Optimization-Based Approaches to Uncertainty Analysis of Structures Using Non-Probabilistic Modeling: A Review

Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization. This paper provides a review on optimization-based methods for uncertainty analysis, with focusing attention on specific properties of adopted numerical optimization approaches. W...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer modeling in engineering & sciences Ročník 143; číslo 1; s. 115 - 152
Hlavní autoři: Kanno, Yoshihiro, Takewaki, Izuru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2025
Témata:
ISSN:1526-1506, 1526-1492, 1526-1506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization. This paper provides a review on optimization-based methods for uncertainty analysis, with focusing attention on specific properties of adopted numerical optimization approaches. We collect and discuss the methods based on nonlinear programming, semidefinite programming, mixed-integer programming, mathematical programming with complementarity constraints, difference-of-convex programming, optimization methods using surrogate models and machine learning techniques, and metaheuristics. As a closely related topic, we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling. We conclude the paper by drawing several remarks through this review.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1526-1506
1526-1492
1526-1506
DOI:10.32604/cmes.2025.061551