Eigenvalue Estimates in Terms of the Extrinsic Curvature

In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Iranian journal of science (Online) Ročník 45; číslo 4; s. 1411 - 1416
Hlavní autoři: EKER Serhan, Değirmenci Nedim
Médium: Journal Article
Jazyk:angličtina
Vydáno: Shiraz Springer Nature B.V 01.08.2021
Témata:
ISSN:2731-8095, 2731-8109
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by considering the conformal invariance of the Dirac operator. The first is given in term of the first eigenvalue of the Yamabe operator. The latter, is given in terms of the the area of a topological 2-sphere.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2731-8095
2731-8109
DOI:10.1007/s40995-021-01136-x