Linearizable Eigenvector Nonlinearities
We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on...
Uloženo v:
| Vydáno v: | SIAM journal on matrix analysis and applications Ročník 43; číslo 2; s. 764 - 786 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.01.2022
|
| Témata: | |
| ISSN: | 0895-4798, 1095-7162, 1095-7162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on an equivalent multiparameter eigenvalue problem (MEP) that contains the exact solutions of the NEPv. Due to the characterization of MEPs in terms of a generalized eigenvalue problem this provides a direct way to compute all NEPv solutions for small problems, and it opens up the possibility to develop locally convergent iterative methods for larger problems. Moreover, the linear formulation allows us to easily determine the number of solutions of the NEPv. We propose two numerical schemes that exploit the structure of the linearization: inverse iteration and residual inverse iteration. We show how symmetry in the MEP can be used to improve reliability and reduce computational cost of both methods. Two numerical examples verify the theoretical results, and a third example shows the potential of a hybrid scheme that is based on a combination of the two proposed methods. |
|---|---|
| AbstractList | We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on an equivalent multiparameter eigenvalue problem (MEP) that contains the exact solutions of the NEPv. Due to the characterization of MEPs in terms of a generalized eigenvalue problem this provides a direct way to compute all NEPv solutions for small problems, and it opens up the possibility to develop locally convergent iterative methods for larger problems. Moreover, the linear formulation allows us to easily determine the number of solutions of the NEPv. We propose two numerical schemes that exploit the structure of the linearization: inverse iteration and residual inverse iteration. We show how symmetry in the MEP can be used to improve reliability and reduce computational cost of both methods. Two numerical examples verify the theoretical results, and a third example shows the potential of a hybrid scheme that is based on a combination of the two proposed methods. |
| Author | Upadhyaya, Parikshit Meerbergen, Karl Claes, Rob Jarlebring, Elias |
| Author_xml | – sequence: 1 givenname: Rob orcidid: 0000-0001-6059-155X surname: Claes fullname: Claes, Rob – sequence: 2 givenname: Elias orcidid: 0000-0001-9443-8772 surname: Jarlebring fullname: Jarlebring, Elias – sequence: 3 givenname: Karl orcidid: 0000-0002-1508-0248 surname: Meerbergen fullname: Meerbergen, Karl – sequence: 4 givenname: Parikshit orcidid: 0000-0002-2157-6418 surname: Upadhyaya fullname: Upadhyaya, Parikshit |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323340$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) |
| BookMark | eNptkEtLAzEUhYNUsK1u_AXdCcJobh4zk2Wp9QFVNyruQpLeqdFxUpKo6K93pKIgrs6F853D5YzIoAsdErIP9AiAV8cMLkEwxeF-iwyBKllUULIBGdK6v0Wl6h0ySumRUiiFgiE5WPgOTfQfxrY4mfsVdq_ocoiTq9C1Gy97TLtkuzFtwr1vHZPb0_nN7LxYXJ9dzKaLwrFS5QKXfatpWNUoa21JGwGSC1tRYxzF2gKCUHLZ_2GlKgWrJUrquKtRoiurJR-TYtOb3nD9YvU6-mcT33UwXp_4u6kOcaWf8oPmjHNBe_5ww7sYUorY_CSA6q9J9O8kPUz_wM5nk33ocjS-_S_yCfilZLw |
| CitedBy_id | crossref_primary_10_1137_23M1551961 crossref_primary_10_1137_22M1497985 crossref_primary_10_1137_22M1516324 |
| Cites_doi | 10.1137/17M115935X 10.3934/naco.2020019 10.1051/m2an:2000102 10.1051/m2an/2012008 10.1137/S1064827503422956 10.1137/060651653 10.1137/S0895479801395264 10.1002/nla.2033 10.1137/130910014 10.1137/18M1167681 10.1145/361573.361582 10.1002/nla.2005 10.1007/s10543-015-0566-9 10.1007/s10910-011-9863-y 10.1007/s11425-012-4363-5 10.1137/050628362 10.1137/080716293 10.1137/090756843 10.1137/18M1183558 10.1016/0009-2614(80)80396-4 10.1137/07070111X 10.1002/nla.2240 10.1137/130911032 10.1137/0722055 10.1080/03081087.2018.1536732 10.1137/140957962 10.1090/S0002-9904-1934-05899-3 10.1016/0024-3795(94)90396-4 10.1137/S0895479802418318 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTPV AOWAS D8V |
| DOI | 10.1137/21M142931X |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1095-7162 |
| EndPage | 786 |
| ExternalDocumentID | oai_DiVA_org_kth_323340 10_1137_21M142931X |
| GroupedDBID | -~X .4S .DC 123 186 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFHD AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS YNT ZKB ZY4 ADTPV AOWAS D8V |
| ID | FETCH-LOGICAL-c269t-ed491af27f9bbb60f41534b70aac0e8b1e1495d798b5964285e50c3c8e5ec67d3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903762900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0895-4798 1095-7162 |
| IngestDate | Tue Nov 04 16:48:06 EST 2025 Tue Nov 18 21:09:03 EST 2025 Sat Nov 29 02:43:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-ed491af27f9bbb60f41534b70aac0e8b1e1495d798b5964285e50c3c8e5ec67d3 |
| ORCID | 0000-0002-2157-6418 0000-0001-6059-155X 0000-0001-9443-8772 0000-0002-1508-0248 |
| PageCount | 23 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_kth_323340 crossref_primary_10_1137_21M142931X crossref_citationtrail_10_1137_21M142931X |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | SIAM journal on matrix analysis and applications |
| PublicationYear | 2022 |
| References | atypb9 atypb8 atypb19 atypb26 atypb27 atypb28 atypb22 atypb23 atypb24 atypb25 atypb20 atypb21 atypb15 atypb16 Hein M. (atypb10) 2010; 23 atypb17 atypb18 atypb11 atypb33 atypb12 atypb13 atypb35 atypb14 atypb30 atypb3 atypb2 atypb5 atypb4 atypb7 Upadhyaya P. (atypb34) 2021; 11 |
| References_xml | – ident: atypb7 doi: 10.1137/17M115935X – volume: 11 start-page: 117 year: 2021 ident: atypb34 publication-title: Numer. Algebra Control Optim. doi: 10.3934/naco.2020019 – ident: atypb8 doi: 10.1051/m2an:2000102 – ident: atypb19 doi: 10.1051/m2an/2012008 – ident: atypb3 doi: 10.1137/S1064827503422956 – ident: atypb30 doi: 10.1137/060651653 – ident: atypb13 doi: 10.1137/S0895479801395264 – ident: atypb5 doi: 10.1002/nla.2033 – ident: atypb15 doi: 10.1137/130910014 – ident: atypb2 doi: 10.1137/18M1167681 – ident: atypb4 doi: 10.1145/361573.361582 – ident: atypb23 doi: 10.1002/nla.2005 – ident: atypb25 doi: 10.1007/s10543-015-0566-9 – ident: atypb27 doi: 10.1007/s10910-011-9863-y – ident: atypb9 doi: 10.1007/s11425-012-4363-5 – ident: atypb22 doi: 10.1137/050628362 – ident: atypb35 doi: 10.1137/080716293 – ident: atypb18 doi: 10.1137/090756843 – ident: atypb33 doi: 10.1137/18M1183558 – ident: atypb26 doi: 10.1016/0009-2614(80)80396-4 – ident: atypb16 doi: 10.1137/07070111X – ident: atypb12 doi: 10.1002/nla.2240 – ident: atypb20 doi: 10.1137/130911032 – volume: 23 start-page: 847 year: 2010 ident: atypb10 publication-title: Adv. Neural Inform. Process. Syst. – ident: atypb24 doi: 10.1137/0722055 – ident: atypb14 doi: 10.1080/03081087.2018.1536732 – ident: atypb21 doi: 10.1137/140957962 – ident: atypb28 doi: 10.1090/S0002-9904-1934-05899-3 – ident: atypb17 doi: 10.1016/0024-3795(94)90396-4 – ident: atypb11 doi: 10.1137/S0895479802418318 |
| SSID | ssj0016491 |
| Score | 2.353649 |
| Snippet | We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the... |
| SourceID | swepub crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 764 |
| SubjectTerms | linearization multiparameter eigenvalue problem nonlinear eigenvalue problem |
| Title | Linearizable Eigenvector Nonlinearities |
| URI | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323340 |
| Volume | 43 |
| WOSCitedRecordID | wos000903762900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1095-7162 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: P5Z dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-7162 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: BENPR dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1095-7162 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: M2O dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK5iDFAlEAhVEYkdx87jgCIe1moa27S3yE6cNVpJqzSrun_P8aWpK4Y0HniJougovnzRybn5Owi9z2OqCI14kEidZmS4DLiIVBAJDP8jESsbGjg_YpMJv7hIj3u9o81ZmNWM1TVfr9PFf4UangHY-ujsP8DdvRQewD2ADleAHa53Ah68S1iSLtaaqeFIk22uTGR-OLGsGKIxJKq-VfoT_Pkth0Q9_KV5-9dDsSEsMYSuXqbbK-6xWuZkLrtSHJ2-l41rlTKaVaITHyvA0Jz2dMfQuuqOs4UopjfiRlijtqmultOq9SMSGHsRCae4UqojdtzXspaMyX1N2FOZzLKY_6nKDRkAjsYR_DKJ6atzGzX2t-r8MJs3l9lVO80IJiQO76E9zGjK-2jvy2hyfNJllZLYdlDczM9kwuFes2g56loY9fN2zB1jZYdK1pgfp4_RI-c3DA4t3k9QT9VP0cNxR7q7fIY--sgPPOQHu8g_R2ffR6dffwSuD0aQ4yRtA1XAvEWJWZlKKZOwBKOLxJKFQuSh4jJS2s0tYEGSptqfpIqGOcm5oipPWEFeoH49r9VLNOBliWMelrSgLAbfWYL5WYCNKEA341DRffRps-AsdyTxulfJLDPOImHZdnP20btOdmGpUW6V-mD3rZP5C2qv7ip4gB5sv7rXqN821-oNup-v2mrZvHWY_waEo2fB |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linearizable+Eigenvector+Nonlinearities&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Claes%2C+Rob&rft.au=Jarlebring%2C+Elias&rft.au=Meerbergen%2C+Karl&rft.au=Upadhyaya%2C+Parikshit&rft.date=2022-01-01&rft.issn=0895-4798&rft.volume=43&rft.issue=2&rft.spage=764&rft_id=info:doi/10.1137%2F21M142931X&rft.externalDocID=oai_DiVA_org_kth_323340 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |