Robust singular value decomposition with application to video surveillance background modelling
The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded...
Saved in:
| Published in: | Statistics and computing Vol. 34; no. 5 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0960-3174, 1573-1375 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination. In particular, background modelling of video surveillance data in the presence of camera tampering cannot be reliably solved by the classical SVD. In this paper, we propose a novel robust singular value decomposition technique based on the popular minimum density power divergence estimator. We have established the theoretical properties of the proposed estimator such as convergence, equivariance and consistency under the high-dimensional regime where both the row and column dimensions of the data matrix approach infinity. We also propose a fast and scalable algorithm based on alternating weighted regression to obtain the estimate. Within the scope of our fairly extensive simulation studies, our method performs better than existing robust SVD algorithms. Finally, we present an application of the proposed method on the video surveillance background modelling problem. |
|---|---|
| AbstractList | The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination. In particular, background modelling of video surveillance data in the presence of camera tampering cannot be reliably solved by the classical SVD. In this paper, we propose a novel robust singular value decomposition technique based on the popular minimum density power divergence estimator. We have established the theoretical properties of the proposed estimator such as convergence, equivariance and consistency under the high-dimensional regime where both the row and column dimensions of the data matrix approach infinity. We also propose a fast and scalable algorithm based on alternating weighted regression to obtain the estimate. Within the scope of our fairly extensive simulation studies, our method performs better than existing robust SVD algorithms. Finally, we present an application of the proposed method on the video surveillance background modelling problem. |
| ArticleNumber | 178 |
| Author | Roy, Subhrajyoty Basu, Ayanendranath Ghosh, Abhik |
| Author_xml | – sequence: 1 givenname: Subhrajyoty surname: Roy fullname: Roy, Subhrajyoty email: roysubhra98@gmail.com organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute – sequence: 2 givenname: Abhik surname: Ghosh fullname: Ghosh, Abhik organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute – sequence: 3 givenname: Ayanendranath surname: Basu fullname: Basu, Ayanendranath organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute |
| BookMark | eNp9kM1KAzEYRYNUsK2-gKuA62j-JplZSvEPCoLoOqRJpqamyZjMVHx7R0dw5-qDyz33g7MAs5iiA-Cc4EuCsbwqhFBKEaYcEcwbhuQRmJNKMkSYrGZgjhuBESOSn4BFKTuMCRGMz4F6Spuh9LD4uB2CzvCgw-CgdSbtu1R871OEH75_hbrrgjf6J-gTPHjrEixDPjgfgo7GwY02b9uchmjhPlkXwrh5Co5bHYo7-71L8HJ787y6R-vHu4fV9RoZKnGPmNRaOCIqiYWhLdWmFto61hLmuBB1Y6xoJJG2qjintWs5ky0TuN5g23Ct2RJcTLtdTu-DK73apSHH8aViBDNOKk6rsUWnlsmplOxa1WW_1_lTEay-RapJpBpFqh-RSo4Qm6AyluPW5b_pf6gvTed5MQ |
| Cites_doi | 10.3390/e13010134 10.1109/ISIT.2010.5513535 10.1137/090771806 10.1007/978-3-642-37410-4_25 10.48550/arXiv.1211.7102 10.1007/BFb0021444 10.1016/j.cosrev.2019.100204 10.1142/9789814324359_0111 10.1073/pnas.1733249100 10.1561/2200000058 10.1109/CVPR.2005.309 10.1093/biomet/85.3.549 10.1214/aos/1176346793 10.18637/jss.v089.i11 10.1214/aos/1176342503 10.1214/13-AOAS649 10.1016/j.cosrev.2014.04.001 10.1214/aos/1176343347 10.1093/bioinformatics/btm069 10.32614/CRAN.package.rpca 10.1007/BF02163027 10.3390/data2030029 10.1101/gr.277525.122 10.1016/j.camwa.2005.08.009 10.32614/CRAN.package.rsvddpd 10.1109/CVPR.2012.6247848 10.5220/0007392100850095 10.1016/j.sigpro.2007.04.004 10.1006/jmva.1999.1873 10.32614/CRAN.package.pcaone 10.1137/1.9781611976465.32 10.1007/s11042-018-6165-4 10.1016/j.cviu.2013.11.009 10.1080/01621459.1993.10476301 10.1007/s40304-020-00221-8 10.1198/jasa.2009.tm08024 10.1080/10556788.2012.700713 10.1109/ICASSP.2017.7952994 10.1109/AVSS.2019.8909856 10.1214/08-AOAS227 10.1109/TIT.2011.2173156 10.1109/TPAMI.2009.112 10.1214/13-EJS847 10.3390/e22030304 10.1109/TSP.2012.2197748 10.1201/9781315369983 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11222-024-10493-7 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| ExternalDocumentID | 10_1007_s11222_024_10493_7 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c270t-37aa6e165706c2f2ac86ade3f13e46689cd69717d554428ef437f3608b0d94aa3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310157800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 |
| IngestDate | Thu Oct 02 15:08:12 EDT 2025 Sat Nov 29 03:32:46 EST 2025 Fri Feb 21 02:40:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Robust matrix factorization Robust SVD Density power divergence Background modelling Singular value decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-37aa6e165706c2f2ac86ade3f13e46689cd69717d554428ef437f3608b0d94aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3103415425 |
| PQPubID | 2043829 |
| ParticipantIDs | proquest_journals_3103415425 crossref_primary_10_1007_s11222_024_10493_7 springer_journals_10_1007_s11222_024_10493_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | HeXShaoQMOn parameters of increasing dimensionsJ. Multivar. Anal.2000731120135176612410.1006/jmva.1999.1873 XiongLZhuFMinimum density power divergence estimator for negative binomial integer-valued GARCH modelsCommun. Math. Stat.202110.1007/s40304-020-00221-8 BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput. Vis. Image Underst.2014122223410.1016/j.cviu.2013.11.009 JainPKarPNon-convex optimization for machine learningFound. Trends Mach. Learn.2017103–414233610.1561/2200000058 HuangJZShenHBujaAThe analysis of two-way functional data using two-way regularized singular value decompositionsJ. Am. Stat. Assoc.200910448816091620275058110.1198/jasa.2009.tm08024 He, J., Balzano, L., Lui, J.: Online Robust Subspace Tracking from Partial Information (2011). arXiv preprint arXiv:1109.3827 BouwmansTTraditional and recent approaches in background modeling for foreground detection: an overviewComput. Sci. Rev.201411–12316610.1016/j.cosrev.2014.04.001 Sykulski, M.: rpca: RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components. R package version 0.2.3 (2015) SitaraKMehtreBMAutomated camera sabotage detection for enhancing video surveillance systemsMultimed. Tools Appl.20197855819584110.1007/s11042-018-6165-4 Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Randomized matrix decompositions using R. J. Stat. Softw. 89(11), 1–48 (2019). https://doi.org/10.18637/jss.v089.i11 HuberPJRobust regression: asymptotics, conjectures and Monte CarloAnn. Stat.19731579982135637310.1214/aos/1176342503 MarkovskyIVan HuffelSOverview of total least squares methodsSign. Process.200787102283230210.1016/j.sigpro.2007.04.004 Zhang, L., Pan, C.: RobRSVD: Robust Regularized Singular Value Decomposition. R package version 1.0 (2013) TracyCAWidomHHelminckGFIntroduction to random matricesGeometric and Quantum Aspects of Integrable Systems, Berlin, Heidelberg1993Berlin HeidelbergSpringer10313010.1007/BFb0021444 LiZMeisnerJAlbrechtsenAFast and accurate Out-of-Core PCA framework for large scale biobank dataGenome Res.20233391599160810.1101/gr.277525.122 Zhang, T., Lerman, G.: A novel M-estimator for robust PCA. J. Mach. Learn. Res. 15(1), 749–808 (2014) GolubGHReinschCSingular value decomposition and least squares solutionsNumer. Math.1970145403420155397410.1007/BF02163027 GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectron. J. Stat.2013724202456311710210.1214/13-EJS847 Mantini, P., Shah, S.K.: UHCTD: a comprehensive dataset for camera tampering detection. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019b) BabacanSDLuessiMMolinaRKatsaggelosAKSparse Bayesian methods for low-rank matrix estimationIEEE Trans. Sign. Process.201260839643977296047210.1109/TSP.2012.2197748 Liu, J., Cosman, P.C., Rao, B.D.: Sparsity regularized principal component pursuit. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4431–4435. IEEE (2017) VaccaroRJSVD and Signal Processing II: Algorithms, Analysis and Applications1991USAElsevier Science Inc OwenABPerryPOBi-cross-validation of the SVD and the nonnegative matrix factorizationAnn. Appl. Stat.200932564594275067310.1214/08-AOAS227 MaronnaRARobust M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of multivariate location and scatterAnn. Stat.197641516738865610.1214/aos/1176343347 LiuLHawkinsDMGhoshSYoungSSRobust singular value decomposition analysis of microarray dataProc. Natl. Acad. Sci.2003100231316713172201672710.1073/pnas.1733249100 ZhangLShenHHuangJZRobust regularized singular value decomposition with application to mortality dataAnn. Appl. Stat.20137315401561312795810.1214/13-AOAS649 Rey, W.: Total Singular Value Decomposition. Robust SVD, Regression and Location-Scale (2007) Cichocki, A., Cruces, S., Amari, S.I.: Generalized alpha–beta divergences and their application to robust nonnegative matrix factorization. Entropy 13(1), 134–170 (2011). https://doi.org/10.3390/e13010134 GreenacreMCorrespondence Analysis in Practice2017CRC Press10.1201/9781315369983 Alman, J., Williams, V.V.: A Refined Laser Method and Faster Matrix Multiplication, pp. 522–539 (2021) CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM2011101145/197039219703952811000 MehtaMLRandom Matrices2004Elsevier Zhou, T., Tao, D.: GoDec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, Madison, WI, USA, pp. 33–40. Omnipress (2011) HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806 JungKMRobust singular value decomposition based on weighted least absolute deviation regressionCommun. Stat. Appl. Methods2010176803810 Roy, S.: rsvddpd: Robust Singular Value Decomposition using Density Power Divergence. R package version 1.0.0 (2021) Hawkins, D.M., Liu, L., Young, S.S.: Robust Singular Value Decomposition. Technical Report 122, National Institute of Statistical Sciences (NISS) (2001) Johnson, R.A., Wichern, D.W. et al: Applied Multivariate Statistical Analysis (2002) Roy, S., Sarkar, A., Ghosh, A., Basu, A.: Asymptotic Breakdown Point Analysis for a General Class of Minimum Divergence Estimators (2023) XuHCaramanisCSanghaviSRobust PCA via outlier pursuitIEEE Trans. Inf. Theory201258530473064295253210.1109/TIT.2011.2173156 Li, Z.: pcaone: Randomized Singular Value Decomposition Algorithms with ’RcppEigen’. R package version 1.0.0 (2022) Garcia-GarciaBBouwmansTRosales SilvaAJBackground subtraction in real applications: challenges, current models and future directionsComput. Sci. Rev.202035100204403235710.1016/j.cosrev.2019.100204 MahadevanVVasconcelosNSpatiotemporal saliency in dynamic scenesIEEE Trans. Patt. Anal. Mach. Intell.201032117117710.1109/TPAMI.2009.112 GiraudLLangouJRozloznikMThe loss of orthogonality in the Gram–Schmidt orthogonalization processComput. Math. Appl.200550710691075216774410.1016/j.camwa.2005.08.009 BasuAHarrisIRHjortNLJonesMCRobust and efficient estimation by minimising a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549 He, J., Balzano, L., Szlam, A.: Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1575. IEEE (2012) ShenYWenZZhangYAugmented Lagrangian alternating direction method for matrix separation based on low-rank factorizationOptim. Methods Softw.2014292239263317548410.1080/10556788.2012.700713 VacavantAChateauTWilhelmALequièvreLParkJ-IKimJA benchmark dataset for outdoor foreground/background extractionComputer Vision: ACCV 2012 Workshops, Berlin, Heidelberg2013Berlin HeidelbergSpringer29130010.1007/978-3-642-37410-4_25 Zhou, Z., Li, X., Wright, J., Candès, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on Information Theory, pp. 1518–1522 (2010) Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values. In: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602. World Scientific (2010) PortnoySAsymptotic behavior of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} regression parameters when p2/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2/n$$\end{document} is large I. consistencyAnn. Stat.19841241298130910.1214/aos/1176346793 SadekRASVD based image processing applications: state of the art, contributions and research challengesInt. J. Adv. Comput. Sci. Appl.201237263410.48550/arXiv.1211.7102 Mantini, P., Shah, S.K.: Camera tampering detection using generative reference model and deep learned features. In: VISIGRAPP (5: VISAPP), pp. 85–95 (2019a) Ke, Q., Kanade, T.: Robust L1 Norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of (CVPR) Computer Vision and Pattern Recognition, Vol. 1, pp. 739–746 (2005) WangDAdjustable robust singular value decomposition: design, analysis and application to financeData201711010.3390/data2030029 NetrapalliPSanghaviNUNSAnandkumarAJainPGhahramaniZWellingMCortesCLawrenceNWeinbergerKNon-convex robust PCAAdvances in Neural Information Processing Systems2014Curran Associates Inc StackliesWRedestigHScholzMWaltherDSelbigJpcaMethods: a bioconductor package providing PCA methods for incomplete dataBioinformatics2007231164116710.1093/bioinformatics/btm069 JolliffeITPrincipal Component Analysis2002New YorkSpringer Series in Statistics, Springer AmmannLPRobust singular value decompositions: a new approach to projection pursuitJ. Am. Stat. Assoc.199388422505514122437510.1080/01621459.1993.10476301 TomaA KaragrigoriouATrentouPRobust model selection criteria based on pseudodistancesEntropy2020421739010.3390/e22030304 MoonenM De MoorBSVD and Signal Pro 10493_CR17 P Netrapalli (10493_CR38) 2014 10493_CR16 M Greenacre (10493_CR14) 2017 10493_CR18 10493_CR57 PJ Huber (10493_CR21) 1973; 1 10493_CR59 SD Babacan (10493_CR3) 2012; 60 A Vacavant (10493_CR52) 2013 L Zhang (10493_CR58) 2013; 7 A Toma (10493_CR50) 2020 A Basu (10493_CR4) 1998; 85 M Moonen (10493_CR37) 1995 10493_CR60 A Ghosh (10493_CR11) 2013; 7 Y Shen (10493_CR46) 2014; 29 10493_CR61 KM Jung (10493_CR25) 2010; 17 CA Tracy (10493_CR51) 1993 10493_CR27 V Mahadevan (10493_CR31) 2010; 32 Z Li (10493_CR28) 2023; 33 X He (10493_CR19) 2000; 73 10493_CR29 EJ Candès (10493_CR7) 2011; 10 10493_CR23 GH Golub (10493_CR13) 1970; 14 10493_CR26 L Giraud (10493_CR12) 2005; 50 RJ Vaccaro (10493_CR53) 1991 AB Owen (10493_CR39) 2009; 3 T Bouwmans (10493_CR6) 2014; 122 10493_CR33 10493_CR32 I Markovsky (10493_CR34) 2007; 87 T Bouwmans (10493_CR5) 2014; 11–12 JZ Huang (10493_CR20) 2009; 104 L Liu (10493_CR30) 2003; 100 RA Sadek (10493_CR45) 2012; 3 N Halko (10493_CR15) 2011; 53 IT Jolliffe (10493_CR24) 2002 RA Maronna (10493_CR35) 1976; 4 P Jain (10493_CR22) 2017; 10 S Portnoy (10493_CR40) 1984; 12 H Xu (10493_CR56) 2012; 58 B Garcia-Garcia (10493_CR10) 2020; 35 L Xiong (10493_CR55) 2021 10493_CR42 10493_CR41 10493_CR44 W Stacklies (10493_CR48) 2007; 23 10493_CR43 10493_CR49 D Wang (10493_CR54) 2017; 1 10493_CR1 10493_CR8 10493_CR9 ML Mehta (10493_CR36) 2004 K Sitara (10493_CR47) 2019; 78 LP Ammann (10493_CR2) 1993; 88 |
| References_xml | – reference: BouwmansTTraditional and recent approaches in background modeling for foreground detection: an overviewComput. Sci. Rev.201411–12316610.1016/j.cosrev.2014.04.001 – reference: TomaA KaragrigoriouATrentouPRobust model selection criteria based on pseudodistancesEntropy2020421739010.3390/e22030304 – reference: He, J., Balzano, L., Lui, J.: Online Robust Subspace Tracking from Partial Information (2011). arXiv preprint arXiv:1109.3827 – reference: MaronnaRARobust M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of multivariate location and scatterAnn. Stat.197641516738865610.1214/aos/1176343347 – reference: Li, Z.: pcaone: Randomized Singular Value Decomposition Algorithms with ’RcppEigen’. R package version 1.0.0 (2022) – reference: OwenABPerryPOBi-cross-validation of the SVD and the nonnegative matrix factorizationAnn. Appl. Stat.200932564594275067310.1214/08-AOAS227 – reference: NetrapalliPSanghaviNUNSAnandkumarAJainPGhahramaniZWellingMCortesCLawrenceNWeinbergerKNon-convex robust PCAAdvances in Neural Information Processing Systems2014Curran Associates Inc – reference: XiongLZhuFMinimum density power divergence estimator for negative binomial integer-valued GARCH modelsCommun. Math. Stat.202110.1007/s40304-020-00221-8 – reference: Zhang, L., Pan, C.: RobRSVD: Robust Regularized Singular Value Decomposition. R package version 1.0 (2013) – reference: GolubGHReinschCSingular value decomposition and least squares solutionsNumer. Math.1970145403420155397410.1007/BF02163027 – reference: StackliesWRedestigHScholzMWaltherDSelbigJpcaMethods: a bioconductor package providing PCA methods for incomplete dataBioinformatics2007231164116710.1093/bioinformatics/btm069 – reference: Liu, J., Cosman, P.C., Rao, B.D.: Sparsity regularized principal component pursuit. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4431–4435. IEEE (2017) – reference: VacavantAChateauTWilhelmALequièvreLParkJ-IKimJA benchmark dataset for outdoor foreground/background extractionComputer Vision: ACCV 2012 Workshops, Berlin, Heidelberg2013Berlin HeidelbergSpringer29130010.1007/978-3-642-37410-4_25 – reference: PortnoySAsymptotic behavior of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} regression parameters when p2/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2/n$$\end{document} is large I. consistencyAnn. Stat.19841241298130910.1214/aos/1176346793 – reference: HuberPJRobust regression: asymptotics, conjectures and Monte CarloAnn. Stat.19731579982135637310.1214/aos/1176342503 – reference: Hawkins, D.M., Liu, L., Young, S.S.: Robust Singular Value Decomposition. Technical Report 122, National Institute of Statistical Sciences (NISS) (2001) – reference: MahadevanVVasconcelosNSpatiotemporal saliency in dynamic scenesIEEE Trans. Patt. Anal. Mach. Intell.201032117117710.1109/TPAMI.2009.112 – reference: GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectron. J. Stat.2013724202456311710210.1214/13-EJS847 – reference: Garcia-GarciaBBouwmansTRosales SilvaAJBackground subtraction in real applications: challenges, current models and future directionsComput. Sci. Rev.202035100204403235710.1016/j.cosrev.2019.100204 – reference: Sykulski, M.: rpca: RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components. R package version 0.2.3 (2015) – reference: Johnson, R.A., Wichern, D.W. et al: Applied Multivariate Statistical Analysis (2002) – reference: SadekRASVD based image processing applications: state of the art, contributions and research challengesInt. J. Adv. Comput. Sci. Appl.201237263410.48550/arXiv.1211.7102 – reference: MehtaMLRandom Matrices2004Elsevier – reference: Ke, Q., Kanade, T.: Robust L1 Norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of (CVPR) Computer Vision and Pattern Recognition, Vol. 1, pp. 739–746 (2005) – reference: GiraudLLangouJRozloznikMThe loss of orthogonality in the Gram–Schmidt orthogonalization processComput. Math. Appl.200550710691075216774410.1016/j.camwa.2005.08.009 – reference: Zhou, T., Tao, D.: GoDec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, Madison, WI, USA, pp. 33–40. Omnipress (2011) – reference: JolliffeITPrincipal Component Analysis2002New YorkSpringer Series in Statistics, Springer – reference: LiZMeisnerJAlbrechtsenAFast and accurate Out-of-Core PCA framework for large scale biobank dataGenome Res.20233391599160810.1101/gr.277525.122 – reference: Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values. In: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602. World Scientific (2010) – reference: GreenacreMCorrespondence Analysis in Practice2017CRC Press10.1201/9781315369983 – reference: LiuLHawkinsDMGhoshSYoungSSRobust singular value decomposition analysis of microarray dataProc. Natl. Acad. Sci.2003100231316713172201672710.1073/pnas.1733249100 – reference: JungKMRobust singular value decomposition based on weighted least absolute deviation regressionCommun. Stat. Appl. Methods2010176803810 – reference: XuHCaramanisCSanghaviSRobust PCA via outlier pursuitIEEE Trans. Inf. Theory201258530473064295253210.1109/TIT.2011.2173156 – reference: BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput. Vis. Image Underst.2014122223410.1016/j.cviu.2013.11.009 – reference: JainPKarPNon-convex optimization for machine learningFound. Trends Mach. Learn.2017103–414233610.1561/2200000058 – reference: Zhou, Z., Li, X., Wright, J., Candès, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on Information Theory, pp. 1518–1522 (2010) – reference: Alman, J., Williams, V.V.: A Refined Laser Method and Faster Matrix Multiplication, pp. 522–539 (2021) – reference: BasuAHarrisIRHjortNLJonesMCRobust and efficient estimation by minimising a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549 – reference: TracyCAWidomHHelminckGFIntroduction to random matricesGeometric and Quantum Aspects of Integrable Systems, Berlin, Heidelberg1993Berlin HeidelbergSpringer10313010.1007/BFb0021444 – reference: Cichocki, A., Cruces, S., Amari, S.I.: Generalized alpha–beta divergences and their application to robust nonnegative matrix factorization. Entropy 13(1), 134–170 (2011). https://doi.org/10.3390/e13010134 – reference: He, J., Balzano, L., Szlam, A.: Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1575. IEEE (2012) – reference: SitaraKMehtreBMAutomated camera sabotage detection for enhancing video surveillance systemsMultimed. Tools Appl.20197855819584110.1007/s11042-018-6165-4 – reference: MarkovskyIVan HuffelSOverview of total least squares methodsSign. Process.200787102283230210.1016/j.sigpro.2007.04.004 – reference: HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806 – reference: WangDAdjustable robust singular value decomposition: design, analysis and application to financeData201711010.3390/data2030029 – reference: HuangJZShenHBujaAThe analysis of two-way functional data using two-way regularized singular value decompositionsJ. Am. Stat. Assoc.200910448816091620275058110.1198/jasa.2009.tm08024 – reference: BabacanSDLuessiMMolinaRKatsaggelosAKSparse Bayesian methods for low-rank matrix estimationIEEE Trans. Sign. Process.201260839643977296047210.1109/TSP.2012.2197748 – reference: Roy, S.: rsvddpd: Robust Singular Value Decomposition using Density Power Divergence. R package version 1.0.0 (2021) – reference: MoonenM De MoorBSVD and Signal Processing, III: Algorithms, Architectures and Applications1995Elsevier – reference: Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Randomized matrix decompositions using R. J. Stat. Softw. 89(11), 1–48 (2019). https://doi.org/10.18637/jss.v089.i11 – reference: ShenYWenZZhangYAugmented Lagrangian alternating direction method for matrix separation based on low-rank factorizationOptim. Methods Softw.2014292239263317548410.1080/10556788.2012.700713 – reference: Rey, W.: Total Singular Value Decomposition. Robust SVD, Regression and Location-Scale (2007) – reference: HeXShaoQMOn parameters of increasing dimensionsJ. Multivar. Anal.2000731120135176612410.1006/jmva.1999.1873 – reference: Mantini, P., Shah, S.K.: Camera tampering detection using generative reference model and deep learned features. In: VISIGRAPP (5: VISAPP), pp. 85–95 (2019a) – reference: Roy, S., Sarkar, A., Ghosh, A., Basu, A.: Asymptotic Breakdown Point Analysis for a General Class of Minimum Divergence Estimators (2023) – reference: ZhangLShenHHuangJZRobust regularized singular value decomposition with application to mortality dataAnn. Appl. Stat.20137315401561312795810.1214/13-AOAS649 – reference: Zhang, T., Lerman, G.: A novel M-estimator for robust PCA. J. Mach. Learn. Res. 15(1), 749–808 (2014) – reference: VaccaroRJSVD and Signal Processing II: Algorithms, Analysis and Applications1991USAElsevier Science Inc – reference: Mantini, P., Shah, S.K.: UHCTD: a comprehensive dataset for camera tampering detection. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019b) – reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM2011101145/197039219703952811000 – reference: AmmannLPRobust singular value decompositions: a new approach to projection pursuitJ. Am. Stat. Assoc.199388422505514122437510.1080/01621459.1993.10476301 – ident: 10493_CR8 doi: 10.3390/e13010134 – ident: 10493_CR61 doi: 10.1109/ISIT.2010.5513535 – ident: 10493_CR60 – volume: 17 start-page: 803 issue: 6 year: 2010 ident: 10493_CR25 publication-title: Commun. Stat. Appl. Methods – volume: 53 start-page: 217 issue: 2 year: 2011 ident: 10493_CR15 publication-title: SIAM Rev. doi: 10.1137/090771806 – ident: 10493_CR16 – start-page: 291 volume-title: Computer Vision: ACCV 2012 Workshops, Berlin, Heidelberg year: 2013 ident: 10493_CR52 doi: 10.1007/978-3-642-37410-4_25 – volume: 3 start-page: 26 issue: 7 year: 2012 ident: 10493_CR45 publication-title: Int. J. Adv. Comput. Sci. Appl. doi: 10.48550/arXiv.1211.7102 – start-page: 103 volume-title: Geometric and Quantum Aspects of Integrable Systems, Berlin, Heidelberg year: 1993 ident: 10493_CR51 doi: 10.1007/BFb0021444 – volume: 35 start-page: 100204 year: 2020 ident: 10493_CR10 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2019.100204 – volume-title: Random Matrices year: 2004 ident: 10493_CR36 – ident: 10493_CR44 doi: 10.1142/9789814324359_0111 – volume-title: Principal Component Analysis year: 2002 ident: 10493_CR24 – volume: 100 start-page: 13167 issue: 23 year: 2003 ident: 10493_CR30 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1733249100 – volume: 10 start-page: 142 issue: 3–4 year: 2017 ident: 10493_CR22 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000058 – ident: 10493_CR26 doi: 10.1109/CVPR.2005.309 – volume-title: SVD and Signal Processing, III: Algorithms, Architectures and Applications year: 1995 ident: 10493_CR37 – volume: 85 start-page: 549 issue: 3 year: 1998 ident: 10493_CR4 publication-title: Biometrika doi: 10.1093/biomet/85.3.549 – volume: 12 start-page: 1298 issue: 4 year: 1984 ident: 10493_CR40 publication-title: Ann. Stat. doi: 10.1214/aos/1176346793 – ident: 10493_CR9 doi: 10.18637/jss.v089.i11 – volume: 1 start-page: 799 issue: 5 year: 1973 ident: 10493_CR21 publication-title: Ann. Stat. doi: 10.1214/aos/1176342503 – volume: 7 start-page: 1540 issue: 3 year: 2013 ident: 10493_CR58 publication-title: Ann. Appl. Stat. doi: 10.1214/13-AOAS649 – volume: 11–12 start-page: 31 year: 2014 ident: 10493_CR5 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2014.04.001 – ident: 10493_CR41 – ident: 10493_CR17 – volume: 10 start-page: 1970395 issue: 1145/1970392 year: 2011 ident: 10493_CR7 publication-title: J. ACM – volume: 4 start-page: 51 issue: 1 year: 1976 ident: 10493_CR35 publication-title: Ann. Stat. doi: 10.1214/aos/1176343347 – volume: 23 start-page: 1164 year: 2007 ident: 10493_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm069 – ident: 10493_CR49 doi: 10.32614/CRAN.package.rpca – ident: 10493_CR59 – volume: 14 start-page: 403 issue: 5 year: 1970 ident: 10493_CR13 publication-title: Numer. Math. doi: 10.1007/BF02163027 – ident: 10493_CR23 – volume: 1 start-page: 10 year: 2017 ident: 10493_CR54 publication-title: Data doi: 10.3390/data2030029 – volume: 33 start-page: 1599 issue: 9 year: 2023 ident: 10493_CR28 publication-title: Genome Res. doi: 10.1101/gr.277525.122 – volume: 50 start-page: 1069 issue: 7 year: 2005 ident: 10493_CR12 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2005.08.009 – ident: 10493_CR42 doi: 10.32614/CRAN.package.rsvddpd – ident: 10493_CR18 doi: 10.1109/CVPR.2012.6247848 – ident: 10493_CR32 doi: 10.5220/0007392100850095 – volume: 87 start-page: 2283 issue: 10 year: 2007 ident: 10493_CR34 publication-title: Sign. Process. doi: 10.1016/j.sigpro.2007.04.004 – volume: 73 start-page: 120 issue: 1 year: 2000 ident: 10493_CR19 publication-title: J. Multivar. Anal. doi: 10.1006/jmva.1999.1873 – ident: 10493_CR27 doi: 10.32614/CRAN.package.pcaone – ident: 10493_CR1 doi: 10.1137/1.9781611976465.32 – volume-title: Advances in Neural Information Processing Systems year: 2014 ident: 10493_CR38 – volume: 78 start-page: 5819 issue: 5 year: 2019 ident: 10493_CR47 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6165-4 – volume: 122 start-page: 22 year: 2014 ident: 10493_CR6 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2013.11.009 – volume: 88 start-page: 505 issue: 422 year: 1993 ident: 10493_CR2 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476301 – ident: 10493_CR57 doi: 10.1214/13-AOAS649 – year: 2021 ident: 10493_CR55 publication-title: Commun. Math. Stat. doi: 10.1007/s40304-020-00221-8 – volume: 104 start-page: 1609 issue: 488 year: 2009 ident: 10493_CR20 publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.tm08024 – ident: 10493_CR43 – volume: 29 start-page: 239 issue: 2 year: 2014 ident: 10493_CR46 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2012.700713 – ident: 10493_CR29 doi: 10.1109/ICASSP.2017.7952994 – ident: 10493_CR33 doi: 10.1109/AVSS.2019.8909856 – volume: 3 start-page: 564 issue: 2 year: 2009 ident: 10493_CR39 publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS227 – volume: 58 start-page: 3047 issue: 5 year: 2012 ident: 10493_CR56 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2173156 – volume: 32 start-page: 171 issue: 1 year: 2010 ident: 10493_CR31 publication-title: IEEE Trans. Patt. Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.112 – volume: 7 start-page: 2420 year: 2013 ident: 10493_CR11 publication-title: Electron. J. Stat. doi: 10.1214/13-EJS847 – year: 2020 ident: 10493_CR50 publication-title: Entropy doi: 10.3390/e22030304 – volume: 60 start-page: 3964 issue: 8 year: 2012 ident: 10493_CR3 publication-title: IEEE Trans. Sign. Process. doi: 10.1109/TSP.2012.2197748 – volume-title: Correspondence Analysis in Practice year: 2017 ident: 10493_CR14 doi: 10.1201/9781315369983 – volume-title: SVD and Signal Processing II: Algorithms, Analysis and Applications year: 1991 ident: 10493_CR53 |
| SSID | ssj0011634 |
| Score | 2.3831558 |
| Snippet | The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Decomposition Matrices (mathematics) Modelling Original Paper Probability and Statistics in Computer Science Robustness Singular value decomposition Statistical Theory and Methods Statistics and Computing/Statistics Programs Surveillance Video data |
| Title | Robust singular value decomposition with application to video surveillance background modelling |
| URI | https://link.springer.com/article/10.1007/s11222-024-10493-7 https://www.proquest.com/docview/3103415425 |
| Volume | 34 |
| WOSCitedRecordID | wos001310157800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYSgDhQKiUJAHNrCU2MGJR4SoWKhQeaib5TjOgpSgJu3v55xHAwgGmBM50T2_870ALqxBIYkNoyniVQxQOKNxKGPqcjAyRA8c83rZRDidRvO5fGyawoq22r1NSVaWumt289GXUfQpaDoCyWm4CVvo7iKnjrOn13XuABFGNTQKsTlamDBoWmV-PuOrO-ow5re0aOVtJoP__ece7DboktzU4rAPGzYbwqDd3EAaRR7CzsN6WmsxhL5DnPXA5gNQszxeFiVxdwiuRJW4ceCWJNYVnzcVXsTd3pJPuW9S5sQ19OWkWC5W1m0ywu-QWJs31zaSJaTauONa3w_hZXL3fHtPmy0M1LDQK9ECaS2s70pkhGEp0yYSOrE89bkNhIikSYTEoDBBYIKxjE0DHqZceFHsJTLQmh9BL8szewyEI77jXoohjmUIhGJpfT_h5trztUilx0Zw2TJDvdfDNlQ3VtmRVSFZVUVWFY5g3PJLNYpXKLc2DTEJWqIRXLX86R7_ftrJ314_hT6rWUw9fwy9crG0Z7BtVsiuxXklkB-K_9mM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIDEODAaI8cyBG1Rqm5I2R4SYhtgmNAbaLWrS9ILUorXb78fpYwUEBzi3SqvYsT_H9meAS61QSaRyrRjxKgYo1LWkz6VlcjDcRw8saTlswh-Pg9mMP1VNYVld7V6nJAtL3TS7OejLLPQpaDo8Ti1_HTY89FimkG_y_LrKHSDCKEijEJujhfG9qlXm5zW-uqMGY35Lixbept_533_uwk6FLsltqQ57sKaTLnTqyQ2kOshd2B6t2FqzLrQN4iwJm_dBTFK5yHJi7hBMiSoxdOCaRNoUn1cVXsTc3pJPuW-Sp8Q09KUkW8yX2kwywu8QGao30zaSRKSYuGNa3w_gpX8_vRtY1RQGS7m-naMFCkOmHVMiw5Qbu6EKWBhpGjtUe4wFXEWMY1AYITDBWEbHHvVjyuxA2hH3wpAeQitJE30EhCK-o3aMIY52EQhJrh0nourGdkIWc9vtwVUtDPFekm2IhlbZbKvAbRXFtgq_B6e1vER18DJhxqYhJkFL1IPrWj7N499XO_7b6xewNZiOhmL4MH48gbZbituynVNo5fOFPoNNtUTRzc8L5fwAxrzccA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIDQODAaIwYAcuEG1tiltc0TABAKmiZd2i9o0vSC109rt92P3sQ0EB8S5VVrFjv059mcDnGmFShIq24gRr2KAwm0j9ERoUA5GeOiBQ14Om_AGA380EsMlFn9R7V6nJEtOA3VpSvLeOIp7C-KbhX7NQP-CZsQR3PBWYc2hoUEUr7-8z_MIiDaKBlKI09HaeE5Fm_l5ja-uaYE3v6VIC8_Tb_3_n7dhq0Kd7KpUkx1Y0UkbWvVEB1Yd8DZsPs27uGZtaBISLRs574J8TsNpljO6W6DSVUZtwjWLNBWlV5VfjG512VJOnOUpI6JfyrLpZKZpwhF-h4WB-iA6SRKxYhIPUeL34K1_-3p9Z1TTGQxle2aOlikIXG1R6Yyr7NgOlO8GkeaxxbXjur5QkSswWIwQsGCMo2OHezF3TT80I-EEAd-HRpIm-gAYR9zHzRhDH20jQAqFtqyIq0vTCtxYmHYHzmvByHHZhEMu2i3TtkrcVllsq_Q60K1lJ6sDmUkap4ZYBS1UBy5qWS0e_77a4d9eP4WN4U1fPt4PHo6gaZfSNkyrC418MtXHsK5mKLnJSaGnn8SZ5VQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+singular+value+decomposition+with+application+to+video+surveillance+background+modelling&rft.jtitle=Statistics+and+computing&rft.au=Roy%2C+Subhrajyoty&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.date=2024-10-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1007%2Fs11222-024-10493-7&rft.externalDocID=10_1007_s11222_024_10493_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |