Subdifferentials and Coderivatives of Efficient Point Multifunctions in Parametric Convex Vector Optimization
In this paper, by revisiting coderivative calculus rules for convex multifunctions in finite-dimensional spaces, we derive formulae for estimating/computing the basic subdifferential and the coderivative of the efficient point multifunction of parametric convex vector optimization problems. These re...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 202; číslo 2; s. 745 - 770 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, by revisiting coderivative calculus rules for convex multifunctions in finite-dimensional spaces, we derive formulae for estimating/computing the basic subdifferential and the coderivative of the efficient point multifunction of parametric convex vector optimization problems. These results are then applied to a broad class of conventional convex vector optimization problems with the presence of operator constraints and equilibrium ones. Examples are also designed to analyze and illustrate the obtained results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-024-02446-x |