Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms

Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and measurement model are compared. One of these schemes, in which the estimate is calculated recursively with respect to measurements, is tradition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control Jg. 13; H. 2; S. 95
Hauptverfasser: Isaev, Alexey, Stepanov, Oleg, Litvinenko, Yulia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
Springer Nature B.V
Schlagworte:
ISSN:2195-268X, 2195-2698
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and measurement model are compared. One of these schemes, in which the estimate is calculated recursively with respect to measurements, is traditional, and the other one, nonrecursive, involves the use of a full set of all available measurements. It is shown that when solving a special class of problems in which the posteriori density has a complex multi-extremal character at the initial moments of time, but over time it becomes close to the Gaussian one, algorithms designed with the use of a nonrecursive scheme can be effective, in contrast to traditional recursive algorithms using a Gaussian approximation of the posteriori density at each step. Advantages of the nonrecursive algorithms are discussed and illustrated, first, on a simple methodological example and then by solving a practical navigation problem for a group of autonomous underwater vehicles (AUVs).
AbstractList Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and measurement model are compared. One of these schemes, in which the estimate is calculated recursively with respect to measurements, is traditional, and the other one, nonrecursive, involves the use of a full set of all available measurements. It is shown that when solving a special class of problems in which the posteriori density has a complex multi-extremal character at the initial moments of time, but over time it becomes close to the Gaussian one, algorithms designed with the use of a nonrecursive scheme can be effective, in contrast to traditional recursive algorithms using a Gaussian approximation of the posteriori density at each step. Advantages of the nonrecursive algorithms are discussed and illustrated, first, on a simple methodological example and then by solving a practical navigation problem for a group of autonomous underwater vehicles (AUVs).
ArticleNumber 95
Author Isaev, Alexey
Litvinenko, Yulia
Stepanov, Oleg
Author_xml – sequence: 1
  givenname: Alexey
  orcidid: 0000-0003-2111-0308
  surname: Isaev
  fullname: Isaev, Alexey
  email: itmo_student@mail.ru
  organization: Concern CSRI Elektropribor, JSC, ITMO University
– sequence: 2
  givenname: Oleg
  orcidid: 0000-0003-3640-3760
  surname: Stepanov
  fullname: Stepanov, Oleg
  organization: Concern CSRI Elektropribor, JSC, ITMO University
– sequence: 3
  givenname: Yulia
  orcidid: 0000-0001-5438-2911
  surname: Litvinenko
  fullname: Litvinenko, Yulia
  organization: Concern CSRI Elektropribor, JSC, ITMO University
BookMark eNp9UE1Lw0AQXaSCtfYPeAp4js5MPrY5SvELCl4UPAjLZjOpKWm27qZC_PWuRuzNwzDD472ZN-9UTDrbsRDnCJcIIK98CmmSxUChMCsoHo7ElLDIYsqLxeRvXryciLn3GwAgTIHSYipel3a70073zQdHutPt4Bsf2TpybPbOj2gVhYsHoG061q75DCLbxaX2XEXs-2b7A0S6XVvX9G9bfyaOa916nv_2mXi-vXla3serx7uH5fUqNiShj5GQS2BZlSZ8QjkQmFximRokTVUNlDMukiqvsOQsMxKZq1JzzqbQWMtkJi7GvTtn3_fBitrYvQvPeJVQlqEsMIfAopFlnPXeca12Lnh2g0JQ30GqMUgVglQ_QaohiJJR5AO5W7M7rP5H9QUYcHrd
Cites_doi 10.1109/TAC.1965.1098109
10.1134/S2075108721030068
10.3390/sym13112044
10.1002/0470045345
10.1016/j.measurement.2023.113228
10.1109/TAC.1972.1100034
10.23919/ICINS43215.2020.9133846
10.23919/FUSION59988.2024.10706458
10.3390/s24020392
10.1007/978-3-031-71360-6_7
10.1134/S2075108723030094
10.1109/MAES.2020.3002001
10.1016/j.sigpro.2017.01.001
10.1002/9780470890042
10.1016/j.jfranklin.2015.11.016
10.1109/TAC.2002.800742
10.17587/mau.25.585-595
10.1017/CBO9781139344203
10.1109/TSP.2024.3396626
10.1214/19-AOS1914
10.3390/s22020653
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s40435-025-01592-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2195-2698
ExternalDocumentID 10_1007_s40435_025_01592_y
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 23-19-00626
  funderid: http://dx.doi.org/10.13039/501100006769
GroupedDBID -EM
0R~
30V
4.4
406
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
H13
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
PT4
RLLFE
ROL
RSV
SCL
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c270t-121eb0e7dbc40426020c671b4c12a2df026e183d6d1be55c71eedbae6ec9a1f73
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2195-268X
IngestDate Mon Sep 29 04:22:56 EDT 2025
Sat Nov 29 03:59:58 EST 2025
Fri Feb 28 01:53:14 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Navigation data
Linearization-based algorithms
Comparison
Nonrecursive scheme
Nonlinear filtering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-121eb0e7dbc40426020c671b4c12a2df026e183d6d1be55c71eedbae6ec9a1f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2111-0308
0000-0003-3640-3760
0000-0001-5438-2911
PQID 3255179160
PQPubID 2043900
ParticipantIDs proquest_journals_3255179160
crossref_primary_10_1007_s40435_025_01592_y
springer_journals_10_1007_s40435_025_01592_y
PublicationCentury 2000
PublicationDate 20250200
2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of dynamics and control
PublicationTitleAbbrev Int. J. Dynam. Control
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References OA Stepanov (1592_CR6) 2016
J Heng (1592_CR24) 2017; 48
Y Liang (1592_CR13) 2021; 13
1592_CR20
X Liu (1592_CR14) 2022; 22
DL Alpach (1592_CR22) 1972; 7
O Stepanov (1592_CR2) 2003
1592_CR26
1592_CR23
D Simon (1592_CR1) 2006
S Sahl (1592_CR19) 2024; 24
RG Brown (1592_CR4) 2012
OA Stepanov (1592_CR8) 2021; 12
BP Gibbs (1592_CR3) 2011
RS Busy (1592_CR21) 1965; 10
O Stepanov (1592_CR16) 2024; 25
OA Stepanov (1592_CR9) 2023; 14
Y Bar-Shalom (1592_CR7) 2004
1592_CR17
1592_CR15
1592_CR11
J Duník (1592_CR12) 2020; 35
Y Zhao (1592_CR25) 2016; 353
H Afshari (1592_CR10) 2017; 135
S Särkkä (1592_CR5) 2013
1592_CR18
References_xml – volume: 10
  start-page: 198
  year: 1965
  ident: 1592_CR21
  publication-title: IEEE Trans Autom Control AC
  doi: 10.1109/TAC.1965.1098109
– volume: 12
  start-page: 205
  issue: 3
  year: 2021
  ident: 1592_CR8
  publication-title: Gyroscopy Navig
  doi: 10.1134/S2075108721030068
– ident: 1592_CR20
– volume: 13
  start-page: 2044
  issue: 11
  year: 2021
  ident: 1592_CR13
  publication-title: Symmetry
  doi: 10.3390/sym13112044
– volume-title: Introduction to random signals and applied Kalman filtering
  year: 2012
  ident: 1592_CR4
– volume-title: Optimal state estimation: Kalman H$$\infty $$ and nonlinear approaches
  year: 2006
  ident: 1592_CR1
  doi: 10.1002/0470045345
– ident: 1592_CR17
  doi: 10.1016/j.measurement.2023.113228
– volume: 7
  start-page: 439
  year: 1972
  ident: 1592_CR22
  publication-title: Automatica
  doi: 10.1109/TAC.1972.1100034
– ident: 1592_CR11
  doi: 10.23919/ICINS43215.2020.9133846
– ident: 1592_CR23
  doi: 10.23919/FUSION59988.2024.10706458
– volume: 24
  start-page: 392
  issue: 2
  year: 2024
  ident: 1592_CR19
  publication-title: Sensors
  doi: 10.3390/s24020392
– ident: 1592_CR26
  doi: 10.1007/978-3-031-71360-6_7
– volume: 14
  start-page: 213
  issue: 3
  year: 2023
  ident: 1592_CR9
  publication-title: Gyroscopy Navig
  doi: 10.1134/S2075108723030094
– volume: 35
  start-page: 16
  issue: 12
  year: 2020
  ident: 1592_CR12
  publication-title: IEEE Aerosp Electron Syst Mag
  doi: 10.1109/MAES.2020.3002001
– volume: 135
  start-page: 218
  year: 2017
  ident: 1592_CR10
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2017.01.001
– volume-title: Primenenie teorii nelineynoy filtratsii v zadachakh obrabotki navigatsionnoy informatsii
  year: 2003
  ident: 1592_CR2
– volume-title: Advanced Kalman filtering, least-squares and modeling: a practical handbook
  year: 2011
  ident: 1592_CR3
  doi: 10.1002/9780470890042
– start-page: 244
  volume-title: Optimal and suboptimal filtering in integrated navigation systems
  year: 2016
  ident: 1592_CR6
– volume: 353
  start-page: 657
  issue: 3
  year: 2016
  ident: 1592_CR25
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2015.11.016
– ident: 1592_CR15
  doi: 10.1109/TAC.2002.800742
– volume: 25
  start-page: 585
  year: 2024
  ident: 1592_CR16
  publication-title: Mekhatronika Avtom Upr
  doi: 10.17587/mau.25.585-595
– volume-title: Bayesian filtering and smoothing
  year: 2013
  ident: 1592_CR5
  doi: 10.1017/CBO9781139344203
– ident: 1592_CR18
  doi: 10.1109/TSP.2024.3396626
– volume: 48
  start-page: 2904
  year: 2017
  ident: 1592_CR24
  publication-title: Ann Stat
  doi: 10.1214/19-AOS1914
– volume-title: Estimation with applications to tracking and navigation: theory algorithms and software
  year: 2004
  ident: 1592_CR7
– volume: 22
  start-page: 653
  issue: 2
  year: 2022
  ident: 1592_CR14
  publication-title: Sensors
  doi: 10.3390/s22020653
SSID ssj0002140249
ssib031263557
Score 2.2957692
Snippet Two schemes of suboptimal estimation algorithms designed with the use of the Bayesian approach and based on the linearization of state vector functions and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 95
SubjectTerms Accuracy
Algorithms
Approximation
Autonomous underwater vehicles
Bayesian analysis
Complexity
Control
Control and Systems Theory
Density
Dynamical Systems
Engineering
Estimates
Kalman filters
Linearization
State vectors
Vibration
Subtitle Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms
Title Comparative analysis of recursive and nonrecursive linearization-based estimation algorithms
URI https://link.springer.com/article/10.1007/s40435-025-01592-y
https://www.proquest.com/docview/3255179160
Volume 13
WOSCitedRecordID wos001415085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2195-2698
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140249
  issn: 2195-268X
  databaseCode: RSV
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB109aAHv8XVVXLwpoEmbZPNURYXT4vgB3sQSpqkuqC70lZh_71J2m5V9KDXtIQwmWbe62TeAJxmRMSZZT5YMyZwpHiK-4ITLJUNplpFLFSZbzbBR6P-eCyu66Kwornt3qQk_Um9KHZzOjCumthdNosFxfNlWImd2ozj6Df3jReFxOmr1Lk8dx5TyyGox8HUNSakrD-uq2d-nvZrhGph57dMqQ9Aw83_LX0LNmrAiS4qD9mGJTPdgfVPMoS78DBoJcCRrFVK0CxDufsZX1SjGk1n03bAoVNLs6siTuxioUZOsKOqhETy-XGWT8qnl2IP7oaXt4MrXHddwIryoMSEEpMGhutURV6_ngaKcZJGilBJdWZJm7HngGaapCaOFSc2zKbSMKOEJBkP96FjF2QOAGkmLMIiRnIL27gIJLHx0gJAxjNjiY3swllj6eS1EtdIFjLK3maJtVnibZbMu9BrNiOpP7QiCS0lcgqrLOjCeWP89vHvsx3-7fUjWKN-_9xFlh50yvzNHMOqei8nRX7iHfADd6fVgg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1itugdvGtjsI2mOUiyKtQhW6UEI2SSrBW1ldxX670320VXRg16zIYTJZOabzcw3AMcxZmFsIh-kCGEokDRCbUYxEtI4UyUD4ss4bzZB-_32cMhuyqKwtMp2r54kc0s9K3azPDC2mtgmm4XMQ9N5WAhsmx0bo9_eV1rkY8uvUr7lWXtsplhePNtlzjYm9Eh7WFbP_LzsVw9Vw85vL6W5A-qu_W_r67BaAk7nrNCQDZjT401Y-URDuAUPnZoC3BElS4kziZ3E_oxPi1HljCfjesCiUxNmF0WcyPpC5VjCjqIS0hHPj5NklD29pNtw1z0fdC5Q2XUBSY-6GcIe1pGrqYpkkPPXe64kFEeBxJ7wVGyCNm3sgCIKRzoMJcXGzUZCEy2ZwDH1d6BhNqR3wVGEGYSFtaAGtlHmCmz8pQGAhMbaBDaiCSeVpPlrQa7BZzTKucy4kRnPZcanTWhVh8HLi5Zy34RElmGVuE04rYRff_59tb2_TT-CpYvBdY_3LvtX-7Ds5Wdpk1pa0MiSN30Ai_I9G6XJYa6MH4M02GY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFNEHv8Xp1D74pmFN1ibro0yHoozhF3sQSpqkOtBurFXYvzdJ222KPoivaQntTZp7TnPPCcBxjAM_1swHSUoD5AkWoWbAMOJCJ1MpPNoQsT1sgnU6zV4v6M6o-G21e7klmWsajEtTktWHMq5PhG_GE8Yoi03hmR8QNJ6HBU8zGVPUdXv3WM6oBjZeK8W-nlmbieYTxGJiYg4pJLTZK5Q0P3f7NVtNIei3XVObjNpr_3-NdVgtgKhzls-cDZhTySaszNgTbsFTa2oN7vDCvcQZxM7I_KRP81bpJINk2mBQq6bfubgTmRwpHWPkkSskHf76PBj1s5e3dBse2hf3rUtUnMaABGFuhjDBKnIVk5HwrK89cQVlOPIEJpzIWJM5pdcHSSWOlO8LhnX6jbiiSgQcx6yxAxX9QGoXHEkDjbyw4kzDORa4HOs8qoEhZbHShIdX4aSMejjMTTfCib2yjVmoYxbamIXjKtTKgQmLDzANG5oqGedV6lbhtByI6eXfe9v72-1HsNQ9b4c3V53rfVgmdihNrUsNKtnoXR3AovjI-uno0M7LT-RN4Uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+recursive+and+nonrecursive+linearization-based+estimation+algorithms&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Isaev%2C+Alexey&rft.au=Stepanov%2C+Oleg&rft.au=Litvinenko%2C+Yulia&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=13&rft.issue=2&rft_id=info:doi/10.1007%2Fs40435-025-01592-y&rft.externalDocID=10_1007_s40435_025_01592_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon