Eigenvalue Estimates in Terms of the Extrinsic Curvature

In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by con...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Iranian journal of science (Online) Ročník 45; číslo 4; s. 1411 - 1416
Hlavní autori: EKER Serhan, Değirmenci Nedim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Shiraz Springer Nature B.V 01.08.2021
Predmet:
ISSN:2731-8095, 2731-8109
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by considering the conformal invariance of the Dirac operator. The first is given in term of the first eigenvalue of the Yamabe operator. The latter, is given in terms of the the area of a topological 2-sphere.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2731-8095
2731-8109
DOI:10.1007/s40995-021-01136-x