Design and development of compressed video sensing technique using shuffled sailfish optimization algorithm

In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing Jg. 18; H. 4; S. 3537 - 3551
Hauptverfasser: Gayathri, D., PushpaLakshmi, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.06.2024
Springer Nature B.V
Schlagworte:
ISSN:1863-1703, 1863-1711
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. This paper devises a technique, namely a Shuffled sailfish optimizer (SSFO) for compressive video sensing using an encoder and decoder. The input video is divided into various Groups of Pictures and non-key frames. The video frames are divided into non-over-blocking blocks and every block is termed a vectorized column. The measurement vectors are quantized with Space Time Quantization and the bits linked with GOP are crowded in the packet and fed to the decoder once undergoing Huffman encoding. Once the decoder obtains the packet, it rebuilds GOP, and then the joint reconstruction is done with the proposed SSFO technique. Here, the proposed SSFO is obtained by combining the shuffled shepherd optimization algorithm, and the Sailfish optimizer. It utilizes a similar measurement matrix. The proposed SSFO outperformed with the highest Peak signal to noise ratio of 54.362 dB, Second derivative like measure of enhancement of 58.081 dB and structural similarity index measure of 0.927.
AbstractList In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. This paper devises a technique, namely a Shuffled sailfish optimizer (SSFO) for compressive video sensing using an encoder and decoder. The input video is divided into various Groups of Pictures and non-key frames. The video frames are divided into non-over-blocking blocks and every block is termed a vectorized column. The measurement vectors are quantized with Space Time Quantization and the bits linked with GOP are crowded in the packet and fed to the decoder once undergoing Huffman encoding. Once the decoder obtains the packet, it rebuilds GOP, and then the joint reconstruction is done with the proposed SSFO technique. Here, the proposed SSFO is obtained by combining the shuffled shepherd optimization algorithm, and the Sailfish optimizer. It utilizes a similar measurement matrix. The proposed SSFO outperformed with the highest Peak signal to noise ratio of 54.362 dB, Second derivative like measure of enhancement of 58.081 dB and structural similarity index measure of 0.927.
In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly attaining compressed video data through arbitrary projections of each frame. However, it is a major issue in generating sophisticated videos. This paper devises a technique, namely a Shuffled sailfish optimizer (SSFO) for compressive video sensing using an encoder and decoder. The input video is divided into various Groups of Pictures and non-key frames. The video frames are divided into non-over-blocking blocks and every block is termed a vectorized column. The measurement vectors are quantized with Space Time Quantization and the bits linked with GOP are crowded in the packet and fed to the decoder once undergoing Huffman encoding. Once the decoder obtains the packet, it rebuilds GOP, and then the joint reconstruction is done with the proposed SSFO technique. Here, the proposed SSFO is obtained by combining the shuffled shepherd optimization algorithm, and the Sailfish optimizer. It utilizes a similar measurement matrix. The proposed SSFO outperformed with the highest Peak signal to noise ratio of 54.362 dB, Second derivative like measure of enhancement of 58.081 dB and structural similarity index measure of 0.927.
Author Gayathri, D.
PushpaLakshmi, R.
Author_xml – sequence: 1
  givenname: D.
  surname: Gayathri
  fullname: Gayathri, D.
  email: gayathrideivasikamani870@gmail.com
  organization: Electronics and Communication Engineering, PSNA College of Engineering and Technology
– sequence: 2
  givenname: R.
  surname: PushpaLakshmi
  fullname: PushpaLakshmi, R.
  organization: Information Technology, PSNA College of Engineering and Technology
BookMark eNp9kE9PwzAMxSM0JMbYF-AUiXMhbrqmPaLxV5rEZfeoa5wto01K0k6CT0-2Irjhi_2k52frd0km1lkk5BrYLTAm7gKAyFnC0ixhnEGZwBmZQpHzBATA5Hdm_ILMQ9izWDwVRV5MyfsDBrO1tLKKKjxg47oWbU-dprVrO48hoKIHo9DRgDYYu6U91jtrPgakw0mH3aB1E22hMo02YUdd15vWfFW9cTG62Tpv-l17Rc511QSc__QZWT89rpcvyert-XV5v0rqVLA-4ViqDIVa5FkBCtVmo3gtEDJeKpHzjIGuAfRGLBa1LlkUjBVM66KGSm2Az8jNGNt5F58Mvdy7wdt4UfJ0kZdClEUWXenoqr0LwaOWnTdt5T8lMHnEKkesMmKVJ6zyGM3HpRDNdov-L_qfrW8hVH7u
Cites_doi 10.1142/S0219691321500211
10.1007/s11042-016-3390-6
10.1155/2017/4589124
10.1109/TCSVT.2012.2207269
10.1016/j.neucom.2020.04.072
10.3390/s20010206
10.1155/2016/6950592
10.1504/IJMC.2019.102723
10.1109/5.959344
10.1109/TCSVT.2020.2978703
10.1016/j.dsp.2019.102591
10.1109/TSP.2011.2170977
10.1109/ACCESS.2019.2954140
10.1016/j.engappai.2019.01.001
10.1016/j.jvcir.2019.102734
10.1155/2012/352167
10.1155/2015/562840
10.1007/s11042-013-1743-y
10.1108/EC-10-2019-0481
10.1109/PROC.1985.13240
10.1109/PCS.2009.5167431
10.1109/TMM.2020.2975420
10.1109/ICIP.2009.5414631
10.1109/ICASSP.2009.4959797
10.1109/ICDSP.2007.4288604
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11760-024-03019-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 3551
ExternalDocumentID 10_1007_s11760_024_03019_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-3e9d4e7d56481dedbbd3c7e1439d763401fc11fb755cf90fc10080ff8c1adb13
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Thu Oct 09 07:10:40 EDT 2025
Sat Nov 29 05:31:02 EST 2025
Fri Feb 21 02:45:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Compressed video sensing
Decoder
Space–time quantization
Encoder
Block partitioning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-3e9d4e7d56481dedbbd3c7e1439d763401fc11fb755cf90fc10080ff8c1adb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256977984
PQPubID 2044169
PageCount 15
ParticipantIDs proquest_journals_3256977984
crossref_primary_10_1007_s11760_024_03019_1
springer_journals_10_1007_s11760_024_03019_1
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ji, Li, Wu (CR12) 2017
Kaveh, Zaerreza (CR24) 2020; 37
Li, Liu, He, Ma (CR27) 2016; 10
Chen, Chen, Qin, Kuo (CR9) 2015; 74
CR10
Angayarkanni, Radha, Akshaya (CR11) 2019; 17
Kuo, Gao, Zhang, Chen (CR14) 2017; 76
Chen, Wu, Zhou, Zhang (CR2) 2020; 20
Iliadis, Spinoulas, Katsaggelos (CR3) 2020; 96
Di Laura, Pajuelo, Kemper (CR16) 2016
Estes (CR17) 1985; 73
CR8
Song, Zhang, Tang, Tang, Yang (CR4) 2020; 406
Li, Liu, Xue, Li (CR1) 2015; 11
Chen, Chen, Su, Peng, Ling (CR6) 2020; 66
Shadravan, Naji, Bardsiri (CR25) 2019; 80
CR26
Liu, Zhu, Zhang, Cho (CR15) 2012; 8
Kumar, Sawhney, Samarasekera, Hsu, Tao, Guo, Hanna, Pope, Wildes, Hirvonen, Hansen (CR18) 2001; 89
CR22
Shi, Liu, Jiang, Zhao (CR5) 2020; 31
CR21
CR20
Zhou, Chen, Zhang, Ding, Zhang (CR7) 2019; 7
Liu, Li, Pados (CR23) 2012; 23
Do, Gan, Nguyen, Tran (CR19) 2011; 60
Sekar, Ravi (CR28) 2021; 19
Li, Lan, Yang, Xue, Zheng (CR13) 2017; 55
C Chen (3019_CR2) 2020; 20
R Sekar (3019_CR28) 2021; 19
3019_CR10
Y Kuo (3019_CR14) 2017; 76
A Kaveh (3019_CR24) 2020; 37
M Iliadis (3019_CR3) 2020; 96
C Zhou (3019_CR7) 2019; 7
Y Liu (3019_CR23) 2012; 23
S Shadravan (3019_CR25) 2019; 80
X Li (3019_CR13) 2017; 55
W Shi (3019_CR5) 2020; 31
3019_CR8
J Chen (3019_CR9) 2015; 74
TT Do (3019_CR19) 2011; 60
3019_CR21
3019_CR22
R Li (3019_CR27) 2016; 10
J Chen (3019_CR6) 2020; 66
3019_CR26
Y Liu (3019_CR15) 2012; 8
Y Song (3019_CR4) 2020; 406
V Angayarkanni (3019_CR11) 2019; 17
C Di Laura (3019_CR16) 2016
JE Estes (3019_CR17) 1985; 73
3019_CR20
R Kumar (3019_CR18) 2001; 89
R Li (3019_CR1) 2015; 11
B Ji (3019_CR12) 2017
References_xml – ident: CR22
– volume: 19
  start-page: 2150021
  issue: 6
  year: 2021
  ident: CR28
  article-title: Differential pulse code modulation and motion aligned optimal reconstruction for block-based compressive video sensing using conditional autoregressive-salp swarm algorithm
  publication-title: Int. J. Wavelets Multiresolution Inf. Process.
  doi: 10.1142/S0219691321500211
– volume: 76
  start-page: 7321
  issue: 5
  year: 2017
  end-page: 7339
  ident: CR14
  article-title: A new multiple frames decoding and frame wise measurement for compressed video sensing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3390-6
– year: 2017
  ident: CR12
  article-title: Rate-distortion and rate-energy-distortion evaluations of compressive-sensing video coding
  publication-title: Int. J. Digit. Multimed. Broadcast.
  doi: 10.1155/2017/4589124
– ident: CR10
– volume: 23
  start-page: 438
  issue: 3
  year: 2012
  end-page: 444
  ident: CR23
  article-title: Motion-aware decoding of compressed-sensed video
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2207269
– volume: 406
  start-page: 34
  year: 2020
  end-page: 48
  ident: CR4
  article-title: Local and nonlocal constraints for compressed sensing video and multi-view image recovery
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.072
– volume: 20
  start-page: 206
  issue: 1
  year: 2020
  ident: CR2
  article-title: JsrNet: a joint sampling-reconstruction frameworkfor distributed compressive video sensing
  publication-title: Sensors
  doi: 10.3390/s20010206
– volume: 10
  start-page: 321
  issue: 1
  year: 2016
  end-page: 340
  ident: CR27
  article-title: Space-time quantization and motion-aligned reconstruction for block-based compressive video sensing
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
– year: 2016
  ident: CR16
  article-title: A novel steganography technique for SDTV-H.264/AVC encoded video
  publication-title: Int. J. Digit. Multimed. Broadcast.
  doi: 10.1155/2016/6950592
– ident: CR8
– volume: 55
  start-page: 66
  year: 2017
  end-page: 79
  ident: CR13
  article-title: A new compressive sensing video coding framework based on Gaussian mixture model
  publication-title: Signal Process.: Image Commun.
– volume: 17
  start-page: 727
  issue: 6
  year: 2019
  end-page: 745
  ident: CR11
  article-title: Multi-view video codec using compressive sensing for wireless video sensor networks
  publication-title: Int. J. Mobile Commun.
  doi: 10.1504/IJMC.2019.102723
– ident: CR21
– volume: 89
  start-page: 1518
  issue: 10
  year: 2001
  end-page: 1539
  ident: CR18
  article-title: Aerial video surveillance and exploitation
  publication-title: Proc. IEEE
  doi: 10.1109/5.959344
– volume: 31
  start-page: 425
  issue: 2
  year: 2020
  end-page: 438
  ident: CR5
  article-title: Video compressed sensing using a convolutional neural network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.2978703
– volume: 96
  start-page: 102591
  year: 2020
  ident: CR3
  article-title: Deepbinarymask: learning a binary mask for video compressive sensing
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.102591
– volume: 60
  start-page: 139
  issue: 1
  year: 2011
  end-page: 154
  ident: CR19
  article-title: Fast and efficient compressive sensing using structurally random matrices
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2170977
– volume: 7
  start-page: 166606
  year: 2019
  end-page: 166613
  ident: CR7
  article-title: MH-Net: a learnable multi-hypothesis networkfor compressed video sensing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954140
– volume: 80
  start-page: 20
  year: 2019
  end-page: 34
  ident: CR25
  article-title: The sailfish optimizer: a novel natureinspired metaheuristic algorithm forsolving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.001
– volume: 66
  start-page: 102734
  year: 2020
  ident: CR6
  article-title: Video compressed sensing reconstruction based on structural groupsparsity and successive approximation estimation model
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.102734
– volume: 8
  start-page: 352167
  issue: 12
  year: 2012
  ident: CR15
  article-title: Distributed compressed video sensing in camera sensor networks
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2012/352167
– volume: 11
  start-page: 562840
  issue: 8
  year: 2015
  ident: CR1
  article-title: Compressive-sensing-based video codec by autoregressive prediction and adaptive residual recovery
  publication-title: Int. J. Distrib. Sensor Netw.
  doi: 10.1155/2015/562840
– ident: CR26
– volume: 74
  start-page: 2085
  issue: 6
  year: 2015
  end-page: 2108
  ident: CR9
  article-title: An elastic net-based hybrid hypothesis methodfor compressed video sensing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-013-1743-y
– ident: CR20
– volume: 37
  start-page: 2357
  issue: 7
  year: 2020
  end-page: 2389
  ident: CR24
  article-title: Shuffled shepherdoptimization method: a newMeta-heuristic algorithm
  publication-title: Eng. Comput.
  doi: 10.1108/EC-10-2019-0481
– volume: 73
  start-page: 1097
  issue: 6
  year: 1985
  end-page: 1107
  ident: CR17
  article-title: Geographic applications of remotely sensed data
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1985.13240
– volume: 11
  start-page: 562840
  issue: 8
  year: 2015
  ident: 3019_CR1
  publication-title: Int. J. Distrib. Sensor Netw.
  doi: 10.1155/2015/562840
– year: 2017
  ident: 3019_CR12
  publication-title: Int. J. Digit. Multimed. Broadcast.
  doi: 10.1155/2017/4589124
– volume: 17
  start-page: 727
  issue: 6
  year: 2019
  ident: 3019_CR11
  publication-title: Int. J. Mobile Commun.
  doi: 10.1504/IJMC.2019.102723
– volume: 23
  start-page: 438
  issue: 3
  year: 2012
  ident: 3019_CR23
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2207269
– volume: 74
  start-page: 2085
  issue: 6
  year: 2015
  ident: 3019_CR9
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-013-1743-y
– volume: 60
  start-page: 139
  issue: 1
  year: 2011
  ident: 3019_CR19
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2170977
– ident: 3019_CR26
– volume: 96
  start-page: 102591
  year: 2020
  ident: 3019_CR3
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.102591
– volume: 7
  start-page: 166606
  year: 2019
  ident: 3019_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954140
– volume: 31
  start-page: 425
  issue: 2
  year: 2020
  ident: 3019_CR5
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.2978703
– volume: 406
  start-page: 34
  year: 2020
  ident: 3019_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.072
– year: 2016
  ident: 3019_CR16
  publication-title: Int. J. Digit. Multimed. Broadcast.
  doi: 10.1155/2016/6950592
– volume: 19
  start-page: 2150021
  issue: 6
  year: 2021
  ident: 3019_CR28
  publication-title: Int. J. Wavelets Multiresolution Inf. Process.
  doi: 10.1142/S0219691321500211
– volume: 37
  start-page: 2357
  issue: 7
  year: 2020
  ident: 3019_CR24
  publication-title: Eng. Comput.
  doi: 10.1108/EC-10-2019-0481
– ident: 3019_CR22
  doi: 10.1109/PCS.2009.5167431
– ident: 3019_CR8
  doi: 10.1109/TMM.2020.2975420
– volume: 80
  start-page: 20
  year: 2019
  ident: 3019_CR25
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.001
– volume: 8
  start-page: 352167
  issue: 12
  year: 2012
  ident: 3019_CR15
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2012/352167
– ident: 3019_CR21
  doi: 10.1109/ICIP.2009.5414631
– volume: 66
  start-page: 102734
  year: 2020
  ident: 3019_CR6
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.102734
– volume: 76
  start-page: 7321
  issue: 5
  year: 2017
  ident: 3019_CR14
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3390-6
– ident: 3019_CR20
  doi: 10.1109/ICASSP.2009.4959797
– ident: 3019_CR10
  doi: 10.1109/ICDSP.2007.4288604
– volume: 73
  start-page: 1097
  issue: 6
  year: 1985
  ident: 3019_CR17
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1985.13240
– volume: 89
  start-page: 1518
  issue: 10
  year: 2001
  ident: 3019_CR18
  publication-title: Proc. IEEE
  doi: 10.1109/5.959344
– volume: 20
  start-page: 206
  issue: 1
  year: 2020
  ident: 3019_CR2
  publication-title: Sensors
  doi: 10.3390/s20010206
– volume: 55
  start-page: 66
  year: 2017
  ident: 3019_CR13
  publication-title: Signal Process.: Image Commun.
– volume: 10
  start-page: 321
  issue: 1
  year: 2016
  ident: 3019_CR27
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
SSID ssj0000327868
Score 2.3015041
Snippet In recent days, compressive video sensing combined both compression and video sensing into a single process, and has gained immense popularity in directly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3537
SubjectTerms Algorithms
Blocking
Coding standards
Computer Imaging
Computer Science
Efficiency
Frames (data processing)
Huffman codes
Hypotheses
Image Processing and Computer Vision
Multimedia
Multimedia Information Systems
Neural networks
Optimization
Optimization algorithms
Original Paper
Pattern Recognition and Graphics
Signal to noise ratio
Signal,Image and Speech Processing
Video compression
Video data
Vision
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZYCBN6JQkAc2sMg78YR4tGJAVYU6dIscP9qKNilNyu_nnLgNIMHCaCWyLN_l7sv5vs8IXTEvodyXPrGknxAvCRihXNO4XA5oHuCcxUoR15ew14uGQ9o3BbfctFWuYmIZqEXGdY381oXcDFiFRt7d_J3oW6P06aq5QmMTNbVSGfh586HT67-uqyyW64RRxYeLAq3FabmGOVPx5-wwsAikKaL_DCixv2enGnL-OCUtk09377_L3ke7Bnbi-8pPDtCGTA_RzhcxwiP09lQ2c2CWCizqViKcKaz7zkuRcYE1bS_DuW57T0d4rQCLl-U4Hy-VmsJrOZtM1SQf4wxC0sxwPTGbjmBtxXh2jAbdzuDxmZirGAh3QqsgrqTCk6HwAw8ArhRJIlweSgBbVECEArMqbtsqCX2fK2rBQENRpSJuM5HY7glqpFkqTxH2BHcizYZlDocgrah0BfUTyKQWU9SnLXS9skA8rwQ34lpaWdsrBnvFpb1iu4Xaq22PzceXx_Wet9DNynD1499nO_t7tnO07ZS-omswbdQoFkt5gbb4RzHJF5fG9T4B0FHhSw
  priority: 102
  providerName: ProQuest
Title Design and development of compressed video sensing technique using shuffled sailfish optimization algorithm
URI https://link.springer.com/article/10.1007/s11760-024-03019-1
https://www.proquest.com/docview/3256977984
Volume 18
WOSCitedRecordID wos001167504000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HfTgLo7LkIM3DXTLtDm6IijDoCLipaRZnMGxlemMv9-XTGtV9KCXQmgIIS9570vyvi8AByLKuGSaUU-zjEZZR1AuLY0rlIjmEc55wom4XsfdbvLwwHsVKayss93rK0nnqRuymx93PIoxhVoYzynueeaZVZuxe_Tb-4-TFS8M4mTKgUs6Vn_TCyu2zM_NfI1IDcz8djPqAs7Fyv-6ugrLFcAkx9MZsQYzOl-HlfrxBlKt5XVY-qREuAHPZy6Tg4hcEdXkEZHCEJt07hTGFbGcvYKUNuc9fyIf8q9k4splf2LMEKuVYjA0g7JPCvRHLxXRk4jhUzEajPsvm3B3cX53ekmrdxioDGJvTEPNVaRjxToRolutskyFMtaItLhC94Q2NdL3TRYzJg33sGBxqDGJ9IXK_HAL5vIi19tAIiWDxFJhRSDRQxuuQ8VZhmHUE4Yz3oLD2hTp61RtI210le2gpjioqRvU1G_BXm2ttFp5ZRoihkNMy5OoBUe1dZrfv7e287fqu7AYOAPbA5k9mBuPJnofFuTbeFCO2jB_ct7t3bRh9iqm-O2xx7abpe-jl99e
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLtgfJUF1rwAU5gkcRxEh8QammrVl1WFdpDb5bjR3fFNmmb3Vb8KP4j4zwaQIJbDxytRFbi-Tzz2Z5vDPBGxbnQ3HIaWJ7TOE8UFdrLuJhGNo90LlB1EddROh5np6fiZAV-dFoYn1bZ-cTaUZtS-z3yDwxjM3IVkcWfLi6pvzXKn652V2g0sDi2329wyVZ9PNpD-76NooP9yedD2t4qQHWUBgvKrDCxTQ1PYuRq1uS5YTq1yBuEwcmGX-h0GLo85Vw7EWDDsyrnMh0qk4cMu70HqzGLEz6A1d398cnX202dgEVp1sjvssSX_gxYK9Rp5HphmgQUoyL1CxFBw9-DYc9w_ziUrWPdwcZ_NkqP4GFLqslOMwsew4otnsD6L6UWn8K3vTpVhajCENMnSpHSEZ9VX5dQN8SLEktS-aT-4ozc1rcly7pdTZfOzfG1Ss3mblZNSYkO97xVshI1P8OhWEzPn8HkLn72OQyKsrCbQGKjo8xrfVWkMQQ5YZkRPEeeECgnuBjCu87g8qIpJyL7wtEeHhLhIWt4yHAIW52VZetaKtmbeAjvO5z0j__e24t_9_YaHhxOvozk6Gh8_BLWohqmfrdpCwaLq6Xdhvv6ejGrrl61qCcg7xhBPwFMPz7s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ERfTgW1xdNQdvGuxz2xxFXRRlERXxVtI83MW1XbZdf7-TbGtV9CAeQ0MoM8nMl2S-LwCHPEiZCFVIHRWmNEg7nDJhaFy-QDSPcM7hVsT1Jur14qcndvuJxW-r3esrySmnwag0ZeXJSOqThvjmRh2HYn6hBtIzivufuQB3Mqao6-7-8eOUxfG9KJ7y4eKO0eJ0_Io58_MwX7NTAzm_3ZLa5NNd-f9vr8JyBTzJ6XSmrMGMytZhpX7UgVRrfB2WPikUbsDLua3wIDyTRDb1RSTXxBSjW-VxSQyXLyeFqYXPnsmHLCyZ2HbRn2g9xG4FHwz1oOiTHOPUa0UAJXz4nI8HZf91Ex66Fw9nl7R6n4EKL3JK6ismAxXJsBMg6lUyTaUvIoUIjEkMW-hrLVxXp1EYCs0cbBh8qnUsXC5T19-C2SzP1DaQQAovNhRZ7gmM3JopX7IwxfTqcM1C1oKj2i3JaKrCkTR6y8aoCRo1sUZN3Ba0a88l1YosEh-xHWJdFgctOK491Xz-fbSdv3U_gIXb825yc9W73oVFz_ranNm0YbYcT9QezIu3clCM9-1EfQe15Oe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+development+of+compressed+video+sensing+technique+using+shuffled+sailfish+optimization+algorithm&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Gayathri%2C+D.&rft.au=PushpaLakshmi%2C+R.&rft.date=2024-06-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=4&rft.spage=3537&rft.epage=3551&rft_id=info:doi/10.1007%2Fs11760-024-03019-1&rft.externalDocID=10_1007_s11760_024_03019_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon