Investigating different recommender algorithms in the domain of physical activity recommendations: a longitudinal between-subjects user study
As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively investigates the effect of a user-based collaborative filtering and a content-based recommender algorithm for physical activity recommendation in...
Saved in:
| Published in: | User modeling and user-adapted interaction Vol. 35; no. 1; p. 6 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Nature B.V
01.03.2025
|
| Subjects: | |
| ISSN: | 0924-1868, 1573-1391 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively investigates the effect of a user-based collaborative filtering and a content-based recommender algorithm for physical activity recommendation in a longitudinal between-subjects user study with objective metrics and subjective perception questions. Eighty-eight physically inactive participants used the Android app with personalized activity and tip recommendations to motivate them to move more, of which 30 participated for at least eight weeks, resulting in 1357 selected and submitted activity recommendations. Our linear mixed model analyses investigate the evolution of objective diversity, and users’ subjective perceptions of the recommendations, star rating feedback, momentary motivation, and physical activity behavior change. These analyses show that the total objective diversity of the generated recommendations was significantly larger in the collaborative group, but suggest that both algorithms performed equally well on the subjective metrics. The findings also suggest that physical activity recommenders should offer increasing diversity over time, as users in both groups preferred higher diversity as more consumptions are submitted. This study emphasizes the value of tracking the evolving diversity of recommendations and highlights the increase in both groups in perceived accuracy, fun, star ratings, and momentary motivation as more consumptions were submitted over time. As such, this research helps understanding how recommender algorithms learn users’ physical activity preferences over time and how people perceive activity recommendations, contributing to better mobile health strategies for physically inactive individuals. |
|---|---|
| AbstractList | As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively investigates the effect of a user-based collaborative filtering and a content-based recommender algorithm for physical activity recommendation in a longitudinal between-subjects user study with objective metrics and subjective perception questions. Eighty-eight physically inactive participants used the Android app with personalized activity and tip recommendations to motivate them to move more, of which 30 participated for at least eight weeks, resulting in 1357 selected and submitted activity recommendations. Our linear mixed model analyses investigate the evolution of objective diversity, and users’ subjective perceptions of the recommendations, star rating feedback, momentary motivation, and physical activity behavior change. These analyses show that the total objective diversity of the generated recommendations was significantly larger in the collaborative group, but suggest that both algorithms performed equally well on the subjective metrics. The findings also suggest that physical activity recommenders should offer increasing diversity over time, as users in both groups preferred higher diversity as more consumptions are submitted. This study emphasizes the value of tracking the evolving diversity of recommendations and highlights the increase in both groups in perceived accuracy, fun, star ratings, and momentary motivation as more consumptions were submitted over time. As such, this research helps understanding how recommender algorithms learn users’ physical activity preferences over time and how people perceive activity recommendations, contributing to better mobile health strategies for physically inactive individuals. |
| ArticleNumber | 6 |
| Author | Martens, Luc De Pessemier, Toon Coppens, Ine |
| Author_xml | – sequence: 1 givenname: Ine surname: Coppens fullname: Coppens, Ine – sequence: 2 givenname: Toon surname: De Pessemier fullname: De Pessemier, Toon – sequence: 3 givenname: Luc surname: Martens fullname: Martens, Luc |
| BookMark | eNpFkE1OHDEQha2ISBlILsDKUtYGl3_a3ewilADSSNkka8vttmc8mrYH2000p8gVOAsnw2QisapFvffq1XeOzmKKDqFLoFdAqbouAEwqQpkkdBBMEf4BrUAqToAPcIZWdGCCQN_1n9B5KTvaTJ0aVujvQ3xypYaNqSFu8BS8d9nFirOzaZ5dnFzGZr9JOdTtXHCIL891616epzSbEHHy-LA9lmDNHhtbw1Oox3dvC02x3GCD9yluQl2mEJtwdPWPc5GUZdw5WwteSrtS2vr4GX30Zl_cl__zAv3-8f3X7T1Z_7x7uP22JpYpWgmzXfuVW1B-ksCdHMAYKfpx6EemLO_HiTMvhRedcMp3pgOgXkgBzHIPll-gr6fcQ06PSyOgd2nJrVzRHLoepFCdaCp2UtmcSsnO60MOs8lHDVS_gdcn8LqV0f_Aa85fAYIyfVQ |
| Cites_doi | 10.1007/s11257-021-09318-3 10.1145/1944339.1944341 10.3389/fpsyg.2018.00998 10.1007/s00607-018-0687-5 10.1007/978-1-0716-2197-4 10.1007/s11257-023-09368-9 10.1002/asi.24628 10.1037/1082-989X.7.4.422 10.1016/j.jpdc.2016.10.014 10.1109/TCE.2008.4560154 10.1007/s11257-019-09242-7 10.1371/journal.pone.0271668 10.1016/j.ipm.2020.102459 10.2196/35371 10.1016/j.atherosclerosis.2023.117300 10.1016/j.eswa.2007.07.047 10.1007/978-3-642-38844-6_16 10.1097/00005768-199604000-00011 10.1080/1369118X.2018.1444076 10.3945/an.116.014100 10.1145/3298689.3347020 10.1037/0003-066X.55.1.68 10.1093/eurheartj/ehaa605 10.54724/lc.2023.e8 10.2196/26063 10.1007/s10115-023-01897-4 10.1007/s11257-018-9205-x 10.1016/S0140-6736(12)61031-9 10.1145/1639714.1639731 10.1002/ejsp.674 10.1145/2645710.2645737 10.1177/1541931218621322 10.1038/s41746-022-00692-9 10.1007/978-1-4419-0300-6_3 10.1016/j.ipm.2022.103205 10.1177/2055207618824727 10.1016/j.physa.2016.10.083 10.1186/s13690-015-0110-z 10.3390/s19020431 10.1016/j.knosys.2013.03.012 10.1007/s42001-022-00179-3 10.1007/s11257-012-9135-y 10.1007/s11257-011-9118-4 10.1007/s11257-021-09301-y 10.1073/pnas.2107346118 10.1016/j.physa.2015.10.068 10.1249/MSS.0b013e31821ece12 10.1016/j.knosys.2016.08.014 10.1145/3604915.3610650 10.1007/s11257-024-09407-z 10.1007/s11257-016-9178-6 10.1145/1060745.1060754 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11257-025-09427-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Languages & Literatures Education Computer Science |
| EISSN | 1573-1391 |
| ExternalDocumentID | 10_1007_s11257_025_09427_3 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FI 8FJ 8FL 8FW 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACYUM ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2M M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 ZMTXR ZY4 ~8M ~A9 ~EX 7SC 8FD AESKC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c270t-2c60253c17fd513e591aa548b98b27c38bd32f54f464e7f6a6110f45412c3f1c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001443631700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-1868 |
| IngestDate | Wed Nov 05 08:26:25 EST 2025 Sat Nov 29 08:06:29 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-2c60253c17fd513e591aa548b98b27c38bd32f54f464e7f6a6110f45412c3f1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://biblio.ugent.be/publication/01K5DRP2WS0ZXAT9P2TTMSDB92 |
| PQID | 3168154764 |
| PQPubID | 30100 |
| ParticipantIDs | proquest_journals_3168154764 crossref_primary_10_1007_s11257_025_09427_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-00 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | User modeling and user-adapted interaction |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | I Coppens (9427_CR8) 2023 L Hou (9427_CR22) 2017; 468 W Ma (9427_CR33) 2016; 444 W Wu (9427_CR54) 2018; 28 MC Willemsen (9427_CR52) 2016; 26 D Kotkov (9427_CR29) 2020; 102 A Pelliccia (9427_CR39) 2021; 42 BJ Cardinal (9427_CR6) 1996; 28 9427_CR26 KL Cheung (9427_CR7) 2019; 5 F Gasparetti (9427_CR16) 2020; 30 BE Ainsworth (9427_CR1) 2011; 43 P Lally (9427_CR30) 2010; 40 S Mertens (9427_CR34) 2022; 119 RM Ryan (9427_CR42) 2000; 55 M Tang (9427_CR47) 2022; 73 M Gao (9427_CR14) 2018; 62 9427_CR12 Y Wang (9427_CR50) 2017; 8 9427_CR56 S Geng (9427_CR17) 2023; 60 9427_CR53 9427_CR10 9427_CR51 F Hernández Del Olmo (9427_CR21) 2008; 35 JD Finger (9427_CR13) 2015; 73 R Nouh (9427_CR37) 2019; 19 R Jakob (9427_CR25) 2022; 24 S Garofalo (9427_CR15) 2022; 17 L Cui (9427_CR11) 2017; 103 IM Lee (9427_CR31) 2012; 380 9427_CR40 9427_CR41 J Bobadilla (9427_CR5) 2013; 46 J Möller (9427_CR36) 2018; 21 E Isufi (9427_CR24) 2021; 58 BP Knijnenburg (9427_CR27) 2012; 22 9427_CR48 9427_CR46 Y Blanco-Fernandez (9427_CR4) 2008; 54 PE Shrout (9427_CR43) 2002; 7 H Alcaraz-Herrera (9427_CR2) 2022; 32 SW Lee (9427_CR32) 2023; 3 D Kotkov (9427_CR28) 2016; 111 A Sonoda (9427_CR45) 2022; 5 Y Yang (9427_CR55) 2021; 23 9427_CR9 N Hurley (9427_CR23) 2011; 10 Z Song (9427_CR44) 2023; 386 H Hauptmann (9427_CR19) 2022; 32 DJ Hauser (9427_CR20) 2018; 9 U Panniello (9427_CR38) 2014; 24 9427_CR35 S Hamdollahi Oskouei (9427_CR18) 2023; 65 T Wang (9427_CR49) 2022; 5 Y Blanco-Fernandez (9427_CR3) 2008; 54 |
| References_xml | – volume: 32 start-page: 883 issue: 5 year: 2022 ident: 9427_CR2 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-021-09318-3 – volume: 10 start-page: 1 issue: 4 year: 2011 ident: 9427_CR23 publication-title: ACM Trans. Internet Technol. doi: 10.1145/1944339.1944341 – volume: 9 start-page: 998 year: 2018 ident: 9427_CR20 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.00998 – volume: 102 start-page: 393 issue: 2 year: 2020 ident: 9427_CR29 publication-title: Computing doi: 10.1007/s00607-018-0687-5 – ident: 9427_CR41 doi: 10.1007/978-1-0716-2197-4 – year: 2023 ident: 9427_CR8 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-023-09368-9 – volume: 73 start-page: 1222 issue: 9 year: 2022 ident: 9427_CR47 publication-title: J. Am. Soc. Inf. Sci. doi: 10.1002/asi.24628 – volume: 7 start-page: 422 issue: 4 year: 2002 ident: 9427_CR43 publication-title: Psychol. Methods doi: 10.1037/1082-989X.7.4.422 – volume: 103 start-page: 53 year: 2017 ident: 9427_CR11 publication-title: J. Parallel Distributed Comput. doi: 10.1016/j.jpdc.2016.10.014 – volume: 54 start-page: 727 issue: 2 year: 2008 ident: 9427_CR3 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2008.4560154 – volume: 30 start-page: 447 issue: 3 year: 2020 ident: 9427_CR16 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-019-09242-7 – volume: 17 issue: 7 year: 2022 ident: 9427_CR15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0271668 – volume: 58 issue: 2 year: 2021 ident: 9427_CR24 publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2020.102459 – volume: 24 issue: 5 year: 2022 ident: 9427_CR25 publication-title: J. Med. Internet Res. doi: 10.2196/35371 – volume: 386 year: 2023 ident: 9427_CR44 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2023.117300 – volume: 35 start-page: 790 issue: 3 year: 2008 ident: 9427_CR21 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.07.047 – ident: 9427_CR48 doi: 10.1007/978-3-642-38844-6_16 – volume: 28 start-page: 468 issue: 4 year: 1996 ident: 9427_CR6 publication-title: Med. Sci. Sports Exercise doi: 10.1097/00005768-199604000-00011 – volume: 21 start-page: 959 issue: 7 year: 2018 ident: 9427_CR36 publication-title: Inf., Commun. Soc. doi: 10.1080/1369118X.2018.1444076 – volume: 8 start-page: 449 issue: 3 year: 2017 ident: 9427_CR50 publication-title: Adv. Nutr. doi: 10.3945/an.116.014100 – ident: 9427_CR26 doi: 10.1145/3298689.3347020 – volume: 55 start-page: 68 issue: 1 year: 2000 ident: 9427_CR42 publication-title: Am. Psychol. doi: 10.1037/0003-066X.55.1.68 – volume: 42 start-page: 17 issue: 1 year: 2021 ident: 9427_CR39 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa605 – volume: 3 start-page: 8 year: 2023 ident: 9427_CR32 publication-title: Life Cycle doi: 10.54724/lc.2023.e8 – ident: 9427_CR53 – volume: 23 issue: 7 year: 2021 ident: 9427_CR55 publication-title: J. Med. Internet Res. doi: 10.2196/26063 – volume: 65 start-page: 3753 issue: 9 year: 2023 ident: 9427_CR18 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-023-01897-4 – volume: 28 start-page: 237 issue: 3 year: 2018 ident: 9427_CR54 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-018-9205-x – ident: 9427_CR46 – volume: 380 start-page: 219 issue: 9838 year: 2012 ident: 9427_CR31 publication-title: The Lancet doi: 10.1016/S0140-6736(12)61031-9 – ident: 9427_CR40 doi: 10.1145/1639714.1639731 – volume: 40 start-page: 998 issue: 6 year: 2010 ident: 9427_CR30 publication-title: Eur. J. Soc. Psychol. doi: 10.1002/ejsp.674 – ident: 9427_CR12 doi: 10.1145/2645710.2645737 – volume: 62 start-page: 1414 issue: 1 year: 2018 ident: 9427_CR14 publication-title: Proc. Human Factors Ergonomics Soc. Annual Meet. doi: 10.1177/1541931218621322 – volume: 5 start-page: 145 issue: 1 year: 2022 ident: 9427_CR49 publication-title: Dig. Med. doi: 10.1038/s41746-022-00692-9 – ident: 9427_CR35 doi: 10.1007/978-1-4419-0300-6_3 – volume: 60 issue: 2 year: 2023 ident: 9427_CR17 publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2022.103205 – volume: 5 start-page: 205520761882472 year: 2019 ident: 9427_CR7 publication-title: Digital Health doi: 10.1177/2055207618824727 – volume: 468 start-page: 415 year: 2017 ident: 9427_CR22 publication-title: Physica A doi: 10.1016/j.physa.2016.10.083 – volume: 73 start-page: 59 issue: 1 year: 2015 ident: 9427_CR13 publication-title: Arch. Public Health doi: 10.1186/s13690-015-0110-z – volume: 19 start-page: 431 issue: 2 year: 2019 ident: 9427_CR37 publication-title: Sensors doi: 10.3390/s19020431 – volume: 46 start-page: 109 year: 2013 ident: 9427_CR5 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.03.012 – volume: 5 start-page: 1595 issue: 2 year: 2022 ident: 9427_CR45 publication-title: J. Comput. Soc. Sci. doi: 10.1007/s42001-022-00179-3 – volume: 24 start-page: 35 issue: 1–2 year: 2014 ident: 9427_CR38 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-012-9135-y – volume: 22 start-page: 441 issue: 4–5 year: 2012 ident: 9427_CR27 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-011-9118-4 – volume: 32 start-page: 923 issue: 5 year: 2022 ident: 9427_CR19 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-021-09301-y – volume: 119 issue: 1 year: 2022 ident: 9427_CR34 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2107346118 – volume: 444 start-page: 713 year: 2016 ident: 9427_CR33 publication-title: Physica A doi: 10.1016/j.physa.2015.10.068 – volume: 43 start-page: 1575 issue: 8 year: 2011 ident: 9427_CR1 publication-title: Med. Sci. Sports Exercise doi: 10.1249/MSS.0b013e31821ece12 – volume: 111 start-page: 180 year: 2016 ident: 9427_CR28 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.08.014 – ident: 9427_CR9 doi: 10.1145/3604915.3610650 – ident: 9427_CR10 doi: 10.1007/s11257-024-09407-z – volume: 26 start-page: 347 issue: 4 year: 2016 ident: 9427_CR52 publication-title: User Model. User-Adap. Inter. doi: 10.1007/s11257-016-9178-6 – ident: 9427_CR51 – ident: 9427_CR56 doi: 10.1145/1060745.1060754 – volume: 54 start-page: 727 issue: 2 year: 2008 ident: 9427_CR4 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2008.4560154 |
| SSID | ssj0007679 |
| Score | 2.394663 |
| Snippet | As mobile health use is often discontinued, there is a need to improve its personalization with recommender system algorithms. This research innovatively... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 6 |
| SubjectTerms | Algorithms Collaboration Exercise Motivation Recommender systems Telemedicine |
| Title | Investigating different recommender algorithms in the domain of physical activity recommendations: a longitudinal between-subjects user study |
| URI | https://www.proquest.com/docview/3168154764 |
| Volume | 35 |
| WOSCitedRecordID | wos001443631700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-1391 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007679 issn: 0924-1868 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTsMwFLUQYsGGocwU9BeIDVjUQ-yEHUJULBBCYhC7yPEAlWiCmpRrcAXOwsmwU5dBggUHiGXl5Y_5_z2E9qTlxPTSDEujGObGqpbyFlNhMyssSYXqtWIT8vIyvb_PrmbQ4Z9_8I9qnxEkEgfZVV-KUG8S3uESMVnWur77dLtSRGI9ynHggI8bMr8f8TMK_XTCbWTpL_7vTktoIWaQcDKBfBnN2LKDFqfqDBCNtRP0mOPsRgetX8S2ZA37cPHJpFyvoNdvRBvlA0z1UhoIlfJw2ArNgXp6qEaD5nFYw6B8f_M54_ubqYZqUELl4DlCDWFHIkhRfD07aQceg4KnKggjjU0Q4YI4HIbrcRHaQDWEVgm0TLer6LZ_dnN6jqNIA9ZU9hpMtfCvgWkinUkIs0lGlPJlUJGlBZWapYVh1CXcccGtdEIJn3A4nnBCNXNEszU0W1al3UDgLEk0NbwwynJrtHIZSax2PR8cHGd2Ex1MQcufJ1wc-RfrckAk91fJW0Rytom6U1zzaJd1HmS6fNIoBd_612HbaJ62aIfhsy6abUZju4Pm9EszqEe77Yf4Ac1N2zY |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+different+recommender+algorithms+in%C2%A0the%C2%A0domain+of+physical+activity+recommendations%3A+a+longitudinal+between-subjects+user+study&rft.jtitle=User+modeling+and+user-adapted+interaction&rft.au=Coppens%2C+Ine&rft.au=De+Pessemier%2C+Toon&rft.au=Martens%2C+Luc&rft.date=2025-03-01&rft.issn=0924-1868&rft.eissn=1573-1391&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1007%2Fs11257-025-09427-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11257_025_09427_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-1868&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-1868&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-1868&client=summon |