7 article-title: MH-Net: a learnable multi-hypothesis networkfor compressed video sensing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954140 – volume: 80 start-page: 20 year: 2019 end-page: 34 ident: CR25 article-title: The sailfish optimizer: a novel natureinspired metaheuristic algorithm forsolving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.01.001 – volume: 66 start-page: 102734 year: 2020 ident: CR6 article-title: Video compressed sensing reconstruction based on structural groupsparsity and successive approximation estimation model publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.102734 – volume: 8 start-page: 352167 issue: 12 year: 2012 ident: CR15 article-title: Distributed compressed video sensing in camera sensor networks publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2012/352167 – volume: 11 start-page: 562840 issue: 8 year: 2015 ident: CR1 article-title: Compressive-sensing-based video codec by autoregressive prediction and adaptive residual recovery publication-title: Int. J. Distrib. Sensor Netw. doi: 10.1155/2015/562840 – ident: CR26 – volume: 74 start-page: 2085 issue: 6 year: 2015 end-page: 2108 ident: CR9 article-title: An elastic net-based hybrid hypothesis methodfor compressed video sensing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-013-1743-y – ident: CR20 – volume: 37 start-page: 2357 issue: 7 year: 2020 end-page: 2389 ident: CR24 article-title: Shuffled shepherdoptimization method: a newMeta-heuristic algorithm publication-title: Eng. Comput. doi: 10.1108/EC-10-2019-0481 – volume: 73 start-page: 1097 issue: 6 year: 1985 end-page: 1107 ident: CR17 article-title: Geographic applications of remotely sensed data publication-title: Proc. IEEE doi: 10.1109/PROC.1985.13240 – volume: 11 start-page: 562840 issue: 8 year: 2015 ident: 3019_CR1 publication-title: Int. J. Distrib. Sensor Netw. doi: 10.1155/2015/562840 – year: 2017 ident: 3019_CR12 publication-title: Int. J. Digit. Multimed. Broadcast. doi: 10.1155/2017/4589124 – volume: 17 start-page: 727 issue: 6 year: 2019 ident: 3019_CR11 publication-title: Int. J. Mobile Commun. doi: 10.1504/IJMC.2019.102723 – volume: 23 start-page: 438 issue: 3 year: 2012 ident: 3019_CR23 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2207269 – volume: 74 start-page: 2085 issue: 6 year: 2015 ident: 3019_CR9 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-013-1743-y – volume: 60 start-page: 139 issue: 1 year: 2011 ident: 3019_CR19 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2170977 – ident: 3019_CR26 – volume: 96 start-page: 102591 year: 2020 ident: 3019_CR3 publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2019.102591 – volume: 7 start-page: 166606 year: 2019 ident: 3019_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954140 – volume: 31 start-page: 425 issue: 2 year: 2020 ident: 3019_CR5 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2020.2978703 – volume: 406 start-page: 34 year: 2020 ident: 3019_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.072 – year: 2016 ident: 3019_CR16 publication-title: Int. J. Digit. Multimed. Broadcast. doi: 10.1155/2016/6950592 – volume: 19 start-page: 2150021 issue: 6 year: 2021 ident: 3019_CR28 publication-title: Int. J. Wavelets Multiresolution Inf. Process. doi: 10.1142/S0219691321500211 – volume: 37 start-page: 2357 issue: 7 year: 2020 ident: 3019_CR24 publication-title: Eng. Comput. doi: 10.1108/EC-10-2019-0481 – ident: 3019_CR22 doi: 10.1109/PCS.2009.5167431 – ident: 3019_CR8 doi: 10.1109/TMM.2020.2975420 – volume: 80 start-page: 20 year: 2019 ident: 3019_CR25 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.01.001 – volume: 8 start-page: 352167 issue: 12 year: 2012 ident: 3019_CR15 publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2012/352167 – ident: 3019_CR21 doi: 10.1109/ICIP.2009.5414631 – volume: 66 start-page: 102734 year: 2020 ident: 3019_CR6 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.102734 – volume: 76 start-page: 7321 issue: 5 year: 2017 ident: 3019_CR14 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-3390-6 – ident: 3019_CR20 doi: 10.1109/ICASSP.2009.4959797 – ident: 3019_CR10 doi: 10.1109/ICDSP.2007.4288604 – volume: 73 start-page: 1097 issue: 6 year: 1985 ident: 3019_CR17 publication-title: Proc. IEEE doi: 10.1109/PROC.1985.13240 – volume: 89 start-page: 1518 issue: 10 year: 2001 ident: 3019_CR18 publication-title: Proc. IEEE doi: 10.1109/5.959344 – volume: 20 start-page: 206 issue: 1 year: 2020 ident: 3019_CR2 publication-title: Sensors doi: 10.3390/s20010206 – volume: 55 start-page: 66 year: 2017 ident: 3019_CR13 publication-title: Signal Process.: Image Commun. – volume: 10 start-page: 321 issue: 1 year: 2016 ident: 3019_CR27 publication-title: KSII Trans. Internet Inf. Syst. (TIIS) |
| SSID | ssj0000327868 |
| Score | 2.3015041 |
| Snippet | In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3537 |
| SubjectTerms | Algorithms Blocking Coding standards Computer Imaging Computer Science Efficiency Frames (data processing) Huffman codes Hypotheses Image Processing and Computer Vision Multimedia Multimedia Information Systems Neural networks Optimization Optimization algorithms Original Paper Pattern Recognition and Graphics Signal to noise ratio Signal,Image and Speech Processing Video compression Video data Vision Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZYCBN6JQkAc2sMg78YR4tGJAVYU6dIscP9qKNilNyu_nnLgNIMHCaCWyLN_l7sv5vs8IXTEvodyXPrGknxAvCRihXNO4XA5oHuCcxUoR15ew14uGQ9o3BbfctFWuYmIZqEXGdY381oXcDFiFRt7d_J3oW6P06aq5QmMTNbVSGfh586HT67-uqyyW64RRxYeLAq3FabmGOVPx5-wwsAikKaL_DCixv2enGnL-OCUtk09377_L3ke7Bnbi-8pPDtCGTA_RzhcxwiP09lQ2c2CWCizqViKcKaz7zkuRcYE1bS_DuW57T0d4rQCLl-U4Hy-VmsJrOZtM1SQf4wxC0sxwPTGbjmBtxXh2jAbdzuDxmZirGAh3QqsgrqTCk6HwAw8ArhRJIlweSgBbVECEArMqbtsqCX2fK2rBQENRpSJuM5HY7glqpFkqTxH2BHcizYZlDocgrah0BfUTyKQWU9SnLXS9skA8rwQ34lpaWdsrBnvFpb1iu4Xaq22PzceXx_Wet9DNynD1499nO_t7tnO07ZS-omswbdQoFkt5gbb4RzHJF5fG9T4B0FHhSw priority: 102 providerName: ProQuest |
| Title | Design and development of compressed video sensing technique using shuffled sailfish optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s11760-024-03019-1 https://www.proquest.com/docview/3256977984 |
| Volume | 18 |
| WOSCitedRecordID | wos001167504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1863-1711 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1863-1711 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-1711 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HfTgLo7LkIM3DXTLtDm6IijDoCLipaRZnMGxlemMv9-XTGtV9KCXQmgIIS9570vyvi8AByLKuGSaUU-zjEZZR1AuLY0rlIjmEc55wom4XsfdbvLwwHsVKayss93rK0nnqRuymx93PIoxhVoYzynueeaZVZuxe_Tb-4-TFS8M4mTKgUs6Vn_TCyu2zM_NfI1IDcz8djPqAs7Fyv-6ugrLFcAkx9MZsQYzOl-HlfrxBlKt5XVY-qREuAHPZy6Tg4hcEdXkEZHCEJt07hTGFbGcvYKUNuc9fyIf8q9k4splf2LMEKuVYjA0g7JPCvRHLxXRk4jhUzEajPsvm3B3cX53ekmrdxioDGJvTEPNVaRjxToRolutskyFMtaItLhC94Q2NdL3TRYzJg33sGBxqDGJ9IXK_HAL5vIi19tAIiWDxFJhRSDRQxuuQ8VZhmHUE4Yz3oLD2hTp61RtI210le2gpjioqRvU1G_BXm2ttFp5ZRoihkNMy5OoBUe1dZrfv7e287fqu7AYOAPbA5k9mBuPJnofFuTbeFCO2jB_ct7t3bRh9iqm-O2xx7abpe-jl99e |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLtgfJUF1rwAU5gkcRxEh8QammrVl1WFdpDb5bjR3fFNmmb3Vb8KP4j4zwaQIJbDxytRFbi-Tzz2Z5vDPBGxbnQ3HIaWJ7TOE8UFdrLuJhGNo90LlB1EddROh5np6fiZAV-dFoYn1bZ-cTaUZtS-z3yDwxjM3IVkcWfLi6pvzXKn652V2g0sDi2329wyVZ9PNpD-76NooP9yedD2t4qQHWUBgvKrDCxTQ1PYuRq1uS5YTq1yBuEwcmGX-h0GLo85Vw7EWDDsyrnMh0qk4cMu70HqzGLEz6A1d398cnX202dgEVp1sjvssSX_gxYK9Rp5HphmgQUoyL1CxFBw9-DYc9w_ziUrWPdwcZ_NkqP4GFLqslOMwsew4otnsD6L6UWn8K3vTpVhajCENMnSpHSEZ9VX5dQN8SLEktS-aT-4ozc1rcly7pdTZfOzfG1Ss3mblZNSYkO97xVshI1P8OhWEzPn8HkLn72OQyKsrCbQGKjo8xrfVWkMQQ5YZkRPEeeECgnuBjCu87g8qIpJyL7wtEeHhLhIWt4yHAIW52VZetaKtmbeAjvO5z0j__e24t_9_YaHhxOvozk6Gh8_BLWohqmfrdpCwaLq6Xdhvv6ejGrrl61qCcg7xhBPwFMPz7s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ERfTgW1xdNQdvGuxz2xxFXRRlERXxVtI83MW1XbZdf7-TbGtV9CAeQ0MoM8nMl2S-LwCHPEiZCFVIHRWmNEg7nDJhaFy-QDSPcM7hVsT1Jur14qcndvuJxW-r3esrySmnwag0ZeXJSOqThvjmRh2HYn6hBtIzivufuQB3Mqao6-7-8eOUxfG9KJ7y4eKO0eJ0_Io58_MwX7NTAzm_3ZLa5NNd-f9vr8JyBTzJ6XSmrMGMytZhpX7UgVRrfB2WPikUbsDLua3wIDyTRDb1RSTXxBSjW-VxSQyXLyeFqYXPnsmHLCyZ2HbRn2g9xG4FHwz1oOiTHOPUa0UAJXz4nI8HZf91Ex66Fw9nl7R6n4EKL3JK6ismAxXJsBMg6lUyTaUvIoUIjEkMW-hrLVxXp1EYCs0cbBh8qnUsXC5T19-C2SzP1DaQQAovNhRZ7gmM3JopX7IwxfTqcM1C1oKj2i3JaKrCkTR6y8aoCRo1sUZN3Ba0a88l1YosEh-xHWJdFgctOK491Xz-fbSdv3U_gIXb825yc9W73oVFz_ranNm0YbYcT9QezIu3clCM9-1EfQe15Oe8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+development+of+compressed+video+sensing+technique+using+shuffled+sailfish+optimization+algorithm&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Gayathri%2C+D.&rft.au=PushpaLakshmi%2C+R.&rft.date=2024-06-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=4&rft.spage=3537&rft.epage=3551&rft_id=info:doi/10.1007%2Fs11760-024-03019-1&rft.externalDocID=10_1007_s11760_024_03019_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |