Robust singular value decomposition with application to video surveillance background modelling

The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics and computing Ročník 34; číslo 5
Hlavní autori: Roy, Subhrajyoty, Ghosh, Abhik, Basu, Ayanendranath
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2024
Springer Nature B.V
Predmet:
ISSN:0960-3174, 1573-1375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination. In particular, background modelling of video surveillance data in the presence of camera tampering cannot be reliably solved by the classical SVD. In this paper, we propose a novel robust singular value decomposition technique based on the popular minimum density power divergence estimator. We have established the theoretical properties of the proposed estimator such as convergence, equivariance and consistency under the high-dimensional regime where both the row and column dimensions of the data matrix approach infinity. We also propose a fast and scalable algorithm based on alternating weighted regression to obtain the estimate. Within the scope of our fairly extensive simulation studies, our method performs better than existing robust SVD algorithms. Finally, we present an application of the proposed method on the video surveillance background modelling problem.
AbstractList The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very sensitive to the presence of outliers. Hence, the resulting inferences across different applications using the classical SVD are extremely degraded in the presence of data contamination. In particular, background modelling of video surveillance data in the presence of camera tampering cannot be reliably solved by the classical SVD. In this paper, we propose a novel robust singular value decomposition technique based on the popular minimum density power divergence estimator. We have established the theoretical properties of the proposed estimator such as convergence, equivariance and consistency under the high-dimensional regime where both the row and column dimensions of the data matrix approach infinity. We also propose a fast and scalable algorithm based on alternating weighted regression to obtain the estimate. Within the scope of our fairly extensive simulation studies, our method performs better than existing robust SVD algorithms. Finally, we present an application of the proposed method on the video surveillance background modelling problem.
ArticleNumber 178
Author Roy, Subhrajyoty
Basu, Ayanendranath
Ghosh, Abhik
Author_xml – sequence: 1
  givenname: Subhrajyoty
  surname: Roy
  fullname: Roy, Subhrajyoty
  email: roysubhra98@gmail.com
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
– sequence: 2
  givenname: Abhik
  surname: Ghosh
  fullname: Ghosh, Abhik
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
– sequence: 3
  givenname: Ayanendranath
  surname: Basu
  fullname: Basu, Ayanendranath
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
BookMark eNp9kM1KAzEYRYNUsK2-gKuA62j-JplZSvEPCoLoOqRJpqamyZjMVHx7R0dw5-qDyz33g7MAs5iiA-Cc4EuCsbwqhFBKEaYcEcwbhuQRmJNKMkSYrGZgjhuBESOSn4BFKTuMCRGMz4F6Spuh9LD4uB2CzvCgw-CgdSbtu1R871OEH75_hbrrgjf6J-gTPHjrEixDPjgfgo7GwY02b9uchmjhPlkXwrh5Co5bHYo7-71L8HJ787y6R-vHu4fV9RoZKnGPmNRaOCIqiYWhLdWmFto61hLmuBB1Y6xoJJG2qjintWs5ky0TuN5g23Ct2RJcTLtdTu-DK73apSHH8aViBDNOKk6rsUWnlsmplOxa1WW_1_lTEay-RapJpBpFqh-RSo4Qm6AyluPW5b_pf6gvTed5MQ
Cites_doi 10.3390/e13010134
10.1109/ISIT.2010.5513535
10.1137/090771806
10.1007/978-3-642-37410-4_25
10.48550/arXiv.1211.7102
10.1007/BFb0021444
10.1016/j.cosrev.2019.100204
10.1142/9789814324359_0111
10.1073/pnas.1733249100
10.1561/2200000058
10.1109/CVPR.2005.309
10.1093/biomet/85.3.549
10.1214/aos/1176346793
10.18637/jss.v089.i11
10.1214/aos/1176342503
10.1214/13-AOAS649
10.1016/j.cosrev.2014.04.001
10.1214/aos/1176343347
10.1093/bioinformatics/btm069
10.32614/CRAN.package.rpca
10.1007/BF02163027
10.3390/data2030029
10.1101/gr.277525.122
10.1016/j.camwa.2005.08.009
10.32614/CRAN.package.rsvddpd
10.1109/CVPR.2012.6247848
10.5220/0007392100850095
10.1016/j.sigpro.2007.04.004
10.1006/jmva.1999.1873
10.32614/CRAN.package.pcaone
10.1137/1.9781611976465.32
10.1007/s11042-018-6165-4
10.1016/j.cviu.2013.11.009
10.1080/01621459.1993.10476301
10.1007/s40304-020-00221-8
10.1198/jasa.2009.tm08024
10.1080/10556788.2012.700713
10.1109/ICASSP.2017.7952994
10.1109/AVSS.2019.8909856
10.1214/08-AOAS227
10.1109/TIT.2011.2173156
10.1109/TPAMI.2009.112
10.1214/13-EJS847
10.3390/e22030304
10.1109/TSP.2012.2197748
10.1201/9781315369983
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-024-10493-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_024_10493_7
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c270t-37aa6e165706c2f2ac86ade3f13e46689cd69717d554428ef437f3608b0d94aa3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310157800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Thu Oct 02 15:08:12 EDT 2025
Sat Nov 29 03:32:46 EST 2025
Fri Feb 21 02:40:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Robust matrix factorization
Robust SVD
Density power divergence
Background modelling
Singular value decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-37aa6e165706c2f2ac86ade3f13e46689cd69717d554428ef437f3608b0d94aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3103415425
PQPubID 2043829
ParticipantIDs proquest_journals_3103415425
crossref_primary_10_1007_s11222_024_10493_7
springer_journals_10_1007_s11222_024_10493_7
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HeXShaoQMOn parameters of increasing dimensionsJ. Multivar. Anal.2000731120135176612410.1006/jmva.1999.1873
XiongLZhuFMinimum density power divergence estimator for negative binomial integer-valued GARCH modelsCommun. Math. Stat.202110.1007/s40304-020-00221-8
BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput. Vis. Image Underst.2014122223410.1016/j.cviu.2013.11.009
JainPKarPNon-convex optimization for machine learningFound. Trends Mach. Learn.2017103–414233610.1561/2200000058
HuangJZShenHBujaAThe analysis of two-way functional data using two-way regularized singular value decompositionsJ. Am. Stat. Assoc.200910448816091620275058110.1198/jasa.2009.tm08024
He, J., Balzano, L., Lui, J.: Online Robust Subspace Tracking from Partial Information (2011). arXiv preprint arXiv:1109.3827
BouwmansTTraditional and recent approaches in background modeling for foreground detection: an overviewComput. Sci. Rev.201411–12316610.1016/j.cosrev.2014.04.001
Sykulski, M.: rpca: RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components. R package version 0.2.3 (2015)
SitaraKMehtreBMAutomated camera sabotage detection for enhancing video surveillance systemsMultimed. Tools Appl.20197855819584110.1007/s11042-018-6165-4
Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Randomized matrix decompositions using R. J. Stat. Softw. 89(11), 1–48 (2019). https://doi.org/10.18637/jss.v089.i11
HuberPJRobust regression: asymptotics, conjectures and Monte CarloAnn. Stat.19731579982135637310.1214/aos/1176342503
MarkovskyIVan HuffelSOverview of total least squares methodsSign. Process.200787102283230210.1016/j.sigpro.2007.04.004
Zhang, L., Pan, C.: RobRSVD: Robust Regularized Singular Value Decomposition. R package version 1.0 (2013)
TracyCAWidomHHelminckGFIntroduction to random matricesGeometric and Quantum Aspects of Integrable Systems, Berlin, Heidelberg1993Berlin HeidelbergSpringer10313010.1007/BFb0021444
LiZMeisnerJAlbrechtsenAFast and accurate Out-of-Core PCA framework for large scale biobank dataGenome Res.20233391599160810.1101/gr.277525.122
Zhang, T., Lerman, G.: A novel M-estimator for robust PCA. J. Mach. Learn. Res. 15(1), 749–808 (2014)
GolubGHReinschCSingular value decomposition and least squares solutionsNumer. Math.1970145403420155397410.1007/BF02163027
GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectron. J. Stat.2013724202456311710210.1214/13-EJS847
Mantini, P., Shah, S.K.: UHCTD: a comprehensive dataset for camera tampering detection. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019b)
BabacanSDLuessiMMolinaRKatsaggelosAKSparse Bayesian methods for low-rank matrix estimationIEEE Trans. Sign. Process.201260839643977296047210.1109/TSP.2012.2197748
Liu, J., Cosman, P.C., Rao, B.D.: Sparsity regularized principal component pursuit. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4431–4435. IEEE (2017)
VaccaroRJSVD and Signal Processing II: Algorithms, Analysis and Applications1991USAElsevier Science Inc
OwenABPerryPOBi-cross-validation of the SVD and the nonnegative matrix factorizationAnn. Appl. Stat.200932564594275067310.1214/08-AOAS227
MaronnaRARobust M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of multivariate location and scatterAnn. Stat.197641516738865610.1214/aos/1176343347
LiuLHawkinsDMGhoshSYoungSSRobust singular value decomposition analysis of microarray dataProc. Natl. Acad. Sci.2003100231316713172201672710.1073/pnas.1733249100
ZhangLShenHHuangJZRobust regularized singular value decomposition with application to mortality dataAnn. Appl. Stat.20137315401561312795810.1214/13-AOAS649
Rey, W.: Total Singular Value Decomposition. Robust SVD, Regression and Location-Scale (2007)
Cichocki, A., Cruces, S., Amari, S.I.: Generalized alpha–beta divergences and their application to robust nonnegative matrix factorization. Entropy 13(1), 134–170 (2011). https://doi.org/10.3390/e13010134
GreenacreMCorrespondence Analysis in Practice2017CRC Press10.1201/9781315369983
Alman, J., Williams, V.V.: A Refined Laser Method and Faster Matrix Multiplication, pp. 522–539 (2021)
CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM2011101145/197039219703952811000
MehtaMLRandom Matrices2004Elsevier
Zhou, T., Tao, D.: GoDec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, Madison, WI, USA, pp. 33–40. Omnipress (2011)
HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806
JungKMRobust singular value decomposition based on weighted least absolute deviation regressionCommun. Stat. Appl. Methods2010176803810
Roy, S.: rsvddpd: Robust Singular Value Decomposition using Density Power Divergence. R package version 1.0.0 (2021)
Hawkins, D.M., Liu, L., Young, S.S.: Robust Singular Value Decomposition. Technical Report 122, National Institute of Statistical Sciences (NISS) (2001)
Johnson, R.A., Wichern, D.W. et al: Applied Multivariate Statistical Analysis (2002)
Roy, S., Sarkar, A., Ghosh, A., Basu, A.: Asymptotic Breakdown Point Analysis for a General Class of Minimum Divergence Estimators (2023)
XuHCaramanisCSanghaviSRobust PCA via outlier pursuitIEEE Trans. Inf. Theory201258530473064295253210.1109/TIT.2011.2173156
Li, Z.: pcaone: Randomized Singular Value Decomposition Algorithms with ’RcppEigen’. R package version 1.0.0 (2022)
Garcia-GarciaBBouwmansTRosales SilvaAJBackground subtraction in real applications: challenges, current models and future directionsComput. Sci. Rev.202035100204403235710.1016/j.cosrev.2019.100204
MahadevanVVasconcelosNSpatiotemporal saliency in dynamic scenesIEEE Trans. Patt. Anal. Mach. Intell.201032117117710.1109/TPAMI.2009.112
GiraudLLangouJRozloznikMThe loss of orthogonality in the Gram–Schmidt orthogonalization processComput. Math. Appl.200550710691075216774410.1016/j.camwa.2005.08.009
BasuAHarrisIRHjortNLJonesMCRobust and efficient estimation by minimising a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549
He, J., Balzano, L., Szlam, A.: Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1575. IEEE (2012)
ShenYWenZZhangYAugmented Lagrangian alternating direction method for matrix separation based on low-rank factorizationOptim. Methods Softw.2014292239263317548410.1080/10556788.2012.700713
VacavantAChateauTWilhelmALequièvreLParkJ-IKimJA benchmark dataset for outdoor foreground/background extractionComputer Vision: ACCV 2012 Workshops, Berlin, Heidelberg2013Berlin HeidelbergSpringer29130010.1007/978-3-642-37410-4_25
Zhou, Z., Li, X., Wright, J., Candès, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on Information Theory, pp. 1518–1522 (2010)
Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values. In: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602. World Scientific (2010)
PortnoySAsymptotic behavior of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} regression parameters when p2/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2/n$$\end{document} is large I. consistencyAnn. Stat.19841241298130910.1214/aos/1176346793
SadekRASVD based image processing applications: state of the art, contributions and research challengesInt. J. Adv. Comput. Sci. Appl.201237263410.48550/arXiv.1211.7102
Mantini, P., Shah, S.K.: Camera tampering detection using generative reference model and deep learned features. In: VISIGRAPP (5: VISAPP), pp. 85–95 (2019a)
Ke, Q., Kanade, T.: Robust L1 Norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of (CVPR) Computer Vision and Pattern Recognition, Vol. 1, pp. 739–746 (2005)
WangDAdjustable robust singular value decomposition: design, analysis and application to financeData201711010.3390/data2030029
NetrapalliPSanghaviNUNSAnandkumarAJainPGhahramaniZWellingMCortesCLawrenceNWeinbergerKNon-convex robust PCAAdvances in Neural Information Processing Systems2014Curran Associates Inc
StackliesWRedestigHScholzMWaltherDSelbigJpcaMethods: a bioconductor package providing PCA methods for incomplete dataBioinformatics2007231164116710.1093/bioinformatics/btm069
JolliffeITPrincipal Component Analysis2002New YorkSpringer Series in Statistics, Springer
AmmannLPRobust singular value decompositions: a new approach to projection pursuitJ. Am. Stat. Assoc.199388422505514122437510.1080/01621459.1993.10476301
TomaA KaragrigoriouATrentouPRobust model selection criteria based on pseudodistancesEntropy2020421739010.3390/e22030304
MoonenM De MoorBSVD and Signal Pro
10493_CR17
P Netrapalli (10493_CR38) 2014
10493_CR16
M Greenacre (10493_CR14) 2017
10493_CR18
10493_CR57
PJ Huber (10493_CR21) 1973; 1
10493_CR59
SD Babacan (10493_CR3) 2012; 60
A Vacavant (10493_CR52) 2013
L Zhang (10493_CR58) 2013; 7
A Toma (10493_CR50) 2020
A Basu (10493_CR4) 1998; 85
M Moonen (10493_CR37) 1995
10493_CR60
A Ghosh (10493_CR11) 2013; 7
Y Shen (10493_CR46) 2014; 29
10493_CR61
KM Jung (10493_CR25) 2010; 17
CA Tracy (10493_CR51) 1993
10493_CR27
V Mahadevan (10493_CR31) 2010; 32
Z Li (10493_CR28) 2023; 33
X He (10493_CR19) 2000; 73
10493_CR29
EJ Candès (10493_CR7) 2011; 10
10493_CR23
GH Golub (10493_CR13) 1970; 14
10493_CR26
L Giraud (10493_CR12) 2005; 50
RJ Vaccaro (10493_CR53) 1991
AB Owen (10493_CR39) 2009; 3
T Bouwmans (10493_CR6) 2014; 122
10493_CR33
10493_CR32
I Markovsky (10493_CR34) 2007; 87
T Bouwmans (10493_CR5) 2014; 11–12
JZ Huang (10493_CR20) 2009; 104
L Liu (10493_CR30) 2003; 100
RA Sadek (10493_CR45) 2012; 3
N Halko (10493_CR15) 2011; 53
IT Jolliffe (10493_CR24) 2002
RA Maronna (10493_CR35) 1976; 4
P Jain (10493_CR22) 2017; 10
S Portnoy (10493_CR40) 1984; 12
H Xu (10493_CR56) 2012; 58
B Garcia-Garcia (10493_CR10) 2020; 35
L Xiong (10493_CR55) 2021
10493_CR42
10493_CR41
10493_CR44
W Stacklies (10493_CR48) 2007; 23
10493_CR43
10493_CR49
D Wang (10493_CR54) 2017; 1
10493_CR1
10493_CR8
10493_CR9
ML Mehta (10493_CR36) 2004
K Sitara (10493_CR47) 2019; 78
LP Ammann (10493_CR2) 1993; 88
References_xml – reference: BouwmansTTraditional and recent approaches in background modeling for foreground detection: an overviewComput. Sci. Rev.201411–12316610.1016/j.cosrev.2014.04.001
– reference: TomaA KaragrigoriouATrentouPRobust model selection criteria based on pseudodistancesEntropy2020421739010.3390/e22030304
– reference: He, J., Balzano, L., Lui, J.: Online Robust Subspace Tracking from Partial Information (2011). arXiv preprint arXiv:1109.3827
– reference: MaronnaRARobust M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of multivariate location and scatterAnn. Stat.197641516738865610.1214/aos/1176343347
– reference: Li, Z.: pcaone: Randomized Singular Value Decomposition Algorithms with ’RcppEigen’. R package version 1.0.0 (2022)
– reference: OwenABPerryPOBi-cross-validation of the SVD and the nonnegative matrix factorizationAnn. Appl. Stat.200932564594275067310.1214/08-AOAS227
– reference: NetrapalliPSanghaviNUNSAnandkumarAJainPGhahramaniZWellingMCortesCLawrenceNWeinbergerKNon-convex robust PCAAdvances in Neural Information Processing Systems2014Curran Associates Inc
– reference: XiongLZhuFMinimum density power divergence estimator for negative binomial integer-valued GARCH modelsCommun. Math. Stat.202110.1007/s40304-020-00221-8
– reference: Zhang, L., Pan, C.: RobRSVD: Robust Regularized Singular Value Decomposition. R package version 1.0 (2013)
– reference: GolubGHReinschCSingular value decomposition and least squares solutionsNumer. Math.1970145403420155397410.1007/BF02163027
– reference: StackliesWRedestigHScholzMWaltherDSelbigJpcaMethods: a bioconductor package providing PCA methods for incomplete dataBioinformatics2007231164116710.1093/bioinformatics/btm069
– reference: Liu, J., Cosman, P.C., Rao, B.D.: Sparsity regularized principal component pursuit. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4431–4435. IEEE (2017)
– reference: VacavantAChateauTWilhelmALequièvreLParkJ-IKimJA benchmark dataset for outdoor foreground/background extractionComputer Vision: ACCV 2012 Workshops, Berlin, Heidelberg2013Berlin HeidelbergSpringer29130010.1007/978-3-642-37410-4_25
– reference: PortnoySAsymptotic behavior of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}-estimators of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} regression parameters when p2/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2/n$$\end{document} is large I. consistencyAnn. Stat.19841241298130910.1214/aos/1176346793
– reference: HuberPJRobust regression: asymptotics, conjectures and Monte CarloAnn. Stat.19731579982135637310.1214/aos/1176342503
– reference: Hawkins, D.M., Liu, L., Young, S.S.: Robust Singular Value Decomposition. Technical Report 122, National Institute of Statistical Sciences (NISS) (2001)
– reference: MahadevanVVasconcelosNSpatiotemporal saliency in dynamic scenesIEEE Trans. Patt. Anal. Mach. Intell.201032117117710.1109/TPAMI.2009.112
– reference: GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectron. J. Stat.2013724202456311710210.1214/13-EJS847
– reference: Garcia-GarciaBBouwmansTRosales SilvaAJBackground subtraction in real applications: challenges, current models and future directionsComput. Sci. Rev.202035100204403235710.1016/j.cosrev.2019.100204
– reference: Sykulski, M.: rpca: RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components. R package version 0.2.3 (2015)
– reference: Johnson, R.A., Wichern, D.W. et al: Applied Multivariate Statistical Analysis (2002)
– reference: SadekRASVD based image processing applications: state of the art, contributions and research challengesInt. J. Adv. Comput. Sci. Appl.201237263410.48550/arXiv.1211.7102
– reference: MehtaMLRandom Matrices2004Elsevier
– reference: Ke, Q., Kanade, T.: Robust L1 Norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of (CVPR) Computer Vision and Pattern Recognition, Vol. 1, pp. 739–746 (2005)
– reference: GiraudLLangouJRozloznikMThe loss of orthogonality in the Gram–Schmidt orthogonalization processComput. Math. Appl.200550710691075216774410.1016/j.camwa.2005.08.009
– reference: Zhou, T., Tao, D.: GoDec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, Madison, WI, USA, pp. 33–40. Omnipress (2011)
– reference: JolliffeITPrincipal Component Analysis2002New YorkSpringer Series in Statistics, Springer
– reference: LiZMeisnerJAlbrechtsenAFast and accurate Out-of-Core PCA framework for large scale biobank dataGenome Res.20233391599160810.1101/gr.277525.122
– reference: Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values. In: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602. World Scientific (2010)
– reference: GreenacreMCorrespondence Analysis in Practice2017CRC Press10.1201/9781315369983
– reference: LiuLHawkinsDMGhoshSYoungSSRobust singular value decomposition analysis of microarray dataProc. Natl. Acad. Sci.2003100231316713172201672710.1073/pnas.1733249100
– reference: JungKMRobust singular value decomposition based on weighted least absolute deviation regressionCommun. Stat. Appl. Methods2010176803810
– reference: XuHCaramanisCSanghaviSRobust PCA via outlier pursuitIEEE Trans. Inf. Theory201258530473064295253210.1109/TIT.2011.2173156
– reference: BouwmansTZahzahEHRobust PCA via principal component pursuit: a review for a comparative evaluation in video surveillanceComput. Vis. Image Underst.2014122223410.1016/j.cviu.2013.11.009
– reference: JainPKarPNon-convex optimization for machine learningFound. Trends Mach. Learn.2017103–414233610.1561/2200000058
– reference: Zhou, Z., Li, X., Wright, J., Candès, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on Information Theory, pp. 1518–1522 (2010)
– reference: Alman, J., Williams, V.V.: A Refined Laser Method and Faster Matrix Multiplication, pp. 522–539 (2021)
– reference: BasuAHarrisIRHjortNLJonesMCRobust and efficient estimation by minimising a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549
– reference: TracyCAWidomHHelminckGFIntroduction to random matricesGeometric and Quantum Aspects of Integrable Systems, Berlin, Heidelberg1993Berlin HeidelbergSpringer10313010.1007/BFb0021444
– reference: Cichocki, A., Cruces, S., Amari, S.I.: Generalized alpha–beta divergences and their application to robust nonnegative matrix factorization. Entropy 13(1), 134–170 (2011). https://doi.org/10.3390/e13010134
– reference: He, J., Balzano, L., Szlam, A.: Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1575. IEEE (2012)
– reference: SitaraKMehtreBMAutomated camera sabotage detection for enhancing video surveillance systemsMultimed. Tools Appl.20197855819584110.1007/s11042-018-6165-4
– reference: MarkovskyIVan HuffelSOverview of total least squares methodsSign. Process.200787102283230210.1016/j.sigpro.2007.04.004
– reference: HalkoNMartinssonPGTroppJAFinding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositionsSIAM Rev.2011532217288280663710.1137/090771806
– reference: WangDAdjustable robust singular value decomposition: design, analysis and application to financeData201711010.3390/data2030029
– reference: HuangJZShenHBujaAThe analysis of two-way functional data using two-way regularized singular value decompositionsJ. Am. Stat. Assoc.200910448816091620275058110.1198/jasa.2009.tm08024
– reference: BabacanSDLuessiMMolinaRKatsaggelosAKSparse Bayesian methods for low-rank matrix estimationIEEE Trans. Sign. Process.201260839643977296047210.1109/TSP.2012.2197748
– reference: Roy, S.: rsvddpd: Robust Singular Value Decomposition using Density Power Divergence. R package version 1.0.0 (2021)
– reference: MoonenM De MoorBSVD and Signal Processing, III: Algorithms, Architectures and Applications1995Elsevier
– reference: Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Randomized matrix decompositions using R. J. Stat. Softw. 89(11), 1–48 (2019). https://doi.org/10.18637/jss.v089.i11
– reference: ShenYWenZZhangYAugmented Lagrangian alternating direction method for matrix separation based on low-rank factorizationOptim. Methods Softw.2014292239263317548410.1080/10556788.2012.700713
– reference: Rey, W.: Total Singular Value Decomposition. Robust SVD, Regression and Location-Scale (2007)
– reference: HeXShaoQMOn parameters of increasing dimensionsJ. Multivar. Anal.2000731120135176612410.1006/jmva.1999.1873
– reference: Mantini, P., Shah, S.K.: Camera tampering detection using generative reference model and deep learned features. In: VISIGRAPP (5: VISAPP), pp. 85–95 (2019a)
– reference: Roy, S., Sarkar, A., Ghosh, A., Basu, A.: Asymptotic Breakdown Point Analysis for a General Class of Minimum Divergence Estimators (2023)
– reference: ZhangLShenHHuangJZRobust regularized singular value decomposition with application to mortality dataAnn. Appl. Stat.20137315401561312795810.1214/13-AOAS649
– reference: Zhang, T., Lerman, G.: A novel M-estimator for robust PCA. J. Mach. Learn. Res. 15(1), 749–808 (2014)
– reference: VaccaroRJSVD and Signal Processing II: Algorithms, Analysis and Applications1991USAElsevier Science Inc
– reference: Mantini, P., Shah, S.K.: UHCTD: a comprehensive dataset for camera tampering detection. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019b)
– reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM2011101145/197039219703952811000
– reference: AmmannLPRobust singular value decompositions: a new approach to projection pursuitJ. Am. Stat. Assoc.199388422505514122437510.1080/01621459.1993.10476301
– ident: 10493_CR8
  doi: 10.3390/e13010134
– ident: 10493_CR61
  doi: 10.1109/ISIT.2010.5513535
– ident: 10493_CR60
– volume: 17
  start-page: 803
  issue: 6
  year: 2010
  ident: 10493_CR25
  publication-title: Commun. Stat. Appl. Methods
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 10493_CR15
  publication-title: SIAM Rev.
  doi: 10.1137/090771806
– ident: 10493_CR16
– start-page: 291
  volume-title: Computer Vision: ACCV 2012 Workshops, Berlin, Heidelberg
  year: 2013
  ident: 10493_CR52
  doi: 10.1007/978-3-642-37410-4_25
– volume: 3
  start-page: 26
  issue: 7
  year: 2012
  ident: 10493_CR45
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.48550/arXiv.1211.7102
– start-page: 103
  volume-title: Geometric and Quantum Aspects of Integrable Systems, Berlin, Heidelberg
  year: 1993
  ident: 10493_CR51
  doi: 10.1007/BFb0021444
– volume: 35
  start-page: 100204
  year: 2020
  ident: 10493_CR10
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2019.100204
– volume-title: Random Matrices
  year: 2004
  ident: 10493_CR36
– ident: 10493_CR44
  doi: 10.1142/9789814324359_0111
– volume-title: Principal Component Analysis
  year: 2002
  ident: 10493_CR24
– volume: 100
  start-page: 13167
  issue: 23
  year: 2003
  ident: 10493_CR30
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1733249100
– volume: 10
  start-page: 142
  issue: 3–4
  year: 2017
  ident: 10493_CR22
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000058
– ident: 10493_CR26
  doi: 10.1109/CVPR.2005.309
– volume-title: SVD and Signal Processing, III: Algorithms, Architectures and Applications
  year: 1995
  ident: 10493_CR37
– volume: 85
  start-page: 549
  issue: 3
  year: 1998
  ident: 10493_CR4
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– volume: 12
  start-page: 1298
  issue: 4
  year: 1984
  ident: 10493_CR40
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346793
– ident: 10493_CR9
  doi: 10.18637/jss.v089.i11
– volume: 1
  start-page: 799
  issue: 5
  year: 1973
  ident: 10493_CR21
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342503
– volume: 7
  start-page: 1540
  issue: 3
  year: 2013
  ident: 10493_CR58
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/13-AOAS649
– volume: 11–12
  start-page: 31
  year: 2014
  ident: 10493_CR5
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2014.04.001
– ident: 10493_CR41
– ident: 10493_CR17
– volume: 10
  start-page: 1970395
  issue: 1145/1970392
  year: 2011
  ident: 10493_CR7
  publication-title: J. ACM
– volume: 4
  start-page: 51
  issue: 1
  year: 1976
  ident: 10493_CR35
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176343347
– volume: 23
  start-page: 1164
  year: 2007
  ident: 10493_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm069
– ident: 10493_CR49
  doi: 10.32614/CRAN.package.rpca
– ident: 10493_CR59
– volume: 14
  start-page: 403
  issue: 5
  year: 1970
  ident: 10493_CR13
  publication-title: Numer. Math.
  doi: 10.1007/BF02163027
– ident: 10493_CR23
– volume: 1
  start-page: 10
  year: 2017
  ident: 10493_CR54
  publication-title: Data
  doi: 10.3390/data2030029
– volume: 33
  start-page: 1599
  issue: 9
  year: 2023
  ident: 10493_CR28
  publication-title: Genome Res.
  doi: 10.1101/gr.277525.122
– volume: 50
  start-page: 1069
  issue: 7
  year: 2005
  ident: 10493_CR12
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2005.08.009
– ident: 10493_CR42
  doi: 10.32614/CRAN.package.rsvddpd
– ident: 10493_CR18
  doi: 10.1109/CVPR.2012.6247848
– ident: 10493_CR32
  doi: 10.5220/0007392100850095
– volume: 87
  start-page: 2283
  issue: 10
  year: 2007
  ident: 10493_CR34
  publication-title: Sign. Process.
  doi: 10.1016/j.sigpro.2007.04.004
– volume: 73
  start-page: 120
  issue: 1
  year: 2000
  ident: 10493_CR19
  publication-title: J. Multivar. Anal.
  doi: 10.1006/jmva.1999.1873
– ident: 10493_CR27
  doi: 10.32614/CRAN.package.pcaone
– ident: 10493_CR1
  doi: 10.1137/1.9781611976465.32
– volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 10493_CR38
– volume: 78
  start-page: 5819
  issue: 5
  year: 2019
  ident: 10493_CR47
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6165-4
– volume: 122
  start-page: 22
  year: 2014
  ident: 10493_CR6
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.11.009
– volume: 88
  start-page: 505
  issue: 422
  year: 1993
  ident: 10493_CR2
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476301
– ident: 10493_CR57
  doi: 10.1214/13-AOAS649
– year: 2021
  ident: 10493_CR55
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-020-00221-8
– volume: 104
  start-page: 1609
  issue: 488
  year: 2009
  ident: 10493_CR20
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.tm08024
– ident: 10493_CR43
– volume: 29
  start-page: 239
  issue: 2
  year: 2014
  ident: 10493_CR46
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2012.700713
– ident: 10493_CR29
  doi: 10.1109/ICASSP.2017.7952994
– ident: 10493_CR33
  doi: 10.1109/AVSS.2019.8909856
– volume: 3
  start-page: 564
  issue: 2
  year: 2009
  ident: 10493_CR39
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS227
– volume: 58
  start-page: 3047
  issue: 5
  year: 2012
  ident: 10493_CR56
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2173156
– volume: 32
  start-page: 171
  issue: 1
  year: 2010
  ident: 10493_CR31
  publication-title: IEEE Trans. Patt. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.112
– volume: 7
  start-page: 2420
  year: 2013
  ident: 10493_CR11
  publication-title: Electron. J. Stat.
  doi: 10.1214/13-EJS847
– year: 2020
  ident: 10493_CR50
  publication-title: Entropy
  doi: 10.3390/e22030304
– volume: 60
  start-page: 3964
  issue: 8
  year: 2012
  ident: 10493_CR3
  publication-title: IEEE Trans. Sign. Process.
  doi: 10.1109/TSP.2012.2197748
– volume-title: Correspondence Analysis in Practice
  year: 2017
  ident: 10493_CR14
  doi: 10.1201/9781315369983
– volume-title: SVD and Signal Processing II: Algorithms, Analysis and Applications
  year: 1991
  ident: 10493_CR53
SSID ssj0011634
Score 2.3831558
Snippet The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Decomposition
Matrices (mathematics)
Modelling
Original Paper
Probability and Statistics in Computer Science
Robustness
Singular value decomposition
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Surveillance
Video data
Title Robust singular value decomposition with application to video surveillance background modelling
URI https://link.springer.com/article/10.1007/s11222-024-10493-7
https://www.proquest.com/docview/3103415425
Volume 34
WOSCitedRecordID wos001310157800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYSgDhQKiUJAHNrCUxG7ijAiBWKhQeahb5NiXBSlFTdrfzzlNGkAwwBzrHN357j77XgAXKSrUHqbcBiPDpQ09Tk5YcTGSQgupY-On1bCJaDxW02n8WBeFFU22exOSrCx1W-zmky_j5FPIdMhY8GgTtsjdKaeOk6fXdeyAEEbVNIqwOVmYSNalMj_T-OqOWoz5LSxaeZu73v_-cw92a3TJrlfHYR82MO9Dr5ncwGpF7sPOw7pba9GHrkOcq4bNB5BMZumiKJl7Q3Apqsy1A0dm0SWf1xlezL3esk-xb1bOmCvom7FiMV-im2RE-7BUmzdXNpJbVk3ccaXvh_Byd_t8c8_rKQzcBJFXkgXSOkTfpciEJsgCbVSoLYrMFyjDUMXGhjFdCi0BE7rLYCZFlInQU6lnY6m1OIJOPsvxGBgicQUzTWbEyJGwamQz5WFGoCeObRAN4LIRRvK-araRtG2VHVsTIpBUbE1o9bCRV1IrXpG4sWmEScgSDeCqkU_7-XdqJ39bfgrdYCVi7vlD6JTzBZ7BtlmSuObn1YH8ABPJ21I
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SYwDjwHiTQ7cIFLbZH0cEQINwSY0HuIWpYl7QerQuu3343TtCggOcG6UVHZif4n92QBnKcaoPUy5DTqGSxt6nJxwzEVHCi2kToyfls0mon4_fn1NHipSWFFnu9chydJSN2Q3n3wZJ59CpkMmgkeLsCzJY7lEvsHjyzx2QAijLBpF2JwsTCQrqszPc3x1Rw3G_BYWLb3Nzcb__nMT1it0yS5n22ELFjBvw0bduYFVB7kNa715tdaiDS2HOGcFm7dBDYbppBgz94bgUlSZKweOzKJLPq8yvJh7vWWfYt9sPGSO0DdkxWQ0RdfJiNZhqTZvjjaSW1Z23HHU9x14vrl-uuryqgsDN0HkjckCaR2i71JkQhNkgTZxqC2KzBcowzBOjA0TuhRaAiZ0l8FMiigToRennk2k1mIXlvJhjnvAEEkqmGkyI0Z2hI07Nos9zAj0JIkNon04r5Wh3mfFNlRTVtmJVdEEqhSrotFHtb5UdfAK5dqmESYhS7QPF7V-ms-_z3bwt-GnsNp96t2r-9v-3SG0gpm6uecfwdJ4NMFjWDFTUt3opNycH2TO3jY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgOLAVEWX3gBhZJ7GY5IqACARViEzfLsScXpLRqU76fcRYKCA6Icywn8tgzz5l58wAOU4xRe5hyG3QNlzb0OAXhmIuuFFpInRg_LcUmon4_fnlJ7j6x-Mtq9yYlWXEaXJemvDgZ2uxkSnzzKa5xii_kRmQieDQLc9KJBrn7-sPzRx6B0EbZQIpwOnmbSNa0mZ_n-BqapnjzW4q0jDy9lf9_8yos16iTnVbbZA1mMG_DSqPowOoD3oal248uruM2LDokWjVyXgd1P0gn44K5fwuudJW5NuHILLqi9Lryi7m_uuxTTpwVA-aIfgM2noze0Ckc0XtYqs2ro5PklpVKPI4SvwFPvYvHs0teqzNwE0ReQZ5J6xB9VzoTmiALtIlDbVFkvkAZhnFibJjQZdESYKE7DmZSRJkIvTj1bCK1FpvQygc5bgFDpFXBTJN7MbIrbNy1WexhRmAoSWwQdeCoMYwaVk041LTdsltWRROoclkVjd5tbKfqAzlWTk6NsAp5qA4cN7aaPv59tu2_DT-Ahbvznrq56l_vwGJQWZt7_i60itEE92DevJHlRvvlPn0Hd2XnGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+singular+value+decomposition+with+application+to+video+surveillance+background+modelling&rft.jtitle=Statistics+and+computing&rft.au=Subhrajyoty%2C+Roy&rft.au=Ghosh+Abhik&rft.au=Basu+Ayanendranath&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1007%2Fs11222-024-10493-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon