Eigenvalue Estimates in Terms of the Extrinsic Curvature

In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of science (Online) Jg. 45; H. 4; S. 1411 - 1416
Hauptverfasser: EKER Serhan, Değirmenci Nedim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Shiraz Springer Nature B.V 01.08.2021
Schlagworte:
ISSN:2731-8095, 2731-8109
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by considering the conformal invariance of the Dirac operator. The first is given in term of the first eigenvalue of the Yamabe operator. The latter, is given in terms of the the area of a topological 2-sphere.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2731-8095
2731-8109
DOI:10.1007/s40995-021-01136-x