Investigating different recommender algorithms in the domain of physical activity recommendations: a longitudinal between-subjects user study

As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively investigates the effect of a user-based collaborative filtering and a content-based recommender algorithm for physical activity recommendation in...

Full description

Saved in:
Bibliographic Details
Published in:User modeling and user-adapted interaction Vol. 35; no. 1; p. 6
Main Authors: Coppens, Ine, De Pessemier, Toon, Martens, Luc
Format: Journal Article
Language:English
Published: Dordrecht Springer Nature B.V 01.03.2025
Subjects:
ISSN:0924-1868, 1573-1391
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively investigates the effect of a user-based collaborative filtering and a content-based recommender algorithm for physical activity recommendation in a longitudinal between-subjects user study with objective metrics and subjective perception questions. Eighty-eight physically inactive participants used the Android app with personalized activity and tip recommendations to motivate them to move more, of which 30 participated for at least eight weeks, resulting in 1357 selected and submitted activity recommendations. Our linear mixed model analyses investigate the evolution of objective diversity, and users’ subjective perceptions of the recommendations, star rating feedback, momentary motivation, and physical activity behavior change. These analyses show that the total objective diversity of the generated recommendations was significantly larger in the collaborative group, but suggest that both algorithms performed equally well on the subjective metrics. The findings also suggest that physical activity recommenders should offer increasing diversity over time, as users in both groups preferred higher diversity as more consumptions are submitted. This study emphasizes the value of tracking the evolving diversity of recommendations and highlights the increase in both groups in perceived accuracy, fun, star ratings, and momentary motivation as more consumptions were submitted over time. As such, this research helps understanding how recommender algorithms learn users’ physical activity preferences over time and how people perceive activity recommendations, contributing to better mobile health strategies for physically inactive individuals.
AbstractList As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively investigates the effect of a user-based collaborative filtering and a content-based recommender algorithm for physical activity recommendation in a longitudinal between-subjects user study with objective metrics and subjective perception questions. Eighty-eight physically inactive participants used the Android app with personalized activity and tip recommendations to motivate them to move more, of which 30 participated for at least eight weeks, resulting in 1357 selected and submitted activity recommendations. Our linear mixed model analyses investigate the evolution of objective diversity, and users’ subjective perceptions of the recommendations, star rating feedback, momentary motivation, and physical activity behavior change. These analyses show that the total objective diversity of the generated recommendations was significantly larger in the collaborative group, but suggest that both algorithms performed equally well on the subjective metrics. The findings also suggest that physical activity recommenders should offer increasing diversity over time, as users in both groups preferred higher diversity as more consumptions are submitted. This study emphasizes the value of tracking the evolving diversity of recommendations and highlights the increase in both groups in perceived accuracy, fun, star ratings, and momentary motivation as more consumptions were submitted over time. As such, this research helps understanding how recommender algorithms learn users’ physical activity preferences over time and how people perceive activity recommendations, contributing to better mobile health strategies for physically inactive individuals.
ArticleNumber 6
Author Martens, Luc
De Pessemier, Toon
Coppens, Ine
Author_xml – sequence: 1
  givenname: Ine
  surname: Coppens
  fullname: Coppens, Ine
– sequence: 2
  givenname: Toon
  surname: De Pessemier
  fullname: De Pessemier, Toon
– sequence: 3
  givenname: Luc
  surname: Martens
  fullname: Martens, Luc
BookMark eNpFkE1OHDEQha2ISBlILsDKUtYGl3_a3ewilADSSNkka8vttmc8mrYH2000p8gVOAsnw2QisapFvffq1XeOzmKKDqFLoFdAqbouAEwqQpkkdBBMEf4BrUAqToAPcIZWdGCCQN_1n9B5KTvaTJ0aVujvQ3xypYaNqSFu8BS8d9nFirOzaZ5dnFzGZr9JOdTtXHCIL891616epzSbEHHy-LA9lmDNHhtbw1Oox3dvC02x3GCD9yluQl2mEJtwdPWPc5GUZdw5WwteSrtS2vr4GX30Zl_cl__zAv3-8f3X7T1Z_7x7uP22JpYpWgmzXfuVW1B-ksCdHMAYKfpx6EemLO_HiTMvhRedcMp3pgOgXkgBzHIPll-gr6fcQ06PSyOgd2nJrVzRHLoepFCdaCp2UtmcSsnO60MOs8lHDVS_gdcn8LqV0f_Aa85fAYIyfVQ
Cites_doi 10.1007/s11257-021-09318-3
10.1145/1944339.1944341
10.3389/fpsyg.2018.00998
10.1007/s00607-018-0687-5
10.1007/978-1-0716-2197-4
10.1007/s11257-023-09368-9
10.1002/asi.24628
10.1037/1082-989X.7.4.422
10.1016/j.jpdc.2016.10.014
10.1109/TCE.2008.4560154
10.1007/s11257-019-09242-7
10.1371/journal.pone.0271668
10.1016/j.ipm.2020.102459
10.2196/35371
10.1016/j.atherosclerosis.2023.117300
10.1016/j.eswa.2007.07.047
10.1007/978-3-642-38844-6_16
10.1097/00005768-199604000-00011
10.1080/1369118X.2018.1444076
10.3945/an.116.014100
10.1145/3298689.3347020
10.1037/0003-066X.55.1.68
10.1093/eurheartj/ehaa605
10.54724/lc.2023.e8
10.2196/26063
10.1007/s10115-023-01897-4
10.1007/s11257-018-9205-x
10.1016/S0140-6736(12)61031-9
10.1145/1639714.1639731
10.1002/ejsp.674
10.1145/2645710.2645737
10.1177/1541931218621322
10.1038/s41746-022-00692-9
10.1007/978-1-4419-0300-6_3
10.1016/j.ipm.2022.103205
10.1177/2055207618824727
10.1016/j.physa.2016.10.083
10.1186/s13690-015-0110-z
10.3390/s19020431
10.1016/j.knosys.2013.03.012
10.1007/s42001-022-00179-3
10.1007/s11257-012-9135-y
10.1007/s11257-011-9118-4
10.1007/s11257-021-09301-y
10.1073/pnas.2107346118
10.1016/j.physa.2015.10.068
10.1249/MSS.0b013e31821ece12
10.1016/j.knosys.2016.08.014
10.1145/3604915.3610650
10.1007/s11257-024-09407-z
10.1007/s11257-016-9178-6
10.1145/1060745.1060754
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11257-025-09427-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Education
Computer Science
EISSN 1573-1391
ExternalDocumentID 10_1007_s11257_025_09427_3
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FI
8FJ
8FL
8FW
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACYUM
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2M
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
ZMTXR
ZY4
~8M
~A9
~EX
7SC
8FD
AESKC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-2c60253c17fd513e591aa548b98b27c38bd32f54f464e7f6a6110f45412c3f1c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001443631700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-1868
IngestDate Wed Nov 05 08:26:25 EST 2025
Sat Nov 29 08:06:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-2c60253c17fd513e591aa548b98b27c38bd32f54f464e7f6a6110f45412c3f1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://biblio.ugent.be/publication/01K5DRP2WS0ZXAT9P2TTMSDB92
PQID 3168154764
PQPubID 30100
ParticipantIDs proquest_journals_3168154764
crossref_primary_10_1007_s11257_025_09427_3
PublicationCentury 2000
PublicationDate 2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-00
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle User modeling and user-adapted interaction
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References I Coppens (9427_CR8) 2023
L Hou (9427_CR22) 2017; 468
W Ma (9427_CR33) 2016; 444
W Wu (9427_CR54) 2018; 28
MC Willemsen (9427_CR52) 2016; 26
D Kotkov (9427_CR29) 2020; 102
A Pelliccia (9427_CR39) 2021; 42
BJ Cardinal (9427_CR6) 1996; 28
9427_CR26
KL Cheung (9427_CR7) 2019; 5
F Gasparetti (9427_CR16) 2020; 30
BE Ainsworth (9427_CR1) 2011; 43
P Lally (9427_CR30) 2010; 40
S Mertens (9427_CR34) 2022; 119
RM Ryan (9427_CR42) 2000; 55
M Tang (9427_CR47) 2022; 73
M Gao (9427_CR14) 2018; 62
9427_CR12
Y Wang (9427_CR50) 2017; 8
9427_CR56
S Geng (9427_CR17) 2023; 60
9427_CR53
9427_CR10
9427_CR51
F Hernández Del Olmo (9427_CR21) 2008; 35
JD Finger (9427_CR13) 2015; 73
R Nouh (9427_CR37) 2019; 19
R Jakob (9427_CR25) 2022; 24
S Garofalo (9427_CR15) 2022; 17
L Cui (9427_CR11) 2017; 103
IM Lee (9427_CR31) 2012; 380
9427_CR40
9427_CR41
J Bobadilla (9427_CR5) 2013; 46
J Möller (9427_CR36) 2018; 21
E Isufi (9427_CR24) 2021; 58
BP Knijnenburg (9427_CR27) 2012; 22
9427_CR48
9427_CR46
Y Blanco-Fernandez (9427_CR4) 2008; 54
PE Shrout (9427_CR43) 2002; 7
H Alcaraz-Herrera (9427_CR2) 2022; 32
SW Lee (9427_CR32) 2023; 3
D Kotkov (9427_CR28) 2016; 111
A Sonoda (9427_CR45) 2022; 5
Y Yang (9427_CR55) 2021; 23
9427_CR9
N Hurley (9427_CR23) 2011; 10
Z Song (9427_CR44) 2023; 386
H Hauptmann (9427_CR19) 2022; 32
DJ Hauser (9427_CR20) 2018; 9
U Panniello (9427_CR38) 2014; 24
9427_CR35
S Hamdollahi Oskouei (9427_CR18) 2023; 65
T Wang (9427_CR49) 2022; 5
Y Blanco-Fernandez (9427_CR3) 2008; 54
References_xml – volume: 32
  start-page: 883
  issue: 5
  year: 2022
  ident: 9427_CR2
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-021-09318-3
– volume: 10
  start-page: 1
  issue: 4
  year: 2011
  ident: 9427_CR23
  publication-title: ACM Trans. Internet Technol.
  doi: 10.1145/1944339.1944341
– volume: 9
  start-page: 998
  year: 2018
  ident: 9427_CR20
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.00998
– volume: 102
  start-page: 393
  issue: 2
  year: 2020
  ident: 9427_CR29
  publication-title: Computing
  doi: 10.1007/s00607-018-0687-5
– ident: 9427_CR41
  doi: 10.1007/978-1-0716-2197-4
– year: 2023
  ident: 9427_CR8
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-023-09368-9
– volume: 73
  start-page: 1222
  issue: 9
  year: 2022
  ident: 9427_CR47
  publication-title: J. Am. Soc. Inf. Sci.
  doi: 10.1002/asi.24628
– volume: 7
  start-page: 422
  issue: 4
  year: 2002
  ident: 9427_CR43
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.7.4.422
– volume: 103
  start-page: 53
  year: 2017
  ident: 9427_CR11
  publication-title: J. Parallel Distributed Comput.
  doi: 10.1016/j.jpdc.2016.10.014
– volume: 54
  start-page: 727
  issue: 2
  year: 2008
  ident: 9427_CR3
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2008.4560154
– volume: 30
  start-page: 447
  issue: 3
  year: 2020
  ident: 9427_CR16
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-019-09242-7
– volume: 17
  issue: 7
  year: 2022
  ident: 9427_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0271668
– volume: 58
  issue: 2
  year: 2021
  ident: 9427_CR24
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2020.102459
– volume: 24
  issue: 5
  year: 2022
  ident: 9427_CR25
  publication-title: J. Med. Internet Res.
  doi: 10.2196/35371
– volume: 386
  year: 2023
  ident: 9427_CR44
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2023.117300
– volume: 35
  start-page: 790
  issue: 3
  year: 2008
  ident: 9427_CR21
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.07.047
– ident: 9427_CR48
  doi: 10.1007/978-3-642-38844-6_16
– volume: 28
  start-page: 468
  issue: 4
  year: 1996
  ident: 9427_CR6
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1097/00005768-199604000-00011
– volume: 21
  start-page: 959
  issue: 7
  year: 2018
  ident: 9427_CR36
  publication-title: Inf., Commun. Soc.
  doi: 10.1080/1369118X.2018.1444076
– volume: 8
  start-page: 449
  issue: 3
  year: 2017
  ident: 9427_CR50
  publication-title: Adv. Nutr.
  doi: 10.3945/an.116.014100
– ident: 9427_CR26
  doi: 10.1145/3298689.3347020
– volume: 55
  start-page: 68
  issue: 1
  year: 2000
  ident: 9427_CR42
  publication-title: Am. Psychol.
  doi: 10.1037/0003-066X.55.1.68
– volume: 42
  start-page: 17
  issue: 1
  year: 2021
  ident: 9427_CR39
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa605
– volume: 3
  start-page: 8
  year: 2023
  ident: 9427_CR32
  publication-title: Life Cycle
  doi: 10.54724/lc.2023.e8
– ident: 9427_CR53
– volume: 23
  issue: 7
  year: 2021
  ident: 9427_CR55
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26063
– volume: 65
  start-page: 3753
  issue: 9
  year: 2023
  ident: 9427_CR18
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-023-01897-4
– volume: 28
  start-page: 237
  issue: 3
  year: 2018
  ident: 9427_CR54
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-018-9205-x
– ident: 9427_CR46
– volume: 380
  start-page: 219
  issue: 9838
  year: 2012
  ident: 9427_CR31
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(12)61031-9
– ident: 9427_CR40
  doi: 10.1145/1639714.1639731
– volume: 40
  start-page: 998
  issue: 6
  year: 2010
  ident: 9427_CR30
  publication-title: Eur. J. Soc. Psychol.
  doi: 10.1002/ejsp.674
– ident: 9427_CR12
  doi: 10.1145/2645710.2645737
– volume: 62
  start-page: 1414
  issue: 1
  year: 2018
  ident: 9427_CR14
  publication-title: Proc. Human Factors Ergonomics Soc. Annual Meet.
  doi: 10.1177/1541931218621322
– volume: 5
  start-page: 145
  issue: 1
  year: 2022
  ident: 9427_CR49
  publication-title: Dig. Med.
  doi: 10.1038/s41746-022-00692-9
– ident: 9427_CR35
  doi: 10.1007/978-1-4419-0300-6_3
– volume: 60
  issue: 2
  year: 2023
  ident: 9427_CR17
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.103205
– volume: 5
  start-page: 205520761882472
  year: 2019
  ident: 9427_CR7
  publication-title: Digital Health
  doi: 10.1177/2055207618824727
– volume: 468
  start-page: 415
  year: 2017
  ident: 9427_CR22
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.10.083
– volume: 73
  start-page: 59
  issue: 1
  year: 2015
  ident: 9427_CR13
  publication-title: Arch. Public Health
  doi: 10.1186/s13690-015-0110-z
– volume: 19
  start-page: 431
  issue: 2
  year: 2019
  ident: 9427_CR37
  publication-title: Sensors
  doi: 10.3390/s19020431
– volume: 46
  start-page: 109
  year: 2013
  ident: 9427_CR5
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.03.012
– volume: 5
  start-page: 1595
  issue: 2
  year: 2022
  ident: 9427_CR45
  publication-title: J. Comput. Soc. Sci.
  doi: 10.1007/s42001-022-00179-3
– volume: 24
  start-page: 35
  issue: 1–2
  year: 2014
  ident: 9427_CR38
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-012-9135-y
– volume: 22
  start-page: 441
  issue: 4–5
  year: 2012
  ident: 9427_CR27
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-011-9118-4
– volume: 32
  start-page: 923
  issue: 5
  year: 2022
  ident: 9427_CR19
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-021-09301-y
– volume: 119
  issue: 1
  year: 2022
  ident: 9427_CR34
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2107346118
– volume: 444
  start-page: 713
  year: 2016
  ident: 9427_CR33
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.10.068
– volume: 43
  start-page: 1575
  issue: 8
  year: 2011
  ident: 9427_CR1
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1249/MSS.0b013e31821ece12
– volume: 111
  start-page: 180
  year: 2016
  ident: 9427_CR28
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.08.014
– ident: 9427_CR9
  doi: 10.1145/3604915.3610650
– ident: 9427_CR10
  doi: 10.1007/s11257-024-09407-z
– volume: 26
  start-page: 347
  issue: 4
  year: 2016
  ident: 9427_CR52
  publication-title: User Model. User-Adap. Inter.
  doi: 10.1007/s11257-016-9178-6
– ident: 9427_CR51
– ident: 9427_CR56
  doi: 10.1145/1060745.1060754
– volume: 54
  start-page: 727
  issue: 2
  year: 2008
  ident: 9427_CR4
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2008.4560154
SSID ssj0007679
Score 2.394663
Snippet As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 6
SubjectTerms Algorithms
Collaboration
Exercise
Motivation
Recommender systems
Telemedicine
Title Investigating different recommender algorithms in the domain of physical activity recommendations: a longitudinal between-subjects user study
URI https://www.proquest.com/docview/3168154764
Volume 35
WOSCitedRecordID wos001443631700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-1391
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007679
  issn: 0924-1868
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTsMwFLUQYsGGocwU9BeIDVjUQ-yEHUJULBBCYhC7yPEAlWiCmpRrcAXOwsmwU5dBggUHiGXl5Y_5_z2E9qTlxPTSDEujGObGqpbyFlNhMyssSYXqtWIT8vIyvb_PrmbQ4Z9_8I9qnxEkEgfZVV-KUG8S3uESMVnWur77dLtSRGI9ynHggI8bMr8f8TMK_XTCbWTpL_7vTktoIWaQcDKBfBnN2LKDFqfqDBCNtRP0mOPsRgetX8S2ZA37cPHJpFyvoNdvRBvlA0z1UhoIlfJw2ArNgXp6qEaD5nFYw6B8f_M54_ubqYZqUELl4DlCDWFHIkhRfD07aQceg4KnKggjjU0Q4YI4HIbrcRHaQDWEVgm0TLer6LZ_dnN6jqNIA9ZU9hpMtfCvgWkinUkIs0lGlPJlUJGlBZWapYVh1CXcccGtdEIJn3A4nnBCNXNEszU0W1al3UDgLEk0NbwwynJrtHIZSax2PR8cHGd2Ex1MQcufJ1wc-RfrckAk91fJW0Rytom6U1zzaJd1HmS6fNIoBd_612HbaJ62aIfhsy6abUZju4Pm9EszqEe77Yf4Ac1N2zY
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+different+recommender+algorithms+in%C2%A0the%C2%A0domain+of+physical+activity+recommendations%3A+a+longitudinal+between-subjects+user+study&rft.jtitle=User+modeling+and+user-adapted+interaction&rft.au=Coppens%2C+Ine&rft.au=De+Pessemier%2C+Toon&rft.au=Martens%2C+Luc&rft.date=2025-03-01&rft.issn=0924-1868&rft.eissn=1573-1391&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1007%2Fs11257-025-09427-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11257_025_09427_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-1868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-1868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-1868&client=summon