Optimizing plasma arc cutting processes using physics-based metaheuristic algorithms: a comparative analysis

Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including superalloys and composites, due to its many benefits, like higher dimensional accuracy, productivity and ability to cut thicker materials. P...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal on interactive design and manufacturing Ročník 19; číslo 7; s. 5347 - 5381
Hlavní autoři: Pendokhare, Devendra, Chakraborty, Shankar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Paris Springer Paris 01.07.2025
Springer Nature B.V
Témata:
ISSN:1955-2513, 1955-2505
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including superalloys and composites, due to its many benefits, like higher dimensional accuracy, productivity and ability to cut thicker materials. Process optimization is important for obtaining high-quality cuts, reducing material wastage and increasing overall productivity. However, it is difficult to optimize this process because of involvement of many variables, intricate cutting mechanism, and interaction between the process parameters and responses. In this paper, applications of five newly developed physics-based metaheuristic algorithms, i.e. Archimedes optimization algorithm (AOA), atom search optimization (ASO), nuclear reaction optimization (NRO), electromagnetic field optimization (EFO) and gravitational search algorithm (GSA) are proposed for optimizing two PAC processes. Their optimization performance is compared in terms of computing effort, convergence time and solution quality. To find out the best parametric intermixes for resolving the multi-objective optimization problems, an effort is also put forward to develop the corresponding Pareto optimal fronts. For both the examples, compared to its competitors, EFO appears as the most effective metaheuristic for achieving the best combinations of the relevant process parameters. For the first example, EFO achieves 42.50, 35.85 and 25.55% improvements for single-objective optimization; and 35.71, 18.19 and 9% improvements for multi-objective optimization, in material removal rate, kerf taper and heat affected zone, respectively against the observations of the past researchers. In case of the second example, these improvements are 44.2, 26.42 and 17.12% for single-objective optimization; and 22.1, 10.36 and 6.21% for multi-objective optimization in surface roughness, kerf width and microhardness, respectively. With respect to average computation time, for multi-objective optimization, EFO saves 77.1, 36.3, 65.6 and 98.73% (for example 1); and 49.7, 33.12, 50.3 and 142.01% (for example 2) of the runtime against AOA, ASO, NRO and GSA, respectively. Results of two quality metrics (spacing and hypervolume) and two non-parametric statistical tests (Wilcoxon rank-sum test and Friedman’s mean rank test) also prove superiority of EFO against the other physics-based algorithms under consideration. Thus, the primary objective of this paper is to explore application of five physics-based algorithms, specially EFO in deriving the optimal mixtures of two PAC processes resulting in their superior cutting efficiency, along with higher productivity and surface quality.
AbstractList Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including superalloys and composites, due to its many benefits, like higher dimensional accuracy, productivity and ability to cut thicker materials. Process optimization is important for obtaining high-quality cuts, reducing material wastage and increasing overall productivity. However, it is difficult to optimize this process because of involvement of many variables, intricate cutting mechanism, and interaction between the process parameters and responses. In this paper, applications of five newly developed physics-based metaheuristic algorithms, i.e. Archimedes optimization algorithm (AOA), atom search optimization (ASO), nuclear reaction optimization (NRO), electromagnetic field optimization (EFO) and gravitational search algorithm (GSA) are proposed for optimizing two PAC processes. Their optimization performance is compared in terms of computing effort, convergence time and solution quality. To find out the best parametric intermixes for resolving the multi-objective optimization problems, an effort is also put forward to develop the corresponding Pareto optimal fronts. For both the examples, compared to its competitors, EFO appears as the most effective metaheuristic for achieving the best combinations of the relevant process parameters. For the first example, EFO achieves 42.50, 35.85 and 25.55% improvements for single-objective optimization; and 35.71, 18.19 and 9% improvements for multi-objective optimization, in material removal rate, kerf taper and heat affected zone, respectively against the observations of the past researchers. In case of the second example, these improvements are 44.2, 26.42 and 17.12% for single-objective optimization; and 22.1, 10.36 and 6.21% for multi-objective optimization in surface roughness, kerf width and microhardness, respectively. With respect to average computation time, for multi-objective optimization, EFO saves 77.1, 36.3, 65.6 and 98.73% (for example 1); and 49.7, 33.12, 50.3 and 142.01% (for example 2) of the runtime against AOA, ASO, NRO and GSA, respectively. Results of two quality metrics (spacing and hypervolume) and two non-parametric statistical tests (Wilcoxon rank-sum test and Friedman’s mean rank test) also prove superiority of EFO against the other physics-based algorithms under consideration. Thus, the primary objective of this paper is to explore application of five physics-based algorithms, specially EFO in deriving the optimal mixtures of two PAC processes resulting in their superior cutting efficiency, along with higher productivity and surface quality.
Author Pendokhare, Devendra
Chakraborty, Shankar
Author_xml – sequence: 1
  givenname: Devendra
  surname: Pendokhare
  fullname: Pendokhare, Devendra
  organization: Department of Production Engineering, Jadavpur University, Department of Mechanical Engineering, Government Polytechnic
– sequence: 2
  givenname: Shankar
  orcidid: 0000-0002-9624-5656
  surname: Chakraborty
  fullname: Chakraborty, Shankar
  email: s_chakraborty00@yahoo.co.in
  organization: Department of Production Engineering, Jadavpur University
BookMark eNp9kElLBDEQhYMoqKN_wFPAc2uqe9KLNxE3EOai51Cmq2civZlKC-2vN86I3jwUtfC-R_GOxX4_9CTEGagLUKq4ZEiVKhOVLmNBlifznjiCSusk1Urv_86QHYpj5jel8lKV6ki0qzG4zn26fi3HFrlDid5KO4WwPfnBEjOxnHi7b2Z2lpNXZKplRwE3NHnHwVmJ7XrwLmw6vpIo7dCN6DG4D5LYYxs5PhEHDbZMpz99IV7ubp9vHpKn1f3jzfVTYtNChQQaaPIyLarXoi6VjUudkQLIAHWVF2VWWdQNNRrSiuyyrisCTQ0B4BKQqmwhzne-8f33iTiYt2Hy8Qk2WQql_gYhqtKdyvqB2VNjRu869LMBZb5TNbtUTUzVbFM1c4SyHcRR3K_J_1n_Q30BeP1_Ww
Cites_doi 10.1007/s11042-022-11959-4
10.3390/ma14195559
10.1007/s42452-020-2350-y
10.1007/s10462-022-10324-z
10.1214/aoms/1177731944
10.1080/10426914.2018.1532579
10.1080/10426914.2018.1532085
10.1371/journal.pone.0291184
10.1016/j.knosys.2018.08.030
10.1016/j.apenergy.2022.119518
10.3390/app10113827
10.1016/j.matcom.2022.06.027
10.1016/j.measurement.2018.12.010
10.37256/mp.2220233132
10.1051/smdo/2023012
10.1007/s00170-014-6552-6
10.3390/ma14216373
10.1007/s10489-020-01893-z
10.1016/j.swevo.2015.07.002
10.1007/s00521-019-04298-3
10.1016/j.procir.2012.07.050
10.1016/j.ins.2009.03.004
10.1007/s40430-018-1087-7
10.1016/j.dajour.2023.100190
10.1016/j.jmatprotec.2007.05.061
10.1371/journal.pone.0286060
10.1051/itmconf/20170903004
10.1007/s41939-022-00128-7
10.1007/s40430-023-04614-y
10.1080/10426914.2021.1905840
10.1007/s10462-022-10340-z
10.3390/ma13163558
10.1080/01694243.2023.2186202
10.1080/10426914.2021.2001507
10.1007/s40435-022-01094-1
10.1109/4235.585893
10.1007/s00521-021-06747-4
10.1007/s00366-021-01401-y
10.3390/biomimetics7040204
10.1109/ACCESS.2019.2918406
10.4249/scholarpedia.11472
10.1007/s12597-019-00420-0
10.1016/j.swevo.2018.02.018
10.1007/s10462-017-9605-z
10.17576/jkukm-2018-30(1)-02
10.1016/j.cirpj.2022.07.003
10.1007/s00521-023-08481-5
10.1155/2022/7181075
10.1515/htmp-2022-0329
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jul 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jul 2025
DBID AAYXX
CITATION
DOI 10.1007/s12008-024-02136-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1955-2505
EndPage 5381
ExternalDocumentID 10_1007_s12008_024_02136_y
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9P
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PT4
PTHSS
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c270t-1f1f68279b7d80c1f6d3e01131a5967839ca5fef5129ec4dd9e15efe11a41ae93
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001337258300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1955-2513
IngestDate Wed Nov 05 04:18:31 EST 2025
Sat Nov 29 07:51:48 EST 2025
Mon Jul 21 06:07:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Response
Parameter
Plasma arc cutting
Metaheuristics
Physics-based algorithm
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-1f1f68279b7d80c1f6d3e01131a5967839ca5fef5129ec4dd9e15efe11a41ae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9624-5656
PQID 3218551291
PQPubID 2044253
PageCount 35
ParticipantIDs proquest_journals_3218551291
crossref_primary_10_1007_s12008_024_02136_y
springer_journals_10_1007_s12008_024_02136_y
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
– name: Heidelberg
PublicationTitle International journal on interactive design and manufacturing
PublicationTitleAbbrev Int J Interact Des Manuf
PublicationYear 2025
Publisher Springer Paris
Springer Nature B.V
Publisher_xml – name: Springer Paris
– name: Springer Nature B.V
References P Hema (2136_CR21) 2020; 2
K Kalita (2136_CR3) 2023; 6
K Kalita (2136_CR35) 2022; 38
P Patel (2136_CR44) 2018; 5
C Zhang (2136_CR56) 2022; 322
A Hamdy (2136_CR39) 2019; 42
RV Rao (2136_CR46) 2016; 11
K Hussain (2136_CR28) 2019; 52
N Khanduja (2136_CR29) 2021
FA Hashim (2136_CR51) 2021; 51
M Roy Choudhury (2136_CR23) 2024
MK Das (2136_CR47) 2017
L Abualigah (2136_CR26) 2020; 10
S Sridharan (2136_CR36) 2021; 39
M Karthick (2136_CR48) 2022; 37
R Bini (2136_CR6) 2008; 196
M Milovančević (2136_CR18) 2024; 3
N Dash (2136_CR40) 2018
CA CoelloCoello (2136_CR65) 2007
I Aranguren (2136_CR62) 2022; 81
KP Maity (2136_CR11) 2015; 78
R Devaraj (2136_CR14) 2020; 13
Z Wei (2136_CR58) 2019; 7
XS Yang (2136_CR30) 2010
A Neuenfeldt Jr (2136_CR19) 2023; 18
W Zhao (2136_CR54) 2019; 163
AM Ibrahim (2136_CR60) 2023; 56
H Bouchekara (2136_CR61) 2020; 32
A Tamilarasan (2136_CR49) 2021
E Rashedi (2136_CR64) 2018; 41
F Wilcoxon (2136_CR67) 1970; 1
S Diyaley (2136_CR32) 2020; 57
NS Melaku (2136_CR41) 2023; 14
A Nair (2136_CR4) 2023; 37
XS Yang (2136_CR27) 2011; 6
M Dehghani (2136_CR31) 2022; 7
M Karthick (2136_CR43) 2021; 36
A Lazarevic (2136_CR20) 2022; 38
D Rajamani (2136_CR42) 2024
Z Cinar (2136_CR10) 2018; 30
M Zheng (2136_CR15) 2023; 2
M Siva Kumar (2136_CR13) 2021; 14
D Izci (2136_CR57) 2023; 18
DH Wolpert (2136_CR33) 1997; 1
I Peko (2136_CR50) 2021; 14
S Masoudi (2136_CR38) 2019; 34
OE Turgut (2136_CR34) 2023; 35
K Rana (2136_CR8) 2013; 2
L Abualigah (2136_CR25) 2022; 34
A Suresh (2136_CR16) 2021; 38
H Abedinpourshotorban (2136_CR59) 2016; 26
M Friedman (2136_CR66) 1940; 11
SM Ilii (2136_CR12) 2010; 2
SJ Jiang (2136_CR52) 2023; 203
E Rashedi (2136_CR63) 2009; 179
K Ananthakumar (2136_CR2) 2019; 135
E Varol Altay (2136_CR53) 2023; 56
R Kumar (2136_CR55) 2023; 11
D Rajamani (2136_CR68) 2018; 33
SR Mangaraj (2136_CR9) 2022; 50
M Karthick (2136_CR17) 2022
PP Das (2136_CR5) 2023; 6
NS Jamsari (2136_CR37) 2024; 40
S Hussain (2136_CR22) 2024; 46
2136_CR24
2136_CR1
K Salonitis (2136_CR7) 2012; 3
P Patel (2136_CR45) 2018; 40
References_xml – volume: 50
  start-page: 867
  year: 2022
  ident: 2136_CR9
  publication-title: Mater. Today: Proc.
– volume: 81
  start-page: 10023
  issue: 7
  year: 2022
  ident: 2136_CR62
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-11959-4
– volume: 14
  start-page: 5559
  year: 2021
  ident: 2136_CR50
  publication-title: Materials
  doi: 10.3390/ma14195559
– volume: 2
  start-page: 1
  year: 2020
  ident: 2136_CR21
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2350-y
– volume: 56
  start-page: 9989
  issue: 9
  year: 2023
  ident: 2136_CR60
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10324-z
– volume: 11
  start-page: 86
  year: 1940
  ident: 2136_CR66
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– start-page: 207
  volume-title: Metaheuristic and evolutionary computation algorithms and applications, studies in computational intelligence
  year: 2021
  ident: 2136_CR29
– volume: 34
  start-page: 345
  issue: 3
  year: 2019
  ident: 2136_CR38
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2018.1532579
– volume: 33
  start-page: 1864
  issue: 16
  year: 2018
  ident: 2136_CR68
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2018.1532085
– volume: 18
  start-page: e0291184
  issue: 9
  year: 2023
  ident: 2136_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0291184
– volume: 163
  start-page: 283
  year: 2019
  ident: 2136_CR54
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.030
– volume: 322
  year: 2022
  ident: 2136_CR56
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119518
– volume: 10
  start-page: 3827
  issue: 11
  year: 2020
  ident: 2136_CR26
  publication-title: Appl. Sci.
  doi: 10.3390/app10113827
– volume: 203
  start-page: 306
  year: 2023
  ident: 2136_CR52
  publication-title: Math. Comput. Simul
  doi: 10.1016/j.matcom.2022.06.027
– volume: 135
  start-page: 725
  year: 2019
  ident: 2136_CR2
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.12.010
– volume: 2
  start-page: 1
  issue: 2
  year: 2023
  ident: 2136_CR15
  publication-title: Mater. Plus
  doi: 10.37256/mp.2220233132
– start-page: 389
  volume-title: Application of water cycle algorithm for optimizing the PAC process parameters in cutting Ti-6Al-4V Alloy. In: Advances in Materials and Manufacturing Engineering
  year: 2021
  ident: 2136_CR49
– volume: 14
  start-page: 20
  year: 2023
  ident: 2136_CR41
  publication-title: Int. J. Simul. Multi. Des. Optim.
  doi: 10.1051/smdo/2023012
– volume: 78
  start-page: 161
  issue: 1
  year: 2015
  ident: 2136_CR11
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-6552-6
– volume: 14
  start-page: 6373
  issue: 21
  year: 2021
  ident: 2136_CR13
  publication-title: Materials
  doi: 10.3390/ma14216373
– volume: 51
  start-page: 1531
  year: 2021
  ident: 2136_CR51
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 26
  start-page: 8
  year: 2016
  ident: 2136_CR59
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.07.002
– volume: 32
  start-page: 2683
  issue: 7
  year: 2020
  ident: 2136_CR61
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04298-3
– volume: 3
  start-page: 287
  year: 2012
  ident: 2136_CR7
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2012.07.050
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 2136_CR63
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 40
  start-page: 1
  year: 2018
  ident: 2136_CR45
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1087-7
– volume: 6
  year: 2023
  ident: 2136_CR5
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2023.100190
– start-page: 123
  volume-title: Optimization of process parameters in plasma arc cutting applying genetic algorithm and fuzzy logic. In: Soft Computing Techniques and Applications in Mechanical Engineering
  year: 2018
  ident: 2136_CR40
– volume: 196
  start-page: 345
  issue: 1–3
  year: 2008
  ident: 2136_CR6
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.05.061
– volume: 18
  start-page: 0286060
  issue: 5
  year: 2023
  ident: 2136_CR57
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0286060
– ident: 2136_CR24
  doi: 10.1051/itmconf/20170903004
– volume: 40
  start-page: 157
  issue: 4b
  year: 2024
  ident: 2136_CR37
  publication-title: Paper ASIA
– volume: 6
  start-page: 1
  issue: 1
  year: 2023
  ident: 2136_CR3
  publication-title: Multiscale Multidiscip. Model., Exp. Des.
  doi: 10.1007/s41939-022-00128-7
– volume: 46
  start-page: 33
  year: 2024
  ident: 2136_CR22
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-023-04614-y
– volume: 36
  start-page: 1274
  issue: 11
  year: 2021
  ident: 2136_CR43
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2021.1905840
– volume: 56
  start-page: 6885
  issue: 7
  year: 2023
  ident: 2136_CR53
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10340-z
– volume: 39
  start-page: 805
  year: 2021
  ident: 2136_CR36
  publication-title: Mater. Today: Proc.
– start-page: 82
  volume-title: Process optimization in non-conventional processes: experimentation with plasma arc cutting. In: Handbook of Research on Manufacturing Process Modeling and Optimization Strategies
  year: 2017
  ident: 2136_CR47
– volume: 13
  start-page: 3558
  issue: 16
  year: 2020
  ident: 2136_CR14
  publication-title: Materials
  doi: 10.3390/ma13163558
– start-page: 373
  volume-title: Multi-response optimization of plasma arc cutting on Monel 400 alloy through whale optimization algorithm. In: Handbook of Whale Optimization Algorithm
  year: 2024
  ident: 2136_CR42
– volume: 37
  start-page: 3053
  issue: 22
  year: 2023
  ident: 2136_CR4
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2023.2186202
– volume-title: Nature-inspired Metaheuristic Algorithms
  year: 2010
  ident: 2136_CR30
– volume: 37
  start-page: 1433
  issue: 12
  year: 2022
  ident: 2136_CR48
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2021.2001507
– volume: 5
  start-page: 18927
  issue: 9
  year: 2018
  ident: 2136_CR44
  publication-title: Mater. Today: Proc.
– volume: 38
  start-page: 2417
  year: 2021
  ident: 2136_CR16
  publication-title: Mater. Today: Proc.
– volume: 2
  start-page: 31
  issue: 1
  year: 2010
  ident: 2136_CR12
  publication-title: Int. J. Modern Manuf. Technol.
– volume: 11
  start-page: 1704
  issue: 4
  year: 2023
  ident: 2136_CR55
  publication-title: Int. J. Dyn. Control
  doi: 10.1007/s40435-022-01094-1
– ident: 2136_CR1
– volume: 1
  start-page: 67
  year: 1997
  ident: 2136_CR33
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 34
  start-page: 4081
  year: 2022
  ident: 2136_CR25
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06747-4
– volume: 11
  start-page: 1
  issue: 4
  year: 2016
  ident: 2136_CR46
  publication-title: Adv. Prod. Eng. & Manag.
– volume: 2
  start-page: 106
  issue: 7
  year: 2013
  ident: 2136_CR8
  publication-title: Int. J. Enhanc. Res. Sci. Technol. & Eng.
– volume: 38
  start-page: 3549
  issue: 4
  year: 2022
  ident: 2136_CR35
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01401-y
– volume: 7
  start-page: 204
  year: 2022
  ident: 2136_CR31
  publication-title: Biomimetics
  doi: 10.3390/biomimetics7040204
– volume: 7
  start-page: 66084
  year: 2019
  ident: 2136_CR58
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918406
– volume: 6
  start-page: 11472
  year: 2011
  ident: 2136_CR27
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.11472
– volume: 57
  start-page: 414
  issue: 2
  year: 2020
  ident: 2136_CR32
  publication-title: Opsearch
  doi: 10.1007/s12597-019-00420-0
– volume: 41
  start-page: 141
  year: 2018
  ident: 2136_CR64
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.018
– volume: 52
  start-page: 2191
  year: 2019
  ident: 2136_CR28
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– volume: 30
  start-page: 7
  issue: 1
  year: 2018
  ident: 2136_CR10
  publication-title: Jurnal Kejuruteraan
  doi: 10.17576/jkukm-2018-30(1)-02
– volume: 38
  start-page: 836
  year: 2022
  ident: 2136_CR20
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2022.07.003
– volume: 35
  start-page: 14275
  issue: 19
  year: 2023
  ident: 2136_CR34
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08481-5
– volume: 3
  start-page: 30
  issue: 1
  year: 2024
  ident: 2136_CR18
  publication-title: J Eng. Manag. Syst. Eng.
– year: 2022
  ident: 2136_CR17
  publication-title: J. Nanomater.
  doi: 10.1155/2022/7181075
– volume: 1
  start-page: 171
  year: 1970
  ident: 2136_CR67
  publication-title: Sel. Tables Math. Stat.
– year: 2024
  ident: 2136_CR23
  publication-title: High Temp. Mater. Processes
  doi: 10.1515/htmp-2022-0329
– volume: 42
  start-page: 218
  issue: 3
  year: 2019
  ident: 2136_CR39
  publication-title: Eng. Res. J.
– volume-title: Evolutionary algorithms for solving multi-objective problems. In: Genetic and Evolutionary Computation Series
  year: 2007
  ident: 2136_CR65
SSID ssj0068080
Score 2.3408167
Snippet Plasma arc cutting (PAC) has become a flexible and effective method for precisely cutting complex profiles on various difficult-to-machine materials, including...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5347
SubjectTerms Accuracy
Algorithms
Arc cutting
CAE) and Design
Computer-Aided Engineering (CAD
Efficiency
Electromagnetic fields
Electronics and Microelectronics
Engineering
Engineering Design
Heat affected zone
Heuristic methods
Industrial Design
Instrumentation
Kerf
Linear programming
Material removal rate (machining)
Mechanical Engineering
Microhardness
Multiple objective analysis
Nuclear reactions
Optimization techniques
Original Article
Pareto optimization
Plasma
Plasma arc cutting
Plasma jets
Process controls
Process parameters
Productivity
Rank tests
Run time (computers)
Search algorithms
Statistical tests
Superalloys
Surface properties
Surface roughness
Title Optimizing plasma arc cutting processes using physics-based metaheuristic algorithms: a comparative analysis
URI https://link.springer.com/article/10.1007/s12008-024-02136-y
https://www.proquest.com/docview/3218551291
Volume 19
WOSCitedRecordID wos001337258300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWIpjp4nZEKJiAsRL3SLHdmilpq2aFKn8es5OogCCAYYMVizL8p3vO-vuvkPo1A-D1HAREWaUJjZ0RkSSKpLIrkVETrlKXbOJ8PY26vfFfVUUltfZ7nVI0lnqptitDNX7HD7KumSxjFYA7iJ7HR8eX2r7a3tJuDJIEQQE0JtVpTI_r_EVjhof81tY1KFNb_N_-9xCG5V3iS9LddhGS2a8g9Y_cQ7uotEdGIls-A4DPAXXOZMYdB2ruUuAxtOycMDk2GbEw9jJMScW7TTOTCEHZl6yO2M5ep3MhsUgyy-wxKrhEceyojrZQ8-966erG1K1XCDKD72C0JSm3cgPRRLqyFMw0MyACWBUBgJwjQklQbipdROM4loLQwOTGkolp9IIto9a48nYHCCsvURLZunyDbzCqJAevM24soT6TIEZaaOz-uTjacmsETccymV3TJ_H7gzjRRt1auHE1S3LYwb-SWC3QtvovBZG8_v31Q7_Nv0Irfm27a_L0u2gVjGbm2O0qt6KYT47cdr3AW_31rQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah5808DSpGvjm4hj4pyiU_ZWsjR1g32xdsL8603Slqrogz704WgJIXe934W7-x3AqeO5kWLcx1TJEJvUGebdSOKuqBlEZITJyA6b8Fotv9PhD1lTWJxXu-cpSeupi2a3NFXvMP0QWsPzRVhiGrFMId_j00vuf80sCdsGyV0Xa_SmWavMz2t8haMixvyWFrVoU9_43z43YT2LLtFlag5bsKBG27D2iXNwBwb32kkM--9aQBMdOg8F0raO5MwWQKNJ2jigYmQq4rVs9Rhjg3YhGqpE9NQsZXdGYvA6nvaT3jC-QALJgkcciYzqZBee69ftqwbORi5g6XjVBJOIRDXf8XjXC_2q1EJIlXYBlAiXa1yjXAqt3MiECUqyMOSKuCpShAhGhOJ0D0qj8UjtAwqr3VBQQ5ev9C2McFHVdzMmDaE-ldqNlOEsP_lgkjJrBAWHcjod02GBPcNgXoZKrpwg-8vigOr4xDVbIWU4z5VRvP59tYO_fX4CK432XTNo3rRuD2HVMSOAbcVuBUrJdKaOYFm-Jf14emwt8QOJstmY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4hejBb3E6NQdvGtY06bp4E3UoyhT8YLeSJakbbHOsnaB_vUna0il6EA89PFpC6EveB--93w_gyA-DWDPewFRLhW3pDPNOLHFH1K1HZITJ2JFNhK1Wo93m91NT_K7bvShJZjMNFqVpmNZGKq6Vg29Z2d5n5iG0jt9nYZ5Z0iCbrz88F7bY8kq4kUgeBNh4cpqPzfy8xlfXVMab30qkzvM0V_-_5zVYyaNOdJYdk3WY0cMNWJ7CItyE_p0xHoPehxHQyITUA4HMHUBy4hqj0SgbKNAJsp3yRnb6TbD1ggoNdCq6epKhPiPRf3kd99LuIDlFAskSXxyJHAJlC56al4_nVzinYsDSD70Uk5jE9YYf8k6oGp40gqLamAZKRMCNv6NcCqP02IYPWjKluCaBjjUhghGhOd2GueHrUO8AUl5HCWph9LXJzggXnsnZmLRA-1Qa81KB40IL0ShD3IhKbOWMNdNnkfuH0XsFqoWiovz2JRE1cUtgt0IqcFIopnz9-2q7f_v8EBbvL5rR7XXrZg-WfMsM7Bp5qzCXjid6HxbkW9pLxgfuUH4C9DfifA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+plasma+arc+cutting+processes+using+physics-based+metaheuristic+algorithms%3A+a+comparative+analysis&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=19&rft.issue=7&rft.spage=5347&rft.epage=5381&rft_id=info:doi/10.1007%2Fs12008-024-02136-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon