Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms
Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and measurement model are compared. One of these schemes, in which the estimate is calculated recursively with respect to measurements, is tradition...
Gespeichert in:
| Veröffentlicht in: | International journal of dynamics and control Jg. 13; H. 2; S. 95 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2195-268X, 2195-2698 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and measurement model are compared. One of these schemes, in which the estimate is calculated recursively with respect to measurements, is traditional, and the other one, nonrecursive, involves the use of a full set of all available measurements. It is shown that when solving a special class of problems in which the posteriori density has a complex multi-extremal character at the initial moments of time, but over time it becomes close to the Gaussian one, algorithms designed with the use of a nonrecursive scheme can be effective, in contrast to traditional recursive algorithms using a Gaussian approximation of the posteriori density at each step. Advantages of the nonrecursive algorithms are discussed and illustrated, first, on a simple methodological example and then by solving a practical navigation problem for a group of autonomous underwater vehicles (AUVs). |
|---|---|
| AbstractList | Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and measurement model are compared. One of these schemes, in which the estimate is calculated recursively with respect to measurements, is traditional, and the other one, nonrecursive, involves the use of a full set of all available measurements. It is shown that when solving a special class of problems in which the posteriori density has a complex multi-extremal character at the initial moments of time, but over time it becomes close to the Gaussian one, algorithms designed with the use of a nonrecursive scheme can be effective, in contrast to traditional recursive algorithms using a Gaussian approximation of the posteriori density at each step. Advantages of the nonrecursive algorithms are discussed and illustrated, first, on a simple methodological example and then by solving a practical navigation problem for a group of autonomous underwater vehicles (AUVs). |
| ArticleNumber | 95 |
| Author | Isaev, Alexey Litvinenko, Yulia Stepanov, Oleg |
| Author_xml | – sequence: 1 givenname: Alexey orcidid: 0000-0003-2111-0308 surname: Isaev fullname: Isaev, Alexey email: itmo_student@mail.ru organization: Concern CSRI Elektropribor, JSC, ITMO University – sequence: 2 givenname: Oleg orcidid: 0000-0003-3640-3760 surname: Stepanov fullname: Stepanov, Oleg organization: Concern CSRI Elektropribor, JSC, ITMO University – sequence: 3 givenname: Yulia orcidid: 0000-0001-5438-2911 surname: Litvinenko fullname: Litvinenko, Yulia organization: Concern CSRI Elektropribor, JSC, ITMO University |
| BookMark | eNp9UE1Lw0AQXaSCtfYPeAp4js5MPrY5SvELCl4UPAjLZjOpKWm27qZC_PWuRuzNwzDD472ZN-9UTDrbsRDnCJcIIK98CmmSxUChMCsoHo7ElLDIYsqLxeRvXryciLn3GwAgTIHSYipel3a70073zQdHutPt4Bsf2TpybPbOj2gVhYsHoG061q75DCLbxaX2XEXs-2b7A0S6XVvX9G9bfyaOa916nv_2mXi-vXla3serx7uH5fUqNiShj5GQS2BZlSZ8QjkQmFximRokTVUNlDMukiqvsOQsMxKZq1JzzqbQWMtkJi7GvTtn3_fBitrYvQvPeJVQlqEsMIfAopFlnPXeca12Lnh2g0JQ30GqMUgVglQ_QaohiJJR5AO5W7M7rP5H9QUYcHrd |
| Cites_doi | 10.1109/TAC.1965.1098109 10.1134/S2075108721030068 10.3390/sym13112044 10.1002/0470045345 10.1016/j.measurement.2023.113228 10.1109/TAC.1972.1100034 10.23919/ICINS43215.2020.9133846 10.23919/FUSION59988.2024.10706458 10.3390/s24020392 10.1007/978-3-031-71360-6_7 10.1134/S2075108723030094 10.1109/MAES.2020.3002001 10.1016/j.sigpro.2017.01.001 10.1002/9780470890042 10.1016/j.jfranklin.2015.11.016 10.1109/TAC.2002.800742 10.17587/mau.25.585-595 10.1017/CBO9781139344203 10.1109/TSP.2024.3396626 10.1214/19-AOS1914 10.3390/s22020653 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40435-025-01592-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2195-2698 |
| ExternalDocumentID | 10_1007_s40435_025_01592_y |
| GrantInformation_xml | – fundername: Russian Science Foundation grantid: 23-19-00626 funderid: http://dx.doi.org/10.13039/501100006769 |
| GroupedDBID | -EM 0R~ 30V 4.4 406 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDBE ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J PT4 RLLFE ROL RSV SCL SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c270t-121eb0e7dbc40426020c671b4c12a2df026e183d6d1be55c71eedbae6ec9a1f73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2195-268X |
| IngestDate | Mon Sep 29 04:22:56 EDT 2025 Sat Nov 29 03:59:58 EST 2025 Fri Feb 28 01:53:14 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Navigation data Linearization-based algorithms Comparison Nonrecursive scheme Nonlinear filtering |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c270t-121eb0e7dbc40426020c671b4c12a2df026e183d6d1be55c71eedbae6ec9a1f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2111-0308 0000-0003-3640-3760 0000-0001-5438-2911 |
| PQID | 3255179160 |
| PQPubID | 2043900 |
| ParticipantIDs | proquest_journals_3255179160 crossref_primary_10_1007_s40435_025_01592_y springer_journals_10_1007_s40435_025_01592_y |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 2025-02-00 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of dynamics and control |
| PublicationTitleAbbrev | Int. J. Dynam. Control |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | OA Stepanov (1592_CR6) 2016 J Heng (1592_CR24) 2017; 48 Y Liang (1592_CR13) 2021; 13 1592_CR20 X Liu (1592_CR14) 2022; 22 DL Alpach (1592_CR22) 1972; 7 O Stepanov (1592_CR2) 2003 1592_CR26 1592_CR23 D Simon (1592_CR1) 2006 S Sahl (1592_CR19) 2024; 24 RG Brown (1592_CR4) 2012 OA Stepanov (1592_CR8) 2021; 12 BP Gibbs (1592_CR3) 2011 RS Busy (1592_CR21) 1965; 10 O Stepanov (1592_CR16) 2024; 25 OA Stepanov (1592_CR9) 2023; 14 Y Bar-Shalom (1592_CR7) 2004 1592_CR17 1592_CR15 1592_CR11 J Duník (1592_CR12) 2020; 35 Y Zhao (1592_CR25) 2016; 353 H Afshari (1592_CR10) 2017; 135 S Särkkä (1592_CR5) 2013 1592_CR18 |
| References_xml | – volume: 10 start-page: 198 year: 1965 ident: 1592_CR21 publication-title: IEEE Trans Autom Control AC doi: 10.1109/TAC.1965.1098109 – volume: 12 start-page: 205 issue: 3 year: 2021 ident: 1592_CR8 publication-title: Gyroscopy Navig doi: 10.1134/S2075108721030068 – ident: 1592_CR20 – volume: 13 start-page: 2044 issue: 11 year: 2021 ident: 1592_CR13 publication-title: Symmetry doi: 10.3390/sym13112044 – volume-title: Introduction to random signals and applied Kalman filtering year: 2012 ident: 1592_CR4 – volume-title: Optimal state estimation: Kalman H$$\infty $$ and nonlinear approaches year: 2006 ident: 1592_CR1 doi: 10.1002/0470045345 – ident: 1592_CR17 doi: 10.1016/j.measurement.2023.113228 – volume: 7 start-page: 439 year: 1972 ident: 1592_CR22 publication-title: Automatica doi: 10.1109/TAC.1972.1100034 – ident: 1592_CR11 doi: 10.23919/ICINS43215.2020.9133846 – ident: 1592_CR23 doi: 10.23919/FUSION59988.2024.10706458 – volume: 24 start-page: 392 issue: 2 year: 2024 ident: 1592_CR19 publication-title: Sensors doi: 10.3390/s24020392 – ident: 1592_CR26 doi: 10.1007/978-3-031-71360-6_7 – volume: 14 start-page: 213 issue: 3 year: 2023 ident: 1592_CR9 publication-title: Gyroscopy Navig doi: 10.1134/S2075108723030094 – volume: 35 start-page: 16 issue: 12 year: 2020 ident: 1592_CR12 publication-title: IEEE Aerosp Electron Syst Mag doi: 10.1109/MAES.2020.3002001 – volume: 135 start-page: 218 year: 2017 ident: 1592_CR10 publication-title: Signal Process doi: 10.1016/j.sigpro.2017.01.001 – volume-title: Primenenie teorii nelineynoy filtratsii v zadachakh obrabotki navigatsionnoy informatsii year: 2003 ident: 1592_CR2 – volume-title: Advanced Kalman filtering, least-squares and modeling: a practical handbook year: 2011 ident: 1592_CR3 doi: 10.1002/9780470890042 – start-page: 244 volume-title: Optimal and suboptimal filtering in integrated navigation systems year: 2016 ident: 1592_CR6 – volume: 353 start-page: 657 issue: 3 year: 2016 ident: 1592_CR25 publication-title: J Frankl Inst doi: 10.1016/j.jfranklin.2015.11.016 – ident: 1592_CR15 doi: 10.1109/TAC.2002.800742 – volume: 25 start-page: 585 year: 2024 ident: 1592_CR16 publication-title: Mekhatronika Avtom Upr doi: 10.17587/mau.25.585-595 – volume-title: Bayesian filtering and smoothing year: 2013 ident: 1592_CR5 doi: 10.1017/CBO9781139344203 – ident: 1592_CR18 doi: 10.1109/TSP.2024.3396626 – volume: 48 start-page: 2904 year: 2017 ident: 1592_CR24 publication-title: Ann Stat doi: 10.1214/19-AOS1914 – volume-title: Estimation with applications to tracking and navigation: theory algorithms and software year: 2004 ident: 1592_CR7 – volume: 22 start-page: 653 issue: 2 year: 2022 ident: 1592_CR14 publication-title: Sensors doi: 10.3390/s22020653 |
| SSID | ssj0002140249 ssib031263557 |
| Score | 2.2957692 |
| Snippet | Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 95 |
| SubjectTerms | Accuracy Algorithms Approximation Autonomous underwater vehicles Bayesian analysis Complexity Control Control and Systems Theory Density Dynamical Systems Engineering Estimates Kalman filters Linearization State vectors Vibration |
| Subtitle | Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms |
| Title | Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms |
| URI | https://link.springer.com/article/10.1007/s40435-025-01592-y https://www.proquest.com/docview/3255179160 |
| Volume | 13 |
| WOSCitedRecordID | wos001415085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 2195-2698 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: RSV dateStart: 20130301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB109aAHv8XVVXLwpoEmbZPNURYXT4vgB3sQSpqkuqC70lZh_71J2m5V9KDXtIQwmWbe62TeAJxmRMSZZT5YMyZwpHiK-4ITLJUNplpFLFSZbzbBR6P-eCyu66Kwornt3qQk_Um9KHZzOjCumthdNosFxfNlWImd2ozj6Df3jReFxOmr1Lk8dx5TyyGox8HUNSakrD-uq2d-nvZrhGph57dMqQ9Aw83_LX0LNmrAiS4qD9mGJTPdgfVPMoS78DBoJcCRrFVK0CxDufsZX1SjGk1n03bAoVNLs6siTuxioUZOsKOqhETy-XGWT8qnl2IP7oaXt4MrXHddwIryoMSEEpMGhutURV6_ngaKcZJGilBJdWZJm7HngGaapCaOFSc2zKbSMKOEJBkP96FjF2QOAGkmLMIiRnIL27gIJLHx0gJAxjNjiY3swllj6eS1EtdIFjLK3maJtVnibZbMu9BrNiOpP7QiCS0lcgqrLOjCeWP89vHvsx3-7fUjWKN-_9xFlh50yvzNHMOqei8nRX7iHfADd6fVgg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1itugdvGtjsI2mOUiyKtQhW6UEI2SSrBW1ldxX670320VXRg16zIYTJZOabzcw3AMcxZmFsIh-kCGEokDRCbUYxEtI4UyUD4ss4bzZB-_32cMhuyqKwtMp2r54kc0s9K3azPDC2mtgmm4XMQ9N5WAhsmx0bo9_eV1rkY8uvUr7lWXtsplhePNtlzjYm9Eh7WFbP_LzsVw9Vw85vL6W5A-qu_W_r67BaAk7nrNCQDZjT401Y-URDuAUPnZoC3BElS4kziZ3E_oxPi1HljCfjesCiUxNmF0WcyPpC5VjCjqIS0hHPj5NklD29pNtw1z0fdC5Q2XUBSY-6GcIe1pGrqYpkkPPXe64kFEeBxJ7wVGyCNm3sgCIKRzoMJcXGzUZCEy2ZwDH1d6BhNqR3wVGEGYSFtaAGtlHmCmz8pQGAhMbaBDaiCSeVpPlrQa7BZzTKucy4kRnPZcanTWhVh8HLi5Zy34RElmGVuE04rYRff_59tb2_TT-CpYvBdY_3LvtX-7Ds5Wdpk1pa0MiSN30Ai_I9G6XJYa6MH4M02GY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFNEHv8Xp1D74pmFN1ibro0yHoozhF3sQSpqkOtBurFXYvzdJ222KPoivaQntTZp7TnPPCcBxjAM_1swHSUoD5AkWoWbAMOJCJ1MpPNoQsT1sgnU6zV4v6M6o-G21e7klmWsajEtTktWHMq5PhG_GE8Yoi03hmR8QNJ6HBU8zGVPUdXv3WM6oBjZeK8W-nlmbieYTxGJiYg4pJLTZK5Q0P3f7NVtNIei3XVObjNpr_3-NdVgtgKhzls-cDZhTySaszNgTbsFTa2oN7vDCvcQZxM7I_KRP81bpJINk2mBQq6bfubgTmRwpHWPkkSskHf76PBj1s5e3dBse2hf3rUtUnMaABGFuhjDBKnIVk5HwrK89cQVlOPIEJpzIWJM5pdcHSSWOlO8LhnX6jbiiSgQcx6yxAxX9QGoXHEkDjbyw4kzDORa4HOs8qoEhZbHShIdX4aSMejjMTTfCib2yjVmoYxbamIXjKtTKgQmLDzANG5oqGedV6lbhtByI6eXfe9v72-1HsNQ9b4c3V53rfVgmdihNrUsNKtnoXR3AovjI-uno0M7LT-RN4Uo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+recursive+and+nonrecursive+linearization-based+estimation+algorithms&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Isaev%2C+Alexey&rft.au=Stepanov%2C+Oleg&rft.au=Litvinenko%2C+Yulia&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=13&rft.issue=2&rft_id=info:doi/10.1007%2Fs40435-025-01592-y&rft.externalDocID=10_1007_s40435_025_01592_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon |