Three-points interfacial quadrature for geometrical source terms on nonuniform grids Application to finite volume schemes for parameter-dependent differential equations

This paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells’ si...

Full description

Saved in:
Bibliographic Details
Published in:Calcolo Vol. 49; no. 3; pp. 149 - 176
Main Authors: Katsaounis, Theodoros, Simeoni, Chiara
Format: Journal Article
Language:English
Published: Milan Springer Milan 01.09.2012
Springer Verlag
Subjects:
ISSN:0008-0624, 1126-5434
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells’ size, for which L p -error estimates, 1≤ p <+∞, are proven. Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem’s data is precisely discussed. This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics).
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0008-0624
1126-5434
DOI:10.1007/s10092-011-0049-6