Numerical Modeling of Gamma-Ray Burst Spectra

The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics Jg. 46; H. 1; S. 121 - 132
Hauptverfasser: Lartsev, A. I., Lukin, V. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.01.2025
Springer Nature B.V
Schlagworte:
ISSN:1995-0802, 1818-9962
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is considered. The observed spectrum is proposed to be the result of rising from the star and cloud photons scattering during the relativistic stream acceleration. These phenomena are described by a three-dimensional model of relativistic radiative hydrodynamics including the full radiative transfer equation with scattering integral. Due to relativistic speed of the flow one need to use a Compton scattering model that takes into account the change in photon frequency when colliding with fast-moving electrons. To obtain numerical solution of the radiation gas dynamics equations the splitting method is used. For the radiative transfer equation with scattering the short characteristics method is used, and for the relativistic hydrodynamics the Godunov-type one. The algorithm is designed for tetrahedral meshes and adapted for computations on cluster systems with graphics processing units. The central object radiation pressure accelerated the matter up to 90 of the light speed and the observed spectrum shifted from black-body radiation to the X-ray range. The spectra for observator different points of view are calculated.
AbstractList The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is considered. The observed spectrum is proposed to be the result of rising from the star and cloud photons scattering during the relativistic stream acceleration. These phenomena are described by a three-dimensional model of relativistic radiative hydrodynamics including the full radiative transfer equation with scattering integral. Due to relativistic speed of the flow one need to use a Compton scattering model that takes into account the change in photon frequency when colliding with fast-moving electrons. To obtain numerical solution of the radiation gas dynamics equations the splitting method is used. For the radiative transfer equation with scattering the short characteristics method is used, and for the relativistic hydrodynamics the Godunov-type one. The algorithm is designed for tetrahedral meshes and adapted for computations on cluster systems with graphics processing units. The central object radiation pressure accelerated the matter up to 90 of the light speed and the observed spectrum shifted from black-body radiation to the X-ray range. The spectra for observator different points of view are calculated.
The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is considered. The observed spectrum is proposed to be the result of rising from the star and cloud photons scattering during the relativistic stream acceleration. These phenomena are described by a three-dimensional model of relativistic radiative hydrodynamics including the full radiative transfer equation with scattering integral. Due to relativistic speed of the flow one need to use a Compton scattering model that takes into account the change in photon frequency when colliding with fast-moving electrons. To obtain numerical solution of the radiation gas dynamics equations the splitting method is used. For the radiative transfer equation with scattering the short characteristics method is used, and for the relativistic hydrodynamics the Godunov-type one. The algorithm is designed for tetrahedral meshes and adapted for computations on cluster systems with graphics processing units. The central object radiation pressure accelerated the matter up to 90 of the light speed and the observed spectrum shifted from black-body radiation to the X-ray range. The spectra for observator different points of view are calculated.
Author Lukin, V. V.
Lartsev, A. I.
Author_xml – sequence: 1
  givenname: A. I.
  surname: Lartsev
  fullname: Lartsev, A. I.
  email: lartsev.ai@yandex.ru
  organization: Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
– sequence: 2
  givenname: V. V.
  surname: Lukin
  fullname: Lukin, V. V.
  email: vvlukin@gmail.com
  organization: Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Bauman Moscow State Technical University
BookMark eNp1kEFLw0AQhRepYFv9Ad4CnldndpNN9qhFq1AVrJ7DZjNbWpqk7iaH_vtuqeBBPM2D97038CZs1HYtMXaNcIso07slap1BAUKkCgqZyzM2xgILrrUSo6ijzY_-BZuEsIEIKqXGjL8NDfm1Ndvktatpu25XSeeSuWkawz_MPnkYfOiT5Y5s780lO3dmG-jq507Z19Pj5-yZL97nL7P7Bbcih55LSp2pVFE5yJAIUYGqQWtpshSNzeoKrCaXU1UrmzvMbG4EgRQ5GVUVSk7Zzal357vvgUJfbrrBt_FlKUWmhZKgIVJ4oqzvQvDkyp1fN8bvS4TyuEr5Z5WYEadMiGy7Iv_b_H_oAJMyY-4
Cites_doi 10.1016/j.cpc.2022.108630
10.1093/mnras/stx309
10.1111/j.1365-2966.2006.10517.x
10.1051/0004-6361/202039612
10.1111/j.1365-2966.2007.11849.x
10.1007/s10509-009-0178-4
10.1007/s11214-016-0328-2
10.1088/0004-637X/752/2/116
10.1093/mnras/stu762
10.1111/j.1365-2966.2011.19451.x
10.1051/0004-6361/202245414
10.3847/1538-4365/ab18ff
10.20537/2076-7633-2014-6-2-203-215
10.3847/1538-4365/ab0d8c
10.1103/PhysRevD.78.024023
10.1103/PhysRevD.102.104001
10.1086/591925
10.1146/annurev.astro.43.072103.150558
10.1088/0004-637X/772/2/127
10.1007/978-3-662-03915-1
10.1007/978-981-15-4174-2
10.3847/2041-8213/ac1d56
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
DOI 10.1134/S1995080224608373
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 132
ExternalDocumentID 10_1134_S1995080224608373
GroupedDBID -Y2
-~9
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
YLTOR
ZMTXR
~A9
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
OVT
ID FETCH-LOGICAL-c270t-3e4fab68bf051ee11606d0993a541ac5db0c9ef7ebd6c7f15c7a2e0327ea6b863
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001560902800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1995-0802
IngestDate Tue Dec 02 10:00:33 EST 2025
Sat Nov 29 07:46:24 EST 2025
Sat May 31 01:18:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mathematical modelling
2010 Mathematics Subject Classification: 65M08
gamma-ray burst
relativistic jet
radiation transfer
Compton scattering
computational astrophysics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-3e4fab68bf051ee11606d0993a541ac5db0c9ef7ebd6c7f15c7a2e0327ea6b863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259263090
PQPubID 2044393
PageCount 12
ParticipantIDs proquest_journals_3259263090
crossref_primary_10_1134_S1995080224608373
springer_journals_10_1134_S1995080224608373
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References P. L. Kelly (8143_CR4) 2008; 687
A. Mignone (8143_CR29) 2007; 378
P. Chardonnet (8143_CR8) 2010; 325
H. R. Takahashi (8143_CR17) 2013; 772
R. Farinelli (8143_CR1) 2021; 501
L. Titarchuk (8143_CR7) 2012; 752
8143_CR14
B. Boccardi (8143_CR11) 2021; 647
G. Pomraning (8143_CR12) 2005
B. N. Chetverushkin (8143_CR22) 1985
S. G. Moiseenko (8143_CR6) 2006; 370
M. K. Vyas (8143_CR2) 2021; 918
L. G. Titarchuk (8143_CR9) 1980; 86
F. J. Rivera-Paleo (8143_CR15) 2019; 241
8143_CR23
8143_CR21
8143_CR20
Y. I. Skalko (8143_CR30) 2014; 6
E. A. Murzina (8143_CR25) 2007
S. Kato (8143_CR18) 2020
8143_CR27
E. R. Gustavo (8143_CR10) 2017; 207
8143_CR26
V. V. Lukin (8143_CR24) 2017; 467
C. McKinney (8143_CR19) 2014; 441
O. Zanotti (8143_CR16) 2011; 417
F. Xu (8143_CR3) 2023; 673
S. E. Woosley (8143_CR5) 2006; 44
M. P. Galanin (8143_CR31) 2010
J. D. Fuksman (8143_CR13) 2019; 242
E. F. Toro (8143_CR28) 1999
References_xml – ident: 8143_CR14
  doi: 10.1016/j.cpc.2022.108630
– volume: 467
  start-page: 2934
  year: 2017
  ident: 8143_CR24
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stx309
– volume-title: Interaction of High-Energy Radiation with Matter
  year: 2007
  ident: 8143_CR25
– volume: 370
  start-page: 501
  year: 2006
  ident: 8143_CR6
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2006.10517.x
– volume: 647
  start-page: A67
  year: 2021
  ident: 8143_CR11
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202039612
– volume: 378
  start-page: 1118
  year: 2007
  ident: 8143_CR29
  publication-title: Mon. Not. R. Acad. Sci.
  doi: 10.1111/j.1365-2966.2007.11849.x
– volume: 325
  start-page: 153
  year: 2010
  ident: 8143_CR8
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/s10509-009-0178-4
– volume: 207
  start-page: 5
  year: 2017
  ident: 8143_CR10
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-016-0328-2
– volume: 752
  start-page: 116
  year: 2012
  ident: 8143_CR7
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/752/2/116
– volume: 501
  start-page: 5723
  year: 2021
  ident: 8143_CR1
  publication-title: Mon. Not. R. Astron. Soc.
– volume-title: Equations of Radiation Hydrodynamics
  year: 2005
  ident: 8143_CR12
– volume: 441
  start-page: 3177
  year: 2014
  ident: 8143_CR19
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stu762
– volume: 417
  start-page: 2899
  year: 2011
  ident: 8143_CR16
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.19451.x
– ident: 8143_CR26
– volume: 673
  start-page: A20
  year: 2023
  ident: 8143_CR3
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202245414
– volume: 242
  start-page: 20
  year: 2019
  ident: 8143_CR13
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.3847/1538-4365/ab18ff
– volume: 6
  start-page: 203
  year: 2014
  ident: 8143_CR30
  publication-title: Comput. Res. Model.
  doi: 10.20537/2076-7633-2014-6-2-203-215
– volume: 241
  start-page: 28
  year: 2019
  ident: 8143_CR15
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.3847/1538-4365/ab0d8c
– volume-title: “Methods of radiation transfer equation solution for the astrophysical models, ” KIAM Preprint No. 59
  year: 2010
  ident: 8143_CR31
– ident: 8143_CR20
  doi: 10.1103/PhysRevD.78.024023
– volume: 86
  start-page: 121
  year: 1980
  ident: 8143_CR9
  publication-title: Astron. Astrophys.
– ident: 8143_CR21
  doi: 10.1103/PhysRevD.102.104001
– volume: 687
  start-page: 1201
  year: 2008
  ident: 8143_CR4
  publication-title: Astrophys. J.
  doi: 10.1086/591925
– volume: 44
  start-page: 507
  year: 2006
  ident: 8143_CR5
  publication-title: Ann. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.astro.43.072103.150558
– volume-title: Mathematical Modeling of Problems in the Dynamics of a Radiating Gas
  year: 1985
  ident: 8143_CR22
– volume: 772
  start-page: 127
  year: 2013
  ident: 8143_CR17
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/772/2/127
– ident: 8143_CR23
– volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics
  year: 1999
  ident: 8143_CR28
  doi: 10.1007/978-3-662-03915-1
– ident: 8143_CR27
– volume-title: Fundamentals of Astrophysical Fluid Dynamics
  year: 2020
  ident: 8143_CR18
  doi: 10.1007/978-981-15-4174-2
– volume: 918
  start-page: L12
  year: 2021
  ident: 8143_CR2
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac1d56
SSID ssj0022666
Score 2.310733
Snippet The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 121
SubjectTerms Acceleration
Algebra
Analysis
Approximation
Black body radiation
Elastic scattering
Energy
Flow velocity
Fluid mechanics
Gamma ray astronomy
Gamma ray bursts
Gamma rays
Gas dynamics
Geometry
Graphics processing units
Hydrodynamics
Light speed
Mathematical Logic and Foundations
Mathematical models
Mathematics
Mathematics and Statistics
Numerical models
Photons
Plasma
Plasma clouds
Probability Theory and Stochastic Processes
Radiation
Radiation pressure
Radiative transfer
Relativistic effects
Relativistic velocity
Spectra
Three dimensional models
Title Numerical Modeling of Gamma-Ray Burst Spectra
URI https://link.springer.com/article/10.1134/S1995080224608373
https://www.proquest.com/docview/3259263090
Volume 46
WOSCitedRecordID wos001560902800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1818-9962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022666
  issn: 1995-0802
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4QAHdkShoBw4gSwS27GdIyCWCxVqAfUWeYuERFvUpEj8PY6TtGI7wDmWZU08nvcyeX4Ax-7ctZryBGGsGaIqMaVYGaNQGy50QhWTwptN8G5XDAbJfa3jzpu_3ZuWpD-pK98RetYvxcReGUqZww2cLMKSq3ai9Gvo9Z9mLMtVHC8p8tJjEeK6lfnjFJ-L0RxhfmmK-lpzvf6vVW7AWg0tg_NqL2zCgh1twerd7F7WfBtQd1p1aF6C0gStlKIH4yy4kcOhRD35HlxMHRoMSlP6YiJ34PH66uHyFtWGCUhjHhaIWJpJxYTKXKpZG0WOnRgHAYmMaSR1bFSoE5txqwzTPItizSW2IcHcSqYEI7vQGo1Hdg8C6oiVyQR36CGi7kUnUmQ8dlhRRYY7CtmGkyZy6Wt1L0bq-QSh6bcYtKHTxDatUyRPiSNemJEwCdtw2sRy_vjXyfb_NPoAVnDp2Os_mnSgVUym9hCW9VvxnE-O_M75AHVKuek
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFNQHv8Xp1D74pBTbJE3SRxXnxK3INmVvJU1TENwmayf4703TdsOvB31uCeXm456T23MPwKk-d5UkzLcRktQmkR_nYmVkOzJmXPokooIbswkWBHww8B9KHXda_e1elSTNSV34jpCLXi4mNspQQjVuYHgRlohOWHnD_G7vacaydMYxkiIjPeYOKkuZPw7xORnNEeaXoqjJNc2Nf33lJqyX0NK6LNbCFiyo0TasdWZ9WdMdsINpUaF5sXITtFyKbo0T61YMh8LuinfraqrRoJWb0mcTsQuPzZv-dcsuDRNsiZiT2ViRRESUR4neakq5rmYnsYaAWHjEFdKLI0f6KmEqiqlkietJJpByMGJK0IhTvAe10Xik9sEimljFCWcaPbhET7QveMI8jRUjN2aaQtbhrIpc-Fr0xQgNn8Ak_BaDOjSq2IblFklDrIkXotjxnTqcV7GcP_51sIM_vX0CK61-px2274L7Q1hFuXuvuUBpQC2bTNURLMu37DmdHJtV9AE3UrzN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1itmoMnJZhsNtnk6KsqaihWpbewr4Bg09Kkgv_e3U3S4usgnhOWMMzufF9mv_kADtW5KzkmkY0QD2zMIqHFysh2uCAhjzALaGjMJkgch71e1Kl8TvP6tnvdkiw1DXpKU1acDEVaeZDgk64WFhuVKA4UhiDeLMxhfY9e0_Xu84Rxqepj5EVGhhw6qGpr_rjE58I0RZtfGqSm7rRX_v3Fq7BcQU7rtMyRNZiR2Tos3U_mteYbYMfjsnPzamlzNC1RtwapdUX7fWo_0HfrbKxQoqXN6osR3YSn9uXj-bVdGSnYHBGnsD2JU8qCkKVqC0rpuoq1CAUNPepjl3JfMIdHMiWSiYCT1PU5oUg6HiKSBiwMvC1oZINMboOFFeESaUgUqnCxSoCIhinxFYZkriCKWjbhqI5iMiznZSSGZ3g4-RaDJrTqOCfV1skTTxEyFHhO5DThuI7r9PGvi-386e0DWOhctJO7m_h2FxaRNvU1_1Va0ChGY7kH8_yteMlH-yahPgBFLsWx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Modeling+of+Gamma-Ray+Burst+Spectra&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Lartsev%2C+A.+I&rft.au=Lukin%2C+V.+V&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=121&rft.epage=132&rft_id=info:doi/10.1134%2FS1995080224608373&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon