Numerical Modeling of Gamma-Ray Burst Spectra
The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is con...
Gespeichert in:
| Veröffentlicht in: | Lobachevskii journal of mathematics Jg. 46; H. 1; S. 121 - 132 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.01.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1995-0802, 1818-9962 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is considered. The observed spectrum is proposed to be the result of rising from the star and cloud photons scattering during the relativistic stream acceleration. These phenomena are described by a three-dimensional model of relativistic radiative hydrodynamics including the full radiative transfer equation with scattering integral. Due to relativistic speed of the flow one need to use a Compton scattering model that takes into account the change in photon frequency when colliding with fast-moving electrons. To obtain numerical solution of the radiation gas dynamics equations the splitting method is used. For the radiative transfer equation with scattering the short characteristics method is used, and for the relativistic hydrodynamics the Godunov-type one. The algorithm is designed for tetrahedral meshes and adapted for computations on cluster systems with graphics processing units. The central object radiation pressure accelerated the matter up to 90
of the light speed and the observed spectrum shifted from black-body radiation to the X-ray range. The spectra for observator different points of view are calculated. |
|---|---|
| AbstractList | The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is considered. The observed spectrum is proposed to be the result of rising from the star and cloud photons scattering during the relativistic stream acceleration. These phenomena are described by a three-dimensional model of relativistic radiative hydrodynamics including the full radiative transfer equation with scattering integral. Due to relativistic speed of the flow one need to use a Compton scattering model that takes into account the change in photon frequency when colliding with fast-moving electrons. To obtain numerical solution of the radiation gas dynamics equations the splitting method is used. For the radiative transfer equation with scattering the short characteristics method is used, and for the relativistic hydrodynamics the Godunov-type one. The algorithm is designed for tetrahedral meshes and adapted for computations on cluster systems with graphics processing units. The central object radiation pressure accelerated the matter up to 90
of the light speed and the observed spectrum shifted from black-body radiation to the X-ray range. The spectra for observator different points of view are calculated. The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum. Formation and radiative acceleration of the collimated jet inside the channel in the Compton plasma cloud formed around the metallic core is considered. The observed spectrum is proposed to be the result of rising from the star and cloud photons scattering during the relativistic stream acceleration. These phenomena are described by a three-dimensional model of relativistic radiative hydrodynamics including the full radiative transfer equation with scattering integral. Due to relativistic speed of the flow one need to use a Compton scattering model that takes into account the change in photon frequency when colliding with fast-moving electrons. To obtain numerical solution of the radiation gas dynamics equations the splitting method is used. For the radiative transfer equation with scattering the short characteristics method is used, and for the relativistic hydrodynamics the Godunov-type one. The algorithm is designed for tetrahedral meshes and adapted for computations on cluster systems with graphics processing units. The central object radiation pressure accelerated the matter up to 90 of the light speed and the observed spectrum shifted from black-body radiation to the X-ray range. The spectra for observator different points of view are calculated. |
| Author | Lukin, V. V. Lartsev, A. I. |
| Author_xml | – sequence: 1 givenname: A. I. surname: Lartsev fullname: Lartsev, A. I. email: lartsev.ai@yandex.ru organization: Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences – sequence: 2 givenname: V. V. surname: Lukin fullname: Lukin, V. V. email: vvlukin@gmail.com organization: Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Bauman Moscow State Technical University |
| BookMark | eNp1kEFLw0AQhRepYFv9Ad4CnldndpNN9qhFq1AVrJ7DZjNbWpqk7iaH_vtuqeBBPM2D97038CZs1HYtMXaNcIso07slap1BAUKkCgqZyzM2xgILrrUSo6ijzY_-BZuEsIEIKqXGjL8NDfm1Ndvktatpu25XSeeSuWkawz_MPnkYfOiT5Y5s780lO3dmG-jq507Z19Pj5-yZL97nL7P7Bbcih55LSp2pVFE5yJAIUYGqQWtpshSNzeoKrCaXU1UrmzvMbG4EgRQ5GVUVSk7Zzal357vvgUJfbrrBt_FlKUWmhZKgIVJ4oqzvQvDkyp1fN8bvS4TyuEr5Z5WYEadMiGy7Iv_b_H_oAJMyY-4 |
| Cites_doi | 10.1016/j.cpc.2022.108630 10.1093/mnras/stx309 10.1111/j.1365-2966.2006.10517.x 10.1051/0004-6361/202039612 10.1111/j.1365-2966.2007.11849.x 10.1007/s10509-009-0178-4 10.1007/s11214-016-0328-2 10.1088/0004-637X/752/2/116 10.1093/mnras/stu762 10.1111/j.1365-2966.2011.19451.x 10.1051/0004-6361/202245414 10.3847/1538-4365/ab18ff 10.20537/2076-7633-2014-6-2-203-215 10.3847/1538-4365/ab0d8c 10.1103/PhysRevD.78.024023 10.1103/PhysRevD.102.104001 10.1086/591925 10.1146/annurev.astro.43.072103.150558 10.1088/0004-637X/772/2/127 10.1007/978-3-662-03915-1 10.1007/978-981-15-4174-2 10.3847/2041-8213/ac1d56 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 Pleiades Publishing, Ltd. 2025. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 – notice: Pleiades Publishing, Ltd. 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S1995080224608373 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1818-9962 |
| EndPage | 132 |
| ExternalDocumentID | 10_1134_S1995080224608373 |
| GroupedDBID | -Y2 -~9 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 408 40D 40E 5GY 5IG 5VS 642 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E4X EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J9A JBSCW JZLTJ KOV LLZTM LO0 M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PF0 PT4 QOS R89 R9I REM RIG ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 XSB YLTOR ZMTXR ~A9 AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION OVT |
| ID | FETCH-LOGICAL-c270t-3e4fab68bf051ee11606d0993a541ac5db0c9ef7ebd6c7f15c7a2e0327ea6b863 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001560902800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1995-0802 |
| IngestDate | Tue Dec 02 10:00:33 EST 2025 Sat Nov 29 07:46:24 EST 2025 Sat May 31 01:18:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | mathematical modelling 2010 Mathematics Subject Classification: 65M08 gamma-ray burst relativistic jet radiation transfer Compton scattering computational astrophysics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-3e4fab68bf051ee11606d0993a541ac5db0c9ef7ebd6c7f15c7a2e0327ea6b863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3259263090 |
| PQPubID | 2044393 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3259263090 crossref_primary_10_1134_S1995080224608373 springer_journals_10_1134_S1995080224608373 |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Heidelberg |
| PublicationTitle | Lobachevskii journal of mathematics |
| PublicationTitleAbbrev | Lobachevskii J Math |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | P. L. Kelly (8143_CR4) 2008; 687 A. Mignone (8143_CR29) 2007; 378 P. Chardonnet (8143_CR8) 2010; 325 H. R. Takahashi (8143_CR17) 2013; 772 R. Farinelli (8143_CR1) 2021; 501 L. Titarchuk (8143_CR7) 2012; 752 8143_CR14 B. Boccardi (8143_CR11) 2021; 647 G. Pomraning (8143_CR12) 2005 B. N. Chetverushkin (8143_CR22) 1985 S. G. Moiseenko (8143_CR6) 2006; 370 M. K. Vyas (8143_CR2) 2021; 918 L. G. Titarchuk (8143_CR9) 1980; 86 F. J. Rivera-Paleo (8143_CR15) 2019; 241 8143_CR23 8143_CR21 8143_CR20 Y. I. Skalko (8143_CR30) 2014; 6 E. A. Murzina (8143_CR25) 2007 S. Kato (8143_CR18) 2020 8143_CR27 E. R. Gustavo (8143_CR10) 2017; 207 8143_CR26 V. V. Lukin (8143_CR24) 2017; 467 C. McKinney (8143_CR19) 2014; 441 O. Zanotti (8143_CR16) 2011; 417 F. Xu (8143_CR3) 2023; 673 S. E. Woosley (8143_CR5) 2006; 44 M. P. Galanin (8143_CR31) 2010 J. D. Fuksman (8143_CR13) 2019; 242 E. F. Toro (8143_CR28) 1999 |
| References_xml | – ident: 8143_CR14 doi: 10.1016/j.cpc.2022.108630 – volume: 467 start-page: 2934 year: 2017 ident: 8143_CR24 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stx309 – volume-title: Interaction of High-Energy Radiation with Matter year: 2007 ident: 8143_CR25 – volume: 370 start-page: 501 year: 2006 ident: 8143_CR6 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2006.10517.x – volume: 647 start-page: A67 year: 2021 ident: 8143_CR11 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202039612 – volume: 378 start-page: 1118 year: 2007 ident: 8143_CR29 publication-title: Mon. Not. R. Acad. Sci. doi: 10.1111/j.1365-2966.2007.11849.x – volume: 325 start-page: 153 year: 2010 ident: 8143_CR8 publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-009-0178-4 – volume: 207 start-page: 5 year: 2017 ident: 8143_CR10 publication-title: Space Sci. Rev. doi: 10.1007/s11214-016-0328-2 – volume: 752 start-page: 116 year: 2012 ident: 8143_CR7 publication-title: Astrophys. J. doi: 10.1088/0004-637X/752/2/116 – volume: 501 start-page: 5723 year: 2021 ident: 8143_CR1 publication-title: Mon. Not. R. Astron. Soc. – volume-title: Equations of Radiation Hydrodynamics year: 2005 ident: 8143_CR12 – volume: 441 start-page: 3177 year: 2014 ident: 8143_CR19 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stu762 – volume: 417 start-page: 2899 year: 2011 ident: 8143_CR16 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2011.19451.x – ident: 8143_CR26 – volume: 673 start-page: A20 year: 2023 ident: 8143_CR3 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202245414 – volume: 242 start-page: 20 year: 2019 ident: 8143_CR13 publication-title: Astrophys. J. Suppl. Ser. doi: 10.3847/1538-4365/ab18ff – volume: 6 start-page: 203 year: 2014 ident: 8143_CR30 publication-title: Comput. Res. Model. doi: 10.20537/2076-7633-2014-6-2-203-215 – volume: 241 start-page: 28 year: 2019 ident: 8143_CR15 publication-title: Astrophys. J. Suppl. Ser. doi: 10.3847/1538-4365/ab0d8c – volume-title: “Methods of radiation transfer equation solution for the astrophysical models, ” KIAM Preprint No. 59 year: 2010 ident: 8143_CR31 – ident: 8143_CR20 doi: 10.1103/PhysRevD.78.024023 – volume: 86 start-page: 121 year: 1980 ident: 8143_CR9 publication-title: Astron. Astrophys. – ident: 8143_CR21 doi: 10.1103/PhysRevD.102.104001 – volume: 687 start-page: 1201 year: 2008 ident: 8143_CR4 publication-title: Astrophys. J. doi: 10.1086/591925 – volume: 44 start-page: 507 year: 2006 ident: 8143_CR5 publication-title: Ann. Rev. Astron. Astrophys. doi: 10.1146/annurev.astro.43.072103.150558 – volume-title: Mathematical Modeling of Problems in the Dynamics of a Radiating Gas year: 1985 ident: 8143_CR22 – volume: 772 start-page: 127 year: 2013 ident: 8143_CR17 publication-title: Astrophys. J. doi: 10.1088/0004-637X/772/2/127 – ident: 8143_CR23 – volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics year: 1999 ident: 8143_CR28 doi: 10.1007/978-3-662-03915-1 – ident: 8143_CR27 – volume-title: Fundamentals of Astrophysical Fluid Dynamics year: 2020 ident: 8143_CR18 doi: 10.1007/978-981-15-4174-2 – volume: 918 start-page: L12 year: 2021 ident: 8143_CR2 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac1d56 |
| SSID | ssj0022666 |
| Score | 2.310733 |
| Snippet | The model of gamma-ray burst (GRB) from magnetorotational supernova after its explosion is proposed in order to investigate burst gamma radiation spectrum.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 121 |
| SubjectTerms | Acceleration Algebra Analysis Approximation Black body radiation Elastic scattering Energy Flow velocity Fluid mechanics Gamma ray astronomy Gamma ray bursts Gamma rays Gas dynamics Geometry Graphics processing units Hydrodynamics Light speed Mathematical Logic and Foundations Mathematical models Mathematics Mathematics and Statistics Numerical models Photons Plasma Plasma clouds Probability Theory and Stochastic Processes Radiation Radiation pressure Radiative transfer Relativistic effects Relativistic velocity Spectra Three dimensional models |
| Title | Numerical Modeling of Gamma-Ray Burst Spectra |
| URI | https://link.springer.com/article/10.1134/S1995080224608373 https://www.proquest.com/docview/3259263090 |
| Volume | 46 |
| WOSCitedRecordID | wos001560902800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1818-9962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022666 issn: 1995-0802 databaseCode: RSV dateStart: 20080101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4QAHdkShoBw4gSwS27GdIyCWCxVqAfUWeYuERFvUpEj8PY6TtGI7wDmWZU08nvcyeX4Ax-7ctZryBGGsGaIqMaVYGaNQGy50QhWTwptN8G5XDAbJfa3jzpu_3ZuWpD-pK98RetYvxcReGUqZww2cLMKSq3ai9Gvo9Z9mLMtVHC8p8tJjEeK6lfnjFJ-L0RxhfmmK-lpzvf6vVW7AWg0tg_NqL2zCgh1twerd7F7WfBtQd1p1aF6C0gStlKIH4yy4kcOhRD35HlxMHRoMSlP6YiJ34PH66uHyFtWGCUhjHhaIWJpJxYTKXKpZG0WOnRgHAYmMaSR1bFSoE5txqwzTPItizSW2IcHcSqYEI7vQGo1Hdg8C6oiVyQR36CGi7kUnUmQ8dlhRRYY7CtmGkyZy6Wt1L0bq-QSh6bcYtKHTxDatUyRPiSNemJEwCdtw2sRy_vjXyfb_NPoAVnDp2Os_mnSgVUym9hCW9VvxnE-O_M75AHVKuek |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFNQHv8Xp1D74pBTbJE3SRxXnxK3INmVvJU1TENwmayf4703TdsOvB31uCeXm456T23MPwKk-d5UkzLcRktQmkR_nYmVkOzJmXPokooIbswkWBHww8B9KHXda_e1elSTNSV34jpCLXi4mNspQQjVuYHgRlohOWHnD_G7vacaydMYxkiIjPeYOKkuZPw7xORnNEeaXoqjJNc2Nf33lJqyX0NK6LNbCFiyo0TasdWZ9WdMdsINpUaF5sXITtFyKbo0T61YMh8LuinfraqrRoJWb0mcTsQuPzZv-dcsuDRNsiZiT2ViRRESUR4neakq5rmYnsYaAWHjEFdKLI0f6KmEqiqlkietJJpByMGJK0IhTvAe10Xik9sEimljFCWcaPbhET7QveMI8jRUjN2aaQtbhrIpc-Fr0xQgNn8Ak_BaDOjSq2IblFklDrIkXotjxnTqcV7GcP_51sIM_vX0CK61-px2274L7Q1hFuXuvuUBpQC2bTNURLMu37DmdHJtV9AE3UrzN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1itmoMnJZhsNtnk6KsqaihWpbewr4Bg09Kkgv_e3U3S4usgnhOWMMzufF9mv_kADtW5KzkmkY0QD2zMIqHFysh2uCAhjzALaGjMJkgch71e1Kl8TvP6tnvdkiw1DXpKU1acDEVaeZDgk64WFhuVKA4UhiDeLMxhfY9e0_Xu84Rxqepj5EVGhhw6qGpr_rjE58I0RZtfGqSm7rRX_v3Fq7BcQU7rtMyRNZiR2Tos3U_mteYbYMfjsnPzamlzNC1RtwapdUX7fWo_0HfrbKxQoqXN6osR3YSn9uXj-bVdGSnYHBGnsD2JU8qCkKVqC0rpuoq1CAUNPepjl3JfMIdHMiWSiYCT1PU5oUg6HiKSBiwMvC1oZINMboOFFeESaUgUqnCxSoCIhinxFYZkriCKWjbhqI5iMiznZSSGZ3g4-RaDJrTqOCfV1skTTxEyFHhO5DThuI7r9PGvi-386e0DWOhctJO7m_h2FxaRNvU1_1Va0ChGY7kH8_yteMlH-yahPgBFLsWx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Modeling+of+Gamma-Ray+Burst+Spectra&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Lartsev%2C+A.+I&rft.au=Lukin%2C+V.+V&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=46&rft.issue=1&rft.spage=121&rft.epage=132&rft_id=info:doi/10.1134%2FS1995080224608373&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon |