HVAC operation planning for electric bus trips based on chance-constrained programming

Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 258; S. 124807
Hauptverfasser: Bie, Yiming, Liu, Yajun, Li, Shiwu, Wang, Linhong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2022
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be charged at night, it is impossible to keep the HVAC on for all-day trips. This study aims to develop a daily HVAC operation planning model for an EB to maximize the thermal comfort of the passengers under the constraint of battery capacity. Firstly, we developed a cabin temperature estimation model to quantify the thermal comfort of the passengers. Secondly, considering the stochastic volatility of trip energy consumption, the chance-constrained programming based HVAC planning model is established, to determine the optimal HVAC gear of each trip. Finally, a real EB is taken as an example and field operational data collected in three different seasons are used in the case study. Results show that passenger's thermal comfort can be improved in different seasons after applying the proposed optimization method while avoiding the service interruption due to running down of battery power. •A daily HVAC system usage optimization model for an EB is proposed.•Estimation models for cabin temperature and trip energy consumption are developed.•Passenger thermal comfort is maximized considering limited battery capacity.•Real EB operational data in three seasons are used to validate the proposed models.
AbstractList Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be charged at night, it is impossible to keep the HVAC on for all-day trips. This study aims to develop a daily HVAC operation planning model for an EB to maximize the thermal comfort of the passengers under the constraint of battery capacity. Firstly, we developed a cabin temperature estimation model to quantify the thermal comfort of the passengers. Secondly, considering the stochastic volatility of trip energy consumption, the chance-constrained programming based HVAC planning model is established, to determine the optimal HVAC gear of each trip. Finally, a real EB is taken as an example and field operational data collected in three different seasons are used in the case study. Results show that passenger's thermal comfort can be improved in different seasons after applying the proposed optimization method while avoiding the service interruption due to running down of battery power.
Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be charged at night, it is impossible to keep the HVAC on for all-day trips. This study aims to develop a daily HVAC operation planning model for an EB to maximize the thermal comfort of the passengers under the constraint of battery capacity. Firstly, we developed a cabin temperature estimation model to quantify the thermal comfort of the passengers. Secondly, considering the stochastic volatility of trip energy consumption, the chance-constrained programming based HVAC planning model is established, to determine the optimal HVAC gear of each trip. Finally, a real EB is taken as an example and field operational data collected in three different seasons are used in the case study. Results show that passenger's thermal comfort can be improved in different seasons after applying the proposed optimization method while avoiding the service interruption due to running down of battery power. •A daily HVAC system usage optimization model for an EB is proposed.•Estimation models for cabin temperature and trip energy consumption are developed.•Passenger thermal comfort is maximized considering limited battery capacity.•Real EB operational data in three seasons are used to validate the proposed models.
ArticleNumber 124807
Author Wang, Linhong
Bie, Yiming
Li, Shiwu
Liu, Yajun
Author_xml – sequence: 1
  givenname: Yiming
  surname: Bie
  fullname: Bie, Yiming
  email: yimingbie@126.com
– sequence: 2
  givenname: Yajun
  surname: Liu
  fullname: Liu, Yajun
  email: liuyj155044@126.com
– sequence: 3
  givenname: Shiwu
  surname: Li
  fullname: Li, Shiwu
  email: lshiwu@163.com
– sequence: 4
  givenname: Linhong
  surname: Wang
  fullname: Wang, Linhong
  email: wanghonglin0520@126.com
BookMark eNqFkEFPwyAYhjnMxE39Bx44emkFSlvqwWRZ1Jks8aK7Ekq_TpYWKnQm-_cy68mDniDkfV6-71mgmXUWELqmJKWEFrf7FCz43TFlhLGUMi5IOUNzkhUkyTln52gRwp4QkouqmqPtertcYTeAV6NxFg-dstbYHW6dx9CBHr3RuD4EHC9DwLUK0OAY1O_Kaki0s2H0ytj4Oni386rvI36JzlrVBbj6OS_Q2-PD62qdbF6enlfLTaJZUY0JUNqKtlaguCqbrCoFyzgAE41uRJPrklekFbXglDRFWUGhAAqi81pz0JCR7ALdTL3x748DhFH2Jmjo4hbgDkGykgpWxtoqRu-mqPYuBA-t1Gb8Xvo0fycpkSeBci8ngfIkUE4CI8x_wYM3vfLH_7D7CYPo4NOAl0EbiN4a46Na2Tjzd8EXfX-ScA
CitedBy_id crossref_primary_10_3390_futuretransp5030092
crossref_primary_10_1016_j_energy_2024_131400
crossref_primary_10_1016_j_energy_2023_129873
crossref_primary_10_1016_j_tre_2024_103690
crossref_primary_10_1109_TITS_2025_3526844
crossref_primary_10_3390_su17083294
crossref_primary_10_1016_j_energy_2023_127155
crossref_primary_10_3390_su15097375
crossref_primary_10_3390_su16083334
crossref_primary_10_1016_j_energy_2024_130505
crossref_primary_10_1016_j_tre_2023_103362
crossref_primary_10_1016_j_etran_2024_100379
crossref_primary_10_1016_j_tranpol_2025_03_031
crossref_primary_10_1016_j_energy_2023_129769
crossref_primary_10_1016_j_energy_2024_131151
crossref_primary_10_1016_j_energy_2025_135097
crossref_primary_10_1177_09544070241239384
Cites_doi 10.1016/j.apenergy.2019.01.059
10.1016/j.rser.2020.109885
10.1016/j.trd.2021.103009
10.1016/j.apenergy.2018.08.086
10.1016/j.apenergy.2017.06.077
10.1016/j.apenergy.2016.12.033
10.1016/j.energy.2014.01.029
10.1016/j.apenergy.2017.08.181
10.1016/j.applthermaleng.2012.10.028
10.1016/j.enbuild.2019.06.029
10.1016/j.energy.2019.03.084
10.1016/j.energy.2014.12.038
10.1016/j.energy.2020.117080
10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
10.1016/j.media.2018.08.002
10.1016/j.commtr.2022.100069
10.1007/s00010-020-00719-0
10.1016/j.buildenv.2018.08.046
10.1016/j.applthermaleng.2020.116084
10.1016/j.trd.2021.102969
10.1016/j.trc.2013.10.008
10.1016/j.jpowsour.2019.02.073
10.1016/j.applthermaleng.2015.06.002
10.1016/j.energy.2020.118241
10.1016/j.apenergy.2017.11.051
10.1016/j.trc.2020.01.009
10.1016/j.trd.2020.102645
10.1016/j.apenergy.2018.02.049
10.1007/s12273-020-0602-9
10.1016/j.apenergy.2020.115873
10.1016/j.tre.2021.102445
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.124807
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_124807
S0360544222017108
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c269t-e11f8fbaea4a7d3978234ee28dcd8d5c7490f8b8410d679e6aee60c5bc4ece303
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848513300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Mon Sep 29 05:36:49 EDT 2025
Tue Nov 18 22:51:13 EST 2025
Sat Nov 29 07:21:38 EST 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electric bus
Operation planning
Thermal comfort
Chance constrained programming
HAVC system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-e11f8fbaea4a7d3978234ee28dcd8d5c7490f8b8410d679e6aee60c5bc4ece303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718277829
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718277829
crossref_citationtrail_10_1016_j_energy_2022_124807
crossref_primary_10_1016_j_energy_2022_124807
elsevier_sciencedirect_doi_10_1016_j_energy_2022_124807
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Zhang, Sun (bib33) 2021; 98
Wąsowicz (bib40) 2020; 94
Nordelöf, Romare, Tivander (bib1) 2019; 75
Du, Li, Li, Wu, Song, Zou, Ouyang (bib25) 2019; 176
Chen, He, Li, Huang (bib38) 2018; 49
Che, Tso, Sun, Ip, Lee, Chao, Lau (bib13) 2019; 201
Psmarketresearch (bib7) 2020
Saadon Al-Ogaili, Ramasamy, Juhana Tengku Hashim, Al-Masri, Hoon, Neamah Jebur, Verayiah, Marsadek (bib22) 2020; 280
(bib36) 2005
Xie, Liu, Li, Liu, Zhang, Dan, Wu, Wang, Wang (bib21) 2021; 182
Suh, Lee, Kim, Oh, Won (bib27) 2015; 81
(bib42) 2004
Rogge, van der Hurk, Larsen, Sauer (bib24) 2018; 211
xBeckers, Besselink, Nijmeijer (bib2) 2020; 86
Liu, Gao, Liang, Zhao, Li (bib4) 2021; 99
Tian, Qian, Gu, Yang, Liu (bib10) 2015; 89
Yuan, Pan, Yang, Wang, Huang (bib15) 2021; 14
(bib11) 2020
Rupp, Handschuh, Rieke, Kuperjans (bib23) 2019; 237
Gallet, Massier, Hamacher (bib28) 2018; 230
Basma, Mansour, Haddad, Nemer, Stabat (bib30) 2020; 207
Jana, Shaver, García (bib31) 2019; 422
Jazizadeh, Jung (bib14) 2018; 220
Li, Koo, Cha, Hong, Oh (bib16) 2018; 144
Lajunen (bib26) 2014; 38
Li, Koo, Hong, Oh, Cha, Wang (bib12) 2020; 127
He, Yan, Sun, Peng, Li, Jia (bib29) 2018; 227
An (bib3) 2020; 111
Iwamura, Liu (bib41) 1996; 17
Khayyam (bib17) 2013; 51
Meng, Zhou, Zhang, Luo, Gong, Gan (bib34) 2020; 196
Uslu, Kaya (bib5) 2021; 90
Liang (bib6) 2017
Chiu C Tsai, Lin (bib18) 2014; 66
Huang, Khajepour, Ding, Bagheri, Bahrami (bib19) 2017; 188
Bolton (bib37) 1980; 108
Ies-synergy (bib8) 2021
Sustainable-bus (bib9) 2020
Wang, Jiang, Gao, Gao, Wang (bib20) 2017; 207
Zhang, Wang, Qu (bib32) 2021; 154
Fanger (bib35) 1970
Ji, Bie, Zeng, Wang (bib39) 2022; 2
Wang (10.1016/j.energy.2022.124807_bib20) 2017; 207
(10.1016/j.energy.2022.124807_bib42) 2004
Chiu C Tsai (10.1016/j.energy.2022.124807_bib18) 2014; 66
Basma (10.1016/j.energy.2022.124807_bib30) 2020; 207
Ji (10.1016/j.energy.2022.124807_bib39) 2022; 2
Psmarketresearch (10.1016/j.energy.2022.124807_bib7)
Li (10.1016/j.energy.2022.124807_bib16) 2018; 144
Liang (10.1016/j.energy.2022.124807_bib6)
Rupp (10.1016/j.energy.2022.124807_bib23) 2019; 237
Huang (10.1016/j.energy.2022.124807_bib19) 2017; 188
Ies-synergy (10.1016/j.energy.2022.124807_bib8)
Wąsowicz (10.1016/j.energy.2022.124807_bib40) 2020; 94
Che (10.1016/j.energy.2022.124807_bib13) 2019; 201
He (10.1016/j.energy.2022.124807_bib29) 2018; 227
Sustainable-bus (10.1016/j.energy.2022.124807_bib9)
Lajunen (10.1016/j.energy.2022.124807_bib26) 2014; 38
Meng (10.1016/j.energy.2022.124807_bib34) 2020; 196
Jana (10.1016/j.energy.2022.124807_bib31) 2019; 422
Chen (10.1016/j.energy.2022.124807_bib38) 2018; 49
Iwamura (10.1016/j.energy.2022.124807_bib41) 1996; 17
Nordelöf (10.1016/j.energy.2022.124807_bib1) 2019; 75
Liu (10.1016/j.energy.2022.124807_bib4) 2021; 99
Zhang (10.1016/j.energy.2022.124807_bib32) 2021; 154
Khayyam (10.1016/j.energy.2022.124807_bib17) 2013; 51
Gallet (10.1016/j.energy.2022.124807_bib28) 2018; 230
An (10.1016/j.energy.2022.124807_bib3) 2020; 111
Tian (10.1016/j.energy.2022.124807_bib10) 2015; 89
Chen (10.1016/j.energy.2022.124807_bib33) 2021; 98
xBeckers (10.1016/j.energy.2022.124807_bib2) 2020; 86
(10.1016/j.energy.2022.124807_bib11) 2020
Rogge (10.1016/j.energy.2022.124807_bib24) 2018; 211
Yuan (10.1016/j.energy.2022.124807_bib15) 2021; 14
Xie (10.1016/j.energy.2022.124807_bib21) 2021; 182
Du (10.1016/j.energy.2022.124807_bib25) 2019; 176
Li (10.1016/j.energy.2022.124807_bib12) 2020; 127
Saadon Al-Ogaili (10.1016/j.energy.2022.124807_bib22) 2020; 280
Suh (10.1016/j.energy.2022.124807_bib27) 2015; 81
Bolton (10.1016/j.energy.2022.124807_bib37) 1980; 108
Fanger (10.1016/j.energy.2022.124807_bib35) 1970
Jazizadeh (10.1016/j.energy.2022.124807_bib14) 2018; 220
Uslu (10.1016/j.energy.2022.124807_bib5) 2021; 90
(10.1016/j.energy.2022.124807_bib36) 2005
References_xml – volume: 211
  start-page: 282
  year: 2018
  end-page: 295
  ident: bib24
  article-title: Electric bus fleet size and mix problem with optimization of charging infrastructure
  publication-title: Appl Energy
– volume: 81
  start-page: 262
  year: 2015
  end-page: 273
  ident: bib27
  article-title: Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging
  publication-title: Energy
– volume: 99
  year: 2021
  ident: bib4
  article-title: Optimal charging strategy for large-scale electric buses considering resource constraints
  publication-title: Transport Res D-Tr E
– year: 2004
  ident: bib42
  publication-title: ASHRAE 55, thermal environmental conditions for human occupancy
– year: 2020
  ident: bib9
– volume: 280
  year: 2020
  ident: bib22
  article-title: Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study
  publication-title: Appl Energy
– volume: 89
  start-page: 101
  year: 2015
  end-page: 114
  ident: bib10
  article-title: Electric vehicle air conditioning system performance prediction based on artificial neural network
  publication-title: Appl Therm Eng
– volume: 75
  start-page: 211
  year: 2019
  end-page: 222
  ident: bib1
  article-title: Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel
  publication-title: Transport Res C-Emer
– volume: 49
  start-page: 141
  year: 2018
  end-page: 152
  ident: bib38
  article-title: Fast iteratively reweighted least squares algorithms for analysis-based sparse reconstruction
  publication-title: Med Image Anal
– volume: 230
  start-page: 344
  year: 2018
  end-page: 356
  ident: bib28
  article-title: Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks
  publication-title: Appl Energy
– year: 2020
  ident: bib7
– volume: 86
  year: 2020
  ident: bib2
  article-title: Assessing the impact of cornering losses on the energy consumption of electric city buses
  publication-title: Transport Res D-Tr E
– volume: 111
  start-page: 572
  year: 2020
  end-page: 587
  ident: bib3
  article-title: Battery electric bus infrastructure planning under demand uncertainty
  publication-title: Transport Res C-Emer
– year: 2005
  ident: bib36
  publication-title: ISO 7730, Moderate thermal environments-determination of the PMV and PPD indices and specification of the conditions for thermal comfort
– volume: 182
  year: 2021
  ident: bib21
  article-title: An improved intelligent model predictive controller for cooling system of electric vehicle
  publication-title: Appl Therm Eng
– year: 2017
  ident: bib6
– volume: 237
  start-page: 618
  year: 2019
  end-page: 634
  ident: bib23
  article-title: Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: a case study of electric buses in Germany
  publication-title: Appl Energy
– volume: 66
  start-page: 342
  year: 2014
  end-page: 353
  ident: bib18
  article-title: Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)
  publication-title: Energy
– volume: 188
  start-page: 576
  year: 2017
  end-page: 585
  ident: bib19
  article-title: An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems
  publication-title: Appl Energy
– volume: 227
  start-page: 249
  year: 2018
  end-page: 261
  ident: bib29
  article-title: Predictive air-conditioner control for electric buses with passenger amount variation forecast
  publication-title: Appl Energy
– volume: 51
  start-page: 1154
  year: 2013
  end-page: 1161
  ident: bib17
  article-title: Adaptive intelligent control of vehicle air conditioning system
  publication-title: Appl Therm Eng
– year: 2020
  ident: bib11
  publication-title: National engineering laboratory for electric vehicles
– volume: 127
  year: 2020
  ident: bib12
  article-title: A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics
  publication-title: Renew Sustain Energy Rev
– volume: 220
  start-page: 829
  year: 2018
  end-page: 841
  ident: bib14
  article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control
  publication-title: Appl Energy
– volume: 207
  start-page: 594
  year: 2017
  end-page: 603
  ident: bib20
  article-title: Analysis of resorption working pairs for air conditioners of electric vehicles
  publication-title: Appl Energy
– volume: 154
  year: 2021
  ident: bib32
  article-title: Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile
  publication-title: Transport Res E-Log
– year: 2021
  ident: bib8
– year: 1970
  ident: bib35
  article-title: Thermal comfort
– volume: 17
  start-page: 409
  year: 1996
  end-page: 422
  ident: bib41
  article-title: A genetic algorithm for chance constrained programming
  publication-title: J Inf Optim Sci
– volume: 90
  year: 2021
  ident: bib5
  article-title: Location and capacity decisions for electric bus charging stations considering waiting times
  publication-title: Transport Res D-Tr E
– volume: 196
  year: 2020
  ident: bib34
  article-title: Optimization of the thermal environment of a small-scale data center in China
  publication-title: Energy
– volume: 14
  start-page: 75
  year: 2021
  end-page: 87
  ident: bib15
  article-title: Study on the application of reinforcement learning in the operation optimization of HVAC system
  publication-title: Build Simulat
– volume: 38
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib26
  article-title: Energy consumption and cost-benefit analysis of hybrid and electric city buses
  publication-title: Transport Res C-Emer
– volume: 176
  start-page: 309
  year: 2019
  end-page: 319
  ident: bib25
  article-title: Evaluating the technological evolution of battery electric buses: China as a case
  publication-title: Energy
– volume: 94
  start-page: 887
  year: 2020
  end-page: 898
  ident: bib40
  article-title: On a certain adaptive method of approximate integration and its stopping criterion
  publication-title: Aequationes Math
– volume: 144
  start-page: 365
  year: 2018
  end-page: 385
  ident: bib16
  article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms
  publication-title: Build Environ
– volume: 207
  year: 2020
  ident: bib30
  article-title: Comprehensive energy modeling methodology for battery electric buses
  publication-title: Energy
– volume: 422
  start-page: 185
  year: 2019
  end-page: 195
  ident: bib31
  article-title: Physical, on the fly, capacity degradation prediction of LiNiMnCoO2-graphite cells
  publication-title: J Power Sources
– volume: 2
  year: 2022
  ident: bib39
  article-title: Trip energy consumption estimation for electric buses based on multivariate regression modelling
  publication-title: Communications in Transportation Research
– volume: 98
  year: 2021
  ident: bib33
  article-title: Data-driven estimation of energy consumption for electric bus under real-world driving conditions
  publication-title: Transport Res D-Tr E
– volume: 108
  start-page: 1046
  year: 1980
  end-page: 1053
  ident: bib37
  article-title: The computation of equivalent potential temperature
  publication-title: Mon Weather Rev
– volume: 201
  start-page: 202
  year: 2019
  end-page: 215
  ident: bib13
  article-title: Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system
  publication-title: Energy Build
– volume: 17
  start-page: 409
  issue: 2
  year: 1996
  ident: 10.1016/j.energy.2022.124807_bib41
  article-title: A genetic algorithm for chance constrained programming
  publication-title: J Inf Optim Sci
– volume: 237
  start-page: 618
  year: 2019
  ident: 10.1016/j.energy.2022.124807_bib23
  article-title: Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: a case study of electric buses in Germany
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.059
– year: 2004
  ident: 10.1016/j.energy.2022.124807_bib42
– year: 2005
  ident: 10.1016/j.energy.2022.124807_bib36
– volume: 127
  year: 2020
  ident: 10.1016/j.energy.2022.124807_bib12
  article-title: A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109885
– year: 1970
  ident: 10.1016/j.energy.2022.124807_bib35
– volume: 99
  year: 2021
  ident: 10.1016/j.energy.2022.124807_bib4
  article-title: Optimal charging strategy for large-scale electric buses considering resource constraints
  publication-title: Transport Res D-Tr E
  doi: 10.1016/j.trd.2021.103009
– volume: 230
  start-page: 344
  year: 2018
  ident: 10.1016/j.energy.2022.124807_bib28
  article-title: Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.086
– year: 2020
  ident: 10.1016/j.energy.2022.124807_bib11
– volume: 207
  start-page: 594
  year: 2017
  ident: 10.1016/j.energy.2022.124807_bib20
  article-title: Analysis of resorption working pairs for air conditioners of electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.077
– volume: 188
  start-page: 576
  year: 2017
  ident: 10.1016/j.energy.2022.124807_bib19
  article-title: An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.033
– volume: 66
  start-page: 342
  year: 2014
  ident: 10.1016/j.energy.2022.124807_bib18
  article-title: Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.029
– volume: 227
  start-page: 249
  year: 2018
  ident: 10.1016/j.energy.2022.124807_bib29
  article-title: Predictive air-conditioner control for electric buses with passenger amount variation forecast
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.181
– ident: 10.1016/j.energy.2022.124807_bib9
– volume: 75
  start-page: 211
  year: 2019
  ident: 10.1016/j.energy.2022.124807_bib1
  article-title: Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel
  publication-title: Transport Res C-Emer
– volume: 86
  year: 2020
  ident: 10.1016/j.energy.2022.124807_bib2
  article-title: Assessing the impact of cornering losses on the energy consumption of electric city buses
  publication-title: Transport Res D-Tr E
– volume: 51
  start-page: 1154
  issue: 1–2
  year: 2013
  ident: 10.1016/j.energy.2022.124807_bib17
  article-title: Adaptive intelligent control of vehicle air conditioning system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.10.028
– volume: 201
  start-page: 202
  year: 2019
  ident: 10.1016/j.energy.2022.124807_bib13
  article-title: Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.06.029
– ident: 10.1016/j.energy.2022.124807_bib7
– volume: 176
  start-page: 309
  year: 2019
  ident: 10.1016/j.energy.2022.124807_bib25
  article-title: Evaluating the technological evolution of battery electric buses: China as a case
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.084
– volume: 81
  start-page: 262
  year: 2015
  ident: 10.1016/j.energy.2022.124807_bib27
  article-title: Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.038
– ident: 10.1016/j.energy.2022.124807_bib8
– volume: 196
  year: 2020
  ident: 10.1016/j.energy.2022.124807_bib34
  article-title: Optimization of the thermal environment of a small-scale data center in China
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117080
– volume: 108
  start-page: 1046
  issue: 7
  year: 1980
  ident: 10.1016/j.energy.2022.124807_bib37
  article-title: The computation of equivalent potential temperature
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
– volume: 49
  start-page: 141
  year: 2018
  ident: 10.1016/j.energy.2022.124807_bib38
  article-title: Fast iteratively reweighted least squares algorithms for analysis-based sparse reconstruction
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.08.002
– volume: 2
  year: 2022
  ident: 10.1016/j.energy.2022.124807_bib39
  article-title: Trip energy consumption estimation for electric buses based on multivariate regression modelling
  publication-title: Communications in Transportation Research
  doi: 10.1016/j.commtr.2022.100069
– volume: 94
  start-page: 887
  issue: 5
  year: 2020
  ident: 10.1016/j.energy.2022.124807_bib40
  article-title: On a certain adaptive method of approximate integration and its stopping criterion
  publication-title: Aequationes Math
  doi: 10.1007/s00010-020-00719-0
– volume: 144
  start-page: 365
  year: 2018
  ident: 10.1016/j.energy.2022.124807_bib16
  article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2018.08.046
– volume: 182
  year: 2021
  ident: 10.1016/j.energy.2022.124807_bib21
  article-title: An improved intelligent model predictive controller for cooling system of electric vehicle
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.116084
– volume: 98
  year: 2021
  ident: 10.1016/j.energy.2022.124807_bib33
  article-title: Data-driven estimation of energy consumption for electric bus under real-world driving conditions
  publication-title: Transport Res D-Tr E
  doi: 10.1016/j.trd.2021.102969
– volume: 38
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2022.124807_bib26
  article-title: Energy consumption and cost-benefit analysis of hybrid and electric city buses
  publication-title: Transport Res C-Emer
  doi: 10.1016/j.trc.2013.10.008
– ident: 10.1016/j.energy.2022.124807_bib6
– volume: 422
  start-page: 185
  year: 2019
  ident: 10.1016/j.energy.2022.124807_bib31
  article-title: Physical, on the fly, capacity degradation prediction of LiNiMnCoO2-graphite cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.02.073
– volume: 89
  start-page: 101
  year: 2015
  ident: 10.1016/j.energy.2022.124807_bib10
  article-title: Electric vehicle air conditioning system performance prediction based on artificial neural network
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.06.002
– volume: 207
  year: 2020
  ident: 10.1016/j.energy.2022.124807_bib30
  article-title: Comprehensive energy modeling methodology for battery electric buses
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118241
– volume: 211
  start-page: 282
  year: 2018
  ident: 10.1016/j.energy.2022.124807_bib24
  article-title: Electric bus fleet size and mix problem with optimization of charging infrastructure
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.051
– volume: 111
  start-page: 572
  year: 2020
  ident: 10.1016/j.energy.2022.124807_bib3
  article-title: Battery electric bus infrastructure planning under demand uncertainty
  publication-title: Transport Res C-Emer
  doi: 10.1016/j.trc.2020.01.009
– volume: 90
  year: 2021
  ident: 10.1016/j.energy.2022.124807_bib5
  article-title: Location and capacity decisions for electric bus charging stations considering waiting times
  publication-title: Transport Res D-Tr E
  doi: 10.1016/j.trd.2020.102645
– volume: 220
  start-page: 829
  year: 2018
  ident: 10.1016/j.energy.2022.124807_bib14
  article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.049
– volume: 14
  start-page: 75
  year: 2021
  ident: 10.1016/j.energy.2022.124807_bib15
  article-title: Study on the application of reinforcement learning in the operation optimization of HVAC system
  publication-title: Build Simulat
  doi: 10.1007/s12273-020-0602-9
– volume: 280
  year: 2020
  ident: 10.1016/j.energy.2022.124807_bib22
  article-title: Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115873
– volume: 154
  year: 2021
  ident: 10.1016/j.energy.2022.124807_bib32
  article-title: Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile
  publication-title: Transport Res E-Log
  doi: 10.1016/j.tre.2021.102445
SSID ssj0005899
Score 2.4902768
Snippet Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124807
SubjectTerms batteries
case studies
Chance constrained programming
Electric bus
energy
HAVC system
heat
Operation planning
system optimization
temperature
Thermal comfort
Title HVAC operation planning for electric bus trips based on chance-constrained programming
URI https://dx.doi.org/10.1016/j.energy.2022.124807
https://www.proquest.com/docview/2718277829
Volume 258
WOSCitedRecordID wos000848513300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQ4IXBIOJjQ8ZibfKVZK6sfNYpqKB0ITEmMpT5NiOlmqk0dKw_vmcvxK2CsYeeIkiy3ac3C935_N9IPSuVNSkgElIWqqC0AmLiQDBQQoG0lCa_CvCBgp_ZicnfLHIvniDfmvLCbC65ptN1vxXUkMbENuEzt6B3P2k0AD3QHS4Atnh-k-EPz6bHY1WjfakbXxVIpfb2xa9qaSpPTmCm6YdGTGmzJGBCQGWmkijMJq6EVoF560fQbwFC76LFzSJSjfON763Jrx3xx3fq36McfapOtsolt3gAGS9CL6eV1fdYNN3fAe2x-crP9rbI2ArG_f2iBCHFZEppdd4bOLys3suCToFd7Vutxi4syUsx9q-ydg8YDx0v54v-4Yc670Lg-PaMnez5GaW3M1yH-0mbJoBC9-dfZwvPg3uQNzWGu1XH8IsrS_g9mr-pMbcEOhWSzl9gh777QWeOVg8Rfd0vYcehujzdg_tz4fIRujoWXv7DJ0Z3OAeNzjgBgOFccANBtxgixtscYOh4zZu8G-4eY6-fZifHh0TX3SDyCTN1kTHccnLQmhBBVOgrfJkQrVOuJKKq6lkNItKXnAaRyplmU6F1mkkp4WkWmpQiPbRTr2q9QuEdTKZFiyKRRkLygpRcFDvRSoyHXMmInWAJuEb5tJnpDcLvcj_RsEDRPpRjcvIckt_FsiTe63SaYs5YO6WkW8DNXNguuYkTdR61bV5AhpdwuDTZId3XM1L9Gj4aV6hnfVlp1-jB_Lnumov33hQ_gJMdKce
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HVAC+operation+planning+for+electric+bus+trips+based+on+chance-constrained+programming&rft.jtitle=Energy+%28Oxford%29&rft.au=Bie%2C+Yiming&rft.au=Liu%2C+Yajun&rft.au=Li%2C+Shiwu&rft.au=Wang%2C+Linhong&rft.date=2022-11-01&rft.issn=0360-5442&rft.volume=258&rft.spage=124807&rft_id=info:doi/10.1016%2Fj.energy.2022.124807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_124807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon