Feasibility study of using digital twins for conceptual design of air-quenching processes

The concepts of digital twins (DTs) have been widely studied to predict system performance, shorten design cycles, and implement preventive maintenance, but mainly, in large-scale enterprises. It is extremely beneficial to the whole manufacturing sector, since DTs can be readily implemented in small...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 132; no. 3-4; pp. 1377 - 1390
Main Authors: Bi, Zhuming, Mueller, Donald, Mikkola, Aki
Format: Journal Article
Language:English
Published: London Springer London 01.05.2024
Springer Nature B.V
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concepts of digital twins (DTs) have been widely studied to predict system performance, shorten design cycles, and implement preventive maintenance, but mainly, in large-scale enterprises. It is extremely beneficial to the whole manufacturing sector, since DTs can be readily implemented in small and medium-sized enterprises (SMEs) with basic computer aided engineering (CAE) tools; over 95% enterprises are SMEs. This paper aims to prove the feasibility of using commercial CAE tools, such as SolidWorks Simulation, to design air-quenching processes for SMEs. SMEs can benefit to explore new business opportunities, reduce system design cycle, and improve existing air-quenching processes. To our knowledge, it will be the first work of adopting DTs in conceptual design of an air-quenching process in sense that (1) the need of simulating an air-quenching process before physical implementation is discussed thoroughly; (2) heat transfer processes are classified, governing mathematical models for various heat transfer behaviors are introduced to present an evaluation model of a heat transfer process; (3) main process variables of air-quenching are identified; (4) a DT of an air-quenching process is developed and simulated to verify the capabilities of commercial SolidWorks Simulation; (5) case studies are developed to show how a CAE tool can be used in DTs. The findings from the reported work are summarized with a debrief of our future work.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-024-13444-8