Optimizing plasma arc cutting processes using physics-based metaheuristic algorithms: a comparative analysis
Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including superalloys and composites, due to its many benefits, like higher dimensional accuracy, productivity and ability to cut thicker materials. P...
Uloženo v:
| Vydáno v: | International journal on interactive design and manufacturing Ročník 19; číslo 7; s. 5347 - 5381 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Paris
Springer Paris
01.07.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1955-2513, 1955-2505 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including superalloys and composites, due to its many benefits, like higher dimensional accuracy, productivity and ability to cut thicker materials. Process optimization is important for obtaining high-quality cuts, reducing material wastage and increasing overall productivity. However, it is difficult to optimize this process because of involvement of many variables, intricate cutting mechanism, and interaction between the process parameters and responses. In this paper, applications of five newly developed physics-based metaheuristic algorithms, i.e. Archimedes optimization algorithm (AOA), atom search optimization (ASO), nuclear reaction optimization (NRO), electromagnetic field optimization (EFO) and gravitational search algorithm (GSA) are proposed for optimizing two PAC processes. Their optimization performance is compared in terms of computing effort, convergence time and solution quality. To find out the best parametric intermixes for resolving the multi-objective optimization problems, an effort is also put forward to develop the corresponding Pareto optimal fronts. For both the examples, compared to its competitors, EFO appears as the most effective metaheuristic for achieving the best combinations of the relevant process parameters. For the first example, EFO achieves 42.50, 35.85 and 25.55% improvements for single-objective optimization; and 35.71, 18.19 and 9% improvements for multi-objective optimization, in material removal rate, kerf taper and heat affected zone, respectively against the observations of the past researchers. In case of the second example, these improvements are 44.2, 26.42 and 17.12% for single-objective optimization; and 22.1, 10.36 and 6.21% for multi-objective optimization in surface roughness, kerf width and microhardness, respectively. With respect to average computation time, for multi-objective optimization, EFO saves 77.1, 36.3, 65.6 and 98.73% (for example 1); and 49.7, 33.12, 50.3 and 142.01% (for example 2) of the runtime against AOA, ASO, NRO and GSA, respectively. Results of two quality metrics (spacing and hypervolume) and two non-parametric statistical tests (Wilcoxon rank-sum test and Friedman’s mean rank test) also prove superiority of EFO against the other physics-based algorithms under consideration. Thus, the primary objective of this paper is to explore application of five physics-based algorithms, specially EFO in deriving the optimal mixtures of two PAC processes resulting in their superior cutting efficiency, along with higher productivity and surface quality. |
|---|---|
| AbstractList | Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including superalloys and composites, due to its many benefits, like higher dimensional accuracy, productivity and ability to cut thicker materials. Process optimization is important for obtaining high-quality cuts, reducing material wastage and increasing overall productivity. However, it is difficult to optimize this process because of involvement of many variables, intricate cutting mechanism, and interaction between the process parameters and responses. In this paper, applications of five newly developed physics-based metaheuristic algorithms, i.e. Archimedes optimization algorithm (AOA), atom search optimization (ASO), nuclear reaction optimization (NRO), electromagnetic field optimization (EFO) and gravitational search algorithm (GSA) are proposed for optimizing two PAC processes. Their optimization performance is compared in terms of computing effort, convergence time and solution quality. To find out the best parametric intermixes for resolving the multi-objective optimization problems, an effort is also put forward to develop the corresponding Pareto optimal fronts. For both the examples, compared to its competitors, EFO appears as the most effective metaheuristic for achieving the best combinations of the relevant process parameters. For the first example, EFO achieves 42.50, 35.85 and 25.55% improvements for single-objective optimization; and 35.71, 18.19 and 9% improvements for multi-objective optimization, in material removal rate, kerf taper and heat affected zone, respectively against the observations of the past researchers. In case of the second example, these improvements are 44.2, 26.42 and 17.12% for single-objective optimization; and 22.1, 10.36 and 6.21% for multi-objective optimization in surface roughness, kerf width and microhardness, respectively. With respect to average computation time, for multi-objective optimization, EFO saves 77.1, 36.3, 65.6 and 98.73% (for example 1); and 49.7, 33.12, 50.3 and 142.01% (for example 2) of the runtime against AOA, ASO, NRO and GSA, respectively. Results of two quality metrics (spacing and hypervolume) and two non-parametric statistical tests (Wilcoxon rank-sum test and Friedman’s mean rank test) also prove superiority of EFO against the other physics-based algorithms under consideration. Thus, the primary objective of this paper is to explore application of five physics-based algorithms, specially EFO in deriving the optimal mixtures of two PAC processes resulting in their superior cutting efficiency, along with higher productivity and surface quality. |
| Author | Pendokhare, Devendra Chakraborty, Shankar |
| Author_xml | – sequence: 1 givenname: Devendra surname: Pendokhare fullname: Pendokhare, Devendra organization: Department of Production Engineering, Jadavpur University, Department of Mechanical Engineering, Government Polytechnic – sequence: 2 givenname: Shankar orcidid: 0000-0002-9624-5656 surname: Chakraborty fullname: Chakraborty, Shankar email: s_chakraborty00@yahoo.co.in organization: Department of Production Engineering, Jadavpur University |
| BookMark | eNp9kElLBDEQhYMoqKN_wFPAc2uqe9KLNxE3EOai51Cmq2civZlKC-2vN86I3jwUtfC-R_GOxX4_9CTEGagLUKq4ZEiVKhOVLmNBlifznjiCSusk1Urv_86QHYpj5jel8lKV6ki0qzG4zn26fi3HFrlDid5KO4WwPfnBEjOxnHi7b2Z2lpNXZKplRwE3NHnHwVmJ7XrwLmw6vpIo7dCN6DG4D5LYYxs5PhEHDbZMpz99IV7ubp9vHpKn1f3jzfVTYtNChQQaaPIyLarXoi6VjUudkQLIAHWVF2VWWdQNNRrSiuyyrisCTQ0B4BKQqmwhzne-8f33iTiYt2Hy8Qk2WQql_gYhqtKdyvqB2VNjRu869LMBZb5TNbtUTUzVbFM1c4SyHcRR3K_J_1n_Q30BeP1_Ww |
| Cites_doi | 10.1007/s11042-022-11959-4 10.3390/ma14195559 10.1007/s42452-020-2350-y 10.1007/s10462-022-10324-z 10.1214/aoms/1177731944 10.1080/10426914.2018.1532579 10.1080/10426914.2018.1532085 10.1371/journal.pone.0291184 10.1016/j.knosys.2018.08.030 10.1016/j.apenergy.2022.119518 10.3390/app10113827 10.1016/j.matcom.2022.06.027 10.1016/j.measurement.2018.12.010 10.37256/mp.2220233132 10.1051/smdo/2023012 10.1007/s00170-014-6552-6 10.3390/ma14216373 10.1007/s10489-020-01893-z 10.1016/j.swevo.2015.07.002 10.1007/s00521-019-04298-3 10.1016/j.procir.2012.07.050 10.1016/j.ins.2009.03.004 10.1007/s40430-018-1087-7 10.1016/j.dajour.2023.100190 10.1016/j.jmatprotec.2007.05.061 10.1371/journal.pone.0286060 10.1051/itmconf/20170903004 10.1007/s41939-022-00128-7 10.1007/s40430-023-04614-y 10.1080/10426914.2021.1905840 10.1007/s10462-022-10340-z 10.3390/ma13163558 10.1080/01694243.2023.2186202 10.1080/10426914.2021.2001507 10.1007/s40435-022-01094-1 10.1109/4235.585893 10.1007/s00521-021-06747-4 10.1007/s00366-021-01401-y 10.3390/biomimetics7040204 10.1109/ACCESS.2019.2918406 10.4249/scholarpedia.11472 10.1007/s12597-019-00420-0 10.1016/j.swevo.2018.02.018 10.1007/s10462-017-9605-z 10.17576/jkukm-2018-30(1)-02 10.1016/j.cirpj.2022.07.003 10.1007/s00521-023-08481-5 10.1155/2022/7181075 10.1515/htmp-2022-0329 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jul 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jul 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12008-024-02136-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1955-2505 |
| EndPage | 5381 |
| ExternalDocumentID | 10_1007_s12008_024_02136_y |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9P PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PT4 PTHSS QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX AFFHD CITATION |
| ID | FETCH-LOGICAL-c270t-1f1f68279b7d80c1f6d3e01131a5967839ca5fef5129ec4dd9e15efe11a41ae93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001337258300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1955-2513 |
| IngestDate | Wed Nov 05 04:18:31 EST 2025 Sat Nov 29 07:51:48 EST 2025 Mon Jul 21 06:07:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Response Parameter Plasma arc cutting Metaheuristics Physics-based algorithm Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-1f1f68279b7d80c1f6d3e01131a5967839ca5fef5129ec4dd9e15efe11a41ae93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9624-5656 |
| PQID | 3218551291 |
| PQPubID | 2044253 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_3218551291 crossref_primary_10_1007_s12008_024_02136_y springer_journals_10_1007_s12008_024_02136_y |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 2025-07-00 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris – name: Heidelberg |
| PublicationTitle | International journal on interactive design and manufacturing |
| PublicationTitleAbbrev | Int J Interact Des Manuf |
| PublicationYear | 2025 |
| Publisher | Springer Paris Springer Nature B.V |
| Publisher_xml | – name: Springer Paris – name: Springer Nature B.V |
| References | P Hema (2136_CR21) 2020; 2 K Kalita (2136_CR3) 2023; 6 K Kalita (2136_CR35) 2022; 38 P Patel (2136_CR44) 2018; 5 C Zhang (2136_CR56) 2022; 322 A Hamdy (2136_CR39) 2019; 42 RV Rao (2136_CR46) 2016; 11 K Hussain (2136_CR28) 2019; 52 N Khanduja (2136_CR29) 2021 FA Hashim (2136_CR51) 2021; 51 M Roy Choudhury (2136_CR23) 2024 MK Das (2136_CR47) 2017 L Abualigah (2136_CR26) 2020; 10 S Sridharan (2136_CR36) 2021; 39 M Karthick (2136_CR48) 2022; 37 R Bini (2136_CR6) 2008; 196 M Milovančević (2136_CR18) 2024; 3 N Dash (2136_CR40) 2018 CA CoelloCoello (2136_CR65) 2007 I Aranguren (2136_CR62) 2022; 81 KP Maity (2136_CR11) 2015; 78 R Devaraj (2136_CR14) 2020; 13 Z Wei (2136_CR58) 2019; 7 XS Yang (2136_CR30) 2010 A Neuenfeldt Jr (2136_CR19) 2023; 18 W Zhao (2136_CR54) 2019; 163 AM Ibrahim (2136_CR60) 2023; 56 H Bouchekara (2136_CR61) 2020; 32 A Tamilarasan (2136_CR49) 2021 E Rashedi (2136_CR64) 2018; 41 F Wilcoxon (2136_CR67) 1970; 1 S Diyaley (2136_CR32) 2020; 57 NS Melaku (2136_CR41) 2023; 14 A Nair (2136_CR4) 2023; 37 XS Yang (2136_CR27) 2011; 6 M Dehghani (2136_CR31) 2022; 7 M Karthick (2136_CR43) 2021; 36 A Lazarevic (2136_CR20) 2022; 38 D Rajamani (2136_CR42) 2024 Z Cinar (2136_CR10) 2018; 30 M Zheng (2136_CR15) 2023; 2 M Siva Kumar (2136_CR13) 2021; 14 D Izci (2136_CR57) 2023; 18 DH Wolpert (2136_CR33) 1997; 1 I Peko (2136_CR50) 2021; 14 S Masoudi (2136_CR38) 2019; 34 OE Turgut (2136_CR34) 2023; 35 K Rana (2136_CR8) 2013; 2 L Abualigah (2136_CR25) 2022; 34 A Suresh (2136_CR16) 2021; 38 H Abedinpourshotorban (2136_CR59) 2016; 26 M Friedman (2136_CR66) 1940; 11 SM Ilii (2136_CR12) 2010; 2 SJ Jiang (2136_CR52) 2023; 203 E Rashedi (2136_CR63) 2009; 179 K Ananthakumar (2136_CR2) 2019; 135 E Varol Altay (2136_CR53) 2023; 56 R Kumar (2136_CR55) 2023; 11 D Rajamani (2136_CR68) 2018; 33 SR Mangaraj (2136_CR9) 2022; 50 M Karthick (2136_CR17) 2022 PP Das (2136_CR5) 2023; 6 NS Jamsari (2136_CR37) 2024; 40 S Hussain (2136_CR22) 2024; 46 2136_CR24 2136_CR1 K Salonitis (2136_CR7) 2012; 3 P Patel (2136_CR45) 2018; 40 |
| References_xml | – volume: 50 start-page: 867 year: 2022 ident: 2136_CR9 publication-title: Mater. Today: Proc. – volume: 81 start-page: 10023 issue: 7 year: 2022 ident: 2136_CR62 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-11959-4 – volume: 14 start-page: 5559 year: 2021 ident: 2136_CR50 publication-title: Materials doi: 10.3390/ma14195559 – volume: 2 start-page: 1 year: 2020 ident: 2136_CR21 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2350-y – volume: 56 start-page: 9989 issue: 9 year: 2023 ident: 2136_CR60 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10324-z – volume: 11 start-page: 86 year: 1940 ident: 2136_CR66 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – start-page: 207 volume-title: Metaheuristic and evolutionary computation algorithms and applications, studies in computational intelligence year: 2021 ident: 2136_CR29 – volume: 34 start-page: 345 issue: 3 year: 2019 ident: 2136_CR38 publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2018.1532579 – volume: 33 start-page: 1864 issue: 16 year: 2018 ident: 2136_CR68 publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2018.1532085 – volume: 18 start-page: e0291184 issue: 9 year: 2023 ident: 2136_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0291184 – volume: 163 start-page: 283 year: 2019 ident: 2136_CR54 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.030 – volume: 322 year: 2022 ident: 2136_CR56 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119518 – volume: 10 start-page: 3827 issue: 11 year: 2020 ident: 2136_CR26 publication-title: Appl. Sci. doi: 10.3390/app10113827 – volume: 203 start-page: 306 year: 2023 ident: 2136_CR52 publication-title: Math. Comput. Simul doi: 10.1016/j.matcom.2022.06.027 – volume: 135 start-page: 725 year: 2019 ident: 2136_CR2 publication-title: Measurement doi: 10.1016/j.measurement.2018.12.010 – volume: 2 start-page: 1 issue: 2 year: 2023 ident: 2136_CR15 publication-title: Mater. Plus doi: 10.37256/mp.2220233132 – start-page: 389 volume-title: Application of water cycle algorithm for optimizing the PAC process parameters in cutting Ti-6Al-4V Alloy. In: Advances in Materials and Manufacturing Engineering year: 2021 ident: 2136_CR49 – volume: 14 start-page: 20 year: 2023 ident: 2136_CR41 publication-title: Int. J. Simul. Multi. Des. Optim. doi: 10.1051/smdo/2023012 – volume: 78 start-page: 161 issue: 1 year: 2015 ident: 2136_CR11 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-6552-6 – volume: 14 start-page: 6373 issue: 21 year: 2021 ident: 2136_CR13 publication-title: Materials doi: 10.3390/ma14216373 – volume: 51 start-page: 1531 year: 2021 ident: 2136_CR51 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 26 start-page: 8 year: 2016 ident: 2136_CR59 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.07.002 – volume: 32 start-page: 2683 issue: 7 year: 2020 ident: 2136_CR61 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04298-3 – volume: 3 start-page: 287 year: 2012 ident: 2136_CR7 publication-title: Procedia CIRP doi: 10.1016/j.procir.2012.07.050 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 2136_CR63 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 40 start-page: 1 year: 2018 ident: 2136_CR45 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1087-7 – volume: 6 year: 2023 ident: 2136_CR5 publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2023.100190 – start-page: 123 volume-title: Optimization of process parameters in plasma arc cutting applying genetic algorithm and fuzzy logic. In: Soft Computing Techniques and Applications in Mechanical Engineering year: 2018 ident: 2136_CR40 – volume: 196 start-page: 345 issue: 1–3 year: 2008 ident: 2136_CR6 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.05.061 – volume: 18 start-page: 0286060 issue: 5 year: 2023 ident: 2136_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0286060 – ident: 2136_CR24 doi: 10.1051/itmconf/20170903004 – volume: 40 start-page: 157 issue: 4b year: 2024 ident: 2136_CR37 publication-title: Paper ASIA – volume: 6 start-page: 1 issue: 1 year: 2023 ident: 2136_CR3 publication-title: Multiscale Multidiscip. Model., Exp. Des. doi: 10.1007/s41939-022-00128-7 – volume: 46 start-page: 33 year: 2024 ident: 2136_CR22 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-023-04614-y – volume: 36 start-page: 1274 issue: 11 year: 2021 ident: 2136_CR43 publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2021.1905840 – volume: 56 start-page: 6885 issue: 7 year: 2023 ident: 2136_CR53 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10340-z – volume: 39 start-page: 805 year: 2021 ident: 2136_CR36 publication-title: Mater. Today: Proc. – start-page: 82 volume-title: Process optimization in non-conventional processes: experimentation with plasma arc cutting. In: Handbook of Research on Manufacturing Process Modeling and Optimization Strategies year: 2017 ident: 2136_CR47 – volume: 13 start-page: 3558 issue: 16 year: 2020 ident: 2136_CR14 publication-title: Materials doi: 10.3390/ma13163558 – start-page: 373 volume-title: Multi-response optimization of plasma arc cutting on Monel 400 alloy through whale optimization algorithm. In: Handbook of Whale Optimization Algorithm year: 2024 ident: 2136_CR42 – volume: 37 start-page: 3053 issue: 22 year: 2023 ident: 2136_CR4 publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2023.2186202 – volume-title: Nature-inspired Metaheuristic Algorithms year: 2010 ident: 2136_CR30 – volume: 37 start-page: 1433 issue: 12 year: 2022 ident: 2136_CR48 publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2021.2001507 – volume: 5 start-page: 18927 issue: 9 year: 2018 ident: 2136_CR44 publication-title: Mater. Today: Proc. – volume: 38 start-page: 2417 year: 2021 ident: 2136_CR16 publication-title: Mater. Today: Proc. – volume: 2 start-page: 31 issue: 1 year: 2010 ident: 2136_CR12 publication-title: Int. J. Modern Manuf. Technol. – volume: 11 start-page: 1704 issue: 4 year: 2023 ident: 2136_CR55 publication-title: Int. J. Dyn. Control doi: 10.1007/s40435-022-01094-1 – ident: 2136_CR1 – volume: 1 start-page: 67 year: 1997 ident: 2136_CR33 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 34 start-page: 4081 year: 2022 ident: 2136_CR25 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06747-4 – volume: 11 start-page: 1 issue: 4 year: 2016 ident: 2136_CR46 publication-title: Adv. Prod. Eng. & Manag. – volume: 2 start-page: 106 issue: 7 year: 2013 ident: 2136_CR8 publication-title: Int. J. Enhanc. Res. Sci. Technol. & Eng. – volume: 38 start-page: 3549 issue: 4 year: 2022 ident: 2136_CR35 publication-title: Eng. Comput. doi: 10.1007/s00366-021-01401-y – volume: 7 start-page: 204 year: 2022 ident: 2136_CR31 publication-title: Biomimetics doi: 10.3390/biomimetics7040204 – volume: 7 start-page: 66084 year: 2019 ident: 2136_CR58 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918406 – volume: 6 start-page: 11472 year: 2011 ident: 2136_CR27 publication-title: Scholarpedia doi: 10.4249/scholarpedia.11472 – volume: 57 start-page: 414 issue: 2 year: 2020 ident: 2136_CR32 publication-title: Opsearch doi: 10.1007/s12597-019-00420-0 – volume: 41 start-page: 141 year: 2018 ident: 2136_CR64 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.018 – volume: 52 start-page: 2191 year: 2019 ident: 2136_CR28 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – volume: 30 start-page: 7 issue: 1 year: 2018 ident: 2136_CR10 publication-title: Jurnal Kejuruteraan doi: 10.17576/jkukm-2018-30(1)-02 – volume: 38 start-page: 836 year: 2022 ident: 2136_CR20 publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2022.07.003 – volume: 35 start-page: 14275 issue: 19 year: 2023 ident: 2136_CR34 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08481-5 – volume: 3 start-page: 30 issue: 1 year: 2024 ident: 2136_CR18 publication-title: J Eng. Manag. Syst. Eng. – year: 2022 ident: 2136_CR17 publication-title: J. Nanomater. doi: 10.1155/2022/7181075 – volume: 1 start-page: 171 year: 1970 ident: 2136_CR67 publication-title: Sel. Tables Math. Stat. – year: 2024 ident: 2136_CR23 publication-title: High Temp. Mater. Processes doi: 10.1515/htmp-2022-0329 – volume: 42 start-page: 218 issue: 3 year: 2019 ident: 2136_CR39 publication-title: Eng. Res. J. – volume-title: Evolutionary algorithms for solving multi-objective problems. In: Genetic and Evolutionary Computation Series year: 2007 ident: 2136_CR65 |
| SSID | ssj0068080 |
| Score | 2.3408167 |
| Snippet | Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5347 |
| SubjectTerms | Accuracy Algorithms Arc cutting CAE) and Design Computer-Aided Engineering (CAD Efficiency Electromagnetic fields Electronics and Microelectronics Engineering Engineering Design Heat affected zone Heuristic methods Industrial Design Instrumentation Kerf Linear programming Material removal rate (machining) Mechanical Engineering Microhardness Multiple objective analysis Nuclear reactions Optimization techniques Original Article Pareto optimization Plasma Plasma arc cutting Plasma jets Process controls Process parameters Productivity Rank tests Run time (computers) Search algorithms Statistical tests Superalloys Surface properties Surface roughness |
| Title | Optimizing plasma arc cutting processes using physics-based metaheuristic algorithms: a comparative analysis |
| URI | https://link.springer.com/article/10.1007/s12008-024-02136-y https://www.proquest.com/docview/3218551291 |
| Volume | 19 |
| WOSCitedRecordID | wos001337258300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWIpjp4nZEKJiAsRL3SLHdmilpq2aFKn8es5OogCCAYYMVizL8p3vO-vuvkPo1A-D1HAREWaUJjZ0RkSSKpLIrkVETrlKXbOJ8PY26vfFfVUUltfZ7nVI0lnqptitDNX7HD7KumSxjFYA7iJ7HR8eX2r7a3tJuDJIEQQE0JtVpTI_r_EVjhof81tY1KFNb_N_-9xCG5V3iS9LddhGS2a8g9Y_cQ7uotEdGIls-A4DPAXXOZMYdB2ruUuAxtOycMDk2GbEw9jJMScW7TTOTCEHZl6yO2M5ep3MhsUgyy-wxKrhEceyojrZQ8-966erG1K1XCDKD72C0JSm3cgPRRLqyFMw0MyACWBUBgJwjQklQbipdROM4loLQwOTGkolp9IIto9a48nYHCCsvURLZunyDbzCqJAevM24soT6TIEZaaOz-uTjacmsETccymV3TJ_H7gzjRRt1auHE1S3LYwb-SWC3QtvovBZG8_v31Q7_Nv0Irfm27a_L0u2gVjGbm2O0qt6KYT47cdr3AW_31rQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah5808DSpGvjm4hj4pyiU_ZWsjR1g32xdsL8603Slqrogz704WgJIXe934W7-x3AqeO5kWLcx1TJEJvUGebdSOKuqBlEZITJyA6b8Fotv9PhD1lTWJxXu-cpSeupi2a3NFXvMP0QWsPzRVhiGrFMId_j00vuf80sCdsGyV0Xa_SmWavMz2t8haMixvyWFrVoU9_43z43YT2LLtFlag5bsKBG27D2iXNwBwb32kkM--9aQBMdOg8F0raO5MwWQKNJ2jigYmQq4rVs9Rhjg3YhGqpE9NQsZXdGYvA6nvaT3jC-QALJgkcciYzqZBee69ftqwbORi5g6XjVBJOIRDXf8XjXC_2q1EJIlXYBlAiXa1yjXAqt3MiECUqyMOSKuCpShAhGhOJ0D0qj8UjtAwqr3VBQQ5ev9C2McFHVdzMmDaE-ldqNlOEsP_lgkjJrBAWHcjod02GBPcNgXoZKrpwg-8vigOr4xDVbIWU4z5VRvP59tYO_fX4CK432XTNo3rRuD2HVMSOAbcVuBUrJdKaOYFm-Jf14emwt8QOJstmY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4hejBb3E6NQdvGtY06bp4E3UoyhT8YLeSJakbbHOsnaB_vUna0il6EA89PFpC6EveB--93w_gyA-DWDPewFRLhW3pDPNOLHFH1K1HZITJ2JFNhK1Wo93m91NT_K7bvShJZjMNFqVpmNZGKq6Vg29Z2d5n5iG0jt9nYZ5Z0iCbrz88F7bY8kq4kUgeBNh4cpqPzfy8xlfXVMab30qkzvM0V_-_5zVYyaNOdJYdk3WY0cMNWJ7CItyE_p0xHoPehxHQyITUA4HMHUBy4hqj0SgbKNAJsp3yRnb6TbD1ggoNdCq6epKhPiPRf3kd99LuIDlFAskSXxyJHAJlC56al4_nVzinYsDSD70Uk5jE9YYf8k6oGp40gqLamAZKRMCNv6NcCqP02IYPWjKluCaBjjUhghGhOd2GueHrUO8AUl5HCWph9LXJzggXnsnZmLRA-1Qa81KB40IL0ShD3IhKbOWMNdNnkfuH0XsFqoWiovz2JRE1cUtgt0IqcFIopnz9-2q7f_v8EBbvL5rR7XXrZg-WfMsM7Bp5qzCXjid6HxbkW9pLxgfuUH4C9DfifA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+plasma+arc+cutting+processes+using+physics-based+metaheuristic+algorithms%3A+a+comparative+analysis&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=19&rft.issue=7&rft.spage=5347&rft.epage=5381&rft_id=info:doi/10.1007%2Fs12008-024-02136-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon |