Holonomic functions and prehomogeneous spaces
A function that is analytic on a domain of C n is holonomic if it is the solution to a holonomic system of linear homogeneous differential equations with polynomial coefficients. We define and study the Bernstein–Sato polynomial of a holonomic function on a smooth algebraic variety. We analyze the s...
Uloženo v:
| Vydáno v: | Selecta mathematica (Basel, Switzerland) Ročník 29; číslo 5 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.11.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1022-1824, 1420-9020 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A function that is analytic on a domain of
C
n
is holonomic if it is the solution to a holonomic system of linear homogeneous differential equations with polynomial coefficients. We define and study the Bernstein–Sato polynomial of a holonomic function on a smooth algebraic variety. We analyze the structure of certain sheaves of holonomic functions, such as the algebraic functions along a hypersurface, determining their direct sum decompositions into indecomposables, that further respect decompositions of Bernstein–Sato polynomials. When the space is endowed with the action of a linear algebraic group
G
, we study the class of
G
-finite analytic functions, i.e. functions that under the action of the Lie algebra of
G
generate a finite dimensional rational
G
-module. These are automatically algebraic functions on a variety with a dense orbit. When
G
is reductive, we give several representation-theoretic techniques toward the determination of Bernstein–Sato polynomials of
G
-finite functions. We classify the
G
-finite functions on all but one of the irreducible reduced prehomogeneous vector spaces, and compute the Bernstein–Sato polynomials for distinguished
G
-finite functions. The results can be used to construct explicitly equivariant
D
-modules. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1022-1824 1420-9020 |
| DOI: | 10.1007/s00029-023-00874-7 |