HVAC operation planning for electric bus trips based on chance-constrained programming
Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be char...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 258; S. 124807 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2022
|
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be charged at night, it is impossible to keep the HVAC on for all-day trips. This study aims to develop a daily HVAC operation planning model for an EB to maximize the thermal comfort of the passengers under the constraint of battery capacity. Firstly, we developed a cabin temperature estimation model to quantify the thermal comfort of the passengers. Secondly, considering the stochastic volatility of trip energy consumption, the chance-constrained programming based HVAC planning model is established, to determine the optimal HVAC gear of each trip. Finally, a real EB is taken as an example and field operational data collected in three different seasons are used in the case study. Results show that passenger's thermal comfort can be improved in different seasons after applying the proposed optimization method while avoiding the service interruption due to running down of battery power.
•A daily HVAC system usage optimization model for an EB is proposed.•Estimation models for cabin temperature and trip energy consumption are developed.•Passenger thermal comfort is maximized considering limited battery capacity.•Real EB operational data in three seasons are used to validate the proposed models. |
|---|---|
| AbstractList | Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be charged at night, it is impossible to keep the HVAC on for all-day trips. This study aims to develop a daily HVAC operation planning model for an EB to maximize the thermal comfort of the passengers under the constraint of battery capacity. Firstly, we developed a cabin temperature estimation model to quantify the thermal comfort of the passengers. Secondly, considering the stochastic volatility of trip energy consumption, the chance-constrained programming based HVAC planning model is established, to determine the optimal HVAC gear of each trip. Finally, a real EB is taken as an example and field operational data collected in three different seasons are used in the case study. Results show that passenger's thermal comfort can be improved in different seasons after applying the proposed optimization method while avoiding the service interruption due to running down of battery power. Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus (EB). However, it will also increase the consumption of the battery power. For an EB with limited battery capacity and that can only be charged at night, it is impossible to keep the HVAC on for all-day trips. This study aims to develop a daily HVAC operation planning model for an EB to maximize the thermal comfort of the passengers under the constraint of battery capacity. Firstly, we developed a cabin temperature estimation model to quantify the thermal comfort of the passengers. Secondly, considering the stochastic volatility of trip energy consumption, the chance-constrained programming based HVAC planning model is established, to determine the optimal HVAC gear of each trip. Finally, a real EB is taken as an example and field operational data collected in three different seasons are used in the case study. Results show that passenger's thermal comfort can be improved in different seasons after applying the proposed optimization method while avoiding the service interruption due to running down of battery power. •A daily HVAC system usage optimization model for an EB is proposed.•Estimation models for cabin temperature and trip energy consumption are developed.•Passenger thermal comfort is maximized considering limited battery capacity.•Real EB operational data in three seasons are used to validate the proposed models. |
| ArticleNumber | 124807 |
| Author | Wang, Linhong Bie, Yiming Li, Shiwu Liu, Yajun |
| Author_xml | – sequence: 1 givenname: Yiming surname: Bie fullname: Bie, Yiming email: yimingbie@126.com – sequence: 2 givenname: Yajun surname: Liu fullname: Liu, Yajun email: liuyj155044@126.com – sequence: 3 givenname: Shiwu surname: Li fullname: Li, Shiwu email: lshiwu@163.com – sequence: 4 givenname: Linhong surname: Wang fullname: Wang, Linhong email: wanghonglin0520@126.com |
| BookMark | eNqFkEFPwyAYhjnMxE39Bx44emkFSlvqwWRZ1Jks8aK7Ekq_TpYWKnQm-_cy68mDniDkfV6-71mgmXUWELqmJKWEFrf7FCz43TFlhLGUMi5IOUNzkhUkyTln52gRwp4QkouqmqPtertcYTeAV6NxFg-dstbYHW6dx9CBHr3RuD4EHC9DwLUK0OAY1O_Kaki0s2H0ytj4Oni386rvI36JzlrVBbj6OS_Q2-PD62qdbF6enlfLTaJZUY0JUNqKtlaguCqbrCoFyzgAE41uRJPrklekFbXglDRFWUGhAAqi81pz0JCR7ALdTL3x748DhFH2Jmjo4hbgDkGykgpWxtoqRu-mqPYuBA-t1Gb8Xvo0fycpkSeBci8ngfIkUE4CI8x_wYM3vfLH_7D7CYPo4NOAl0EbiN4a46Na2Tjzd8EXfX-ScA |
| CitedBy_id | crossref_primary_10_3390_futuretransp5030092 crossref_primary_10_1016_j_energy_2024_131400 crossref_primary_10_1016_j_energy_2023_129873 crossref_primary_10_1016_j_tre_2024_103690 crossref_primary_10_1109_TITS_2025_3526844 crossref_primary_10_3390_su17083294 crossref_primary_10_1016_j_energy_2023_127155 crossref_primary_10_3390_su15097375 crossref_primary_10_3390_su16083334 crossref_primary_10_1016_j_energy_2024_130505 crossref_primary_10_1016_j_tre_2023_103362 crossref_primary_10_1016_j_etran_2024_100379 crossref_primary_10_1016_j_tranpol_2025_03_031 crossref_primary_10_1016_j_energy_2023_129769 crossref_primary_10_1016_j_energy_2024_131151 crossref_primary_10_1016_j_energy_2025_135097 crossref_primary_10_1177_09544070241239384 |
| Cites_doi | 10.1016/j.apenergy.2019.01.059 10.1016/j.rser.2020.109885 10.1016/j.trd.2021.103009 10.1016/j.apenergy.2018.08.086 10.1016/j.apenergy.2017.06.077 10.1016/j.apenergy.2016.12.033 10.1016/j.energy.2014.01.029 10.1016/j.apenergy.2017.08.181 10.1016/j.applthermaleng.2012.10.028 10.1016/j.enbuild.2019.06.029 10.1016/j.energy.2019.03.084 10.1016/j.energy.2014.12.038 10.1016/j.energy.2020.117080 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2 10.1016/j.media.2018.08.002 10.1016/j.commtr.2022.100069 10.1007/s00010-020-00719-0 10.1016/j.buildenv.2018.08.046 10.1016/j.applthermaleng.2020.116084 10.1016/j.trd.2021.102969 10.1016/j.trc.2013.10.008 10.1016/j.jpowsour.2019.02.073 10.1016/j.applthermaleng.2015.06.002 10.1016/j.energy.2020.118241 10.1016/j.apenergy.2017.11.051 10.1016/j.trc.2020.01.009 10.1016/j.trd.2020.102645 10.1016/j.apenergy.2018.02.049 10.1007/s12273-020-0602-9 10.1016/j.apenergy.2020.115873 10.1016/j.tre.2021.102445 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.124807 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2022_124807 S0360544222017108 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c269t-e11f8fbaea4a7d3978234ee28dcd8d5c7490f8b8410d679e6aee60c5bc4ece303 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848513300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Mon Sep 29 05:36:49 EDT 2025 Tue Nov 18 22:51:13 EST 2025 Sat Nov 29 07:21:38 EST 2025 Fri Feb 23 02:37:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electric bus Operation planning Thermal comfort Chance constrained programming HAVC system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-e11f8fbaea4a7d3978234ee28dcd8d5c7490f8b8410d679e6aee60c5bc4ece303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2718277829 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718277829 crossref_citationtrail_10_1016_j_energy_2022_124807 crossref_primary_10_1016_j_energy_2022_124807 elsevier_sciencedirect_doi_10_1016_j_energy_2022_124807 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Zhang, Sun (bib33) 2021; 98 Wąsowicz (bib40) 2020; 94 Nordelöf, Romare, Tivander (bib1) 2019; 75 Du, Li, Li, Wu, Song, Zou, Ouyang (bib25) 2019; 176 Chen, He, Li, Huang (bib38) 2018; 49 Che, Tso, Sun, Ip, Lee, Chao, Lau (bib13) 2019; 201 Psmarketresearch (bib7) 2020 Saadon Al-Ogaili, Ramasamy, Juhana Tengku Hashim, Al-Masri, Hoon, Neamah Jebur, Verayiah, Marsadek (bib22) 2020; 280 (bib36) 2005 Xie, Liu, Li, Liu, Zhang, Dan, Wu, Wang, Wang (bib21) 2021; 182 Suh, Lee, Kim, Oh, Won (bib27) 2015; 81 (bib42) 2004 Rogge, van der Hurk, Larsen, Sauer (bib24) 2018; 211 xBeckers, Besselink, Nijmeijer (bib2) 2020; 86 Liu, Gao, Liang, Zhao, Li (bib4) 2021; 99 Tian, Qian, Gu, Yang, Liu (bib10) 2015; 89 Yuan, Pan, Yang, Wang, Huang (bib15) 2021; 14 (bib11) 2020 Rupp, Handschuh, Rieke, Kuperjans (bib23) 2019; 237 Gallet, Massier, Hamacher (bib28) 2018; 230 Basma, Mansour, Haddad, Nemer, Stabat (bib30) 2020; 207 Jana, Shaver, García (bib31) 2019; 422 Jazizadeh, Jung (bib14) 2018; 220 Li, Koo, Cha, Hong, Oh (bib16) 2018; 144 Lajunen (bib26) 2014; 38 Li, Koo, Hong, Oh, Cha, Wang (bib12) 2020; 127 He, Yan, Sun, Peng, Li, Jia (bib29) 2018; 227 An (bib3) 2020; 111 Iwamura, Liu (bib41) 1996; 17 Khayyam (bib17) 2013; 51 Meng, Zhou, Zhang, Luo, Gong, Gan (bib34) 2020; 196 Uslu, Kaya (bib5) 2021; 90 Liang (bib6) 2017 Chiu C Tsai, Lin (bib18) 2014; 66 Huang, Khajepour, Ding, Bagheri, Bahrami (bib19) 2017; 188 Bolton (bib37) 1980; 108 Ies-synergy (bib8) 2021 Sustainable-bus (bib9) 2020 Wang, Jiang, Gao, Gao, Wang (bib20) 2017; 207 Zhang, Wang, Qu (bib32) 2021; 154 Fanger (bib35) 1970 Ji, Bie, Zeng, Wang (bib39) 2022; 2 Wang (10.1016/j.energy.2022.124807_bib20) 2017; 207 (10.1016/j.energy.2022.124807_bib42) 2004 Chiu C Tsai (10.1016/j.energy.2022.124807_bib18) 2014; 66 Basma (10.1016/j.energy.2022.124807_bib30) 2020; 207 Ji (10.1016/j.energy.2022.124807_bib39) 2022; 2 Psmarketresearch (10.1016/j.energy.2022.124807_bib7) Li (10.1016/j.energy.2022.124807_bib16) 2018; 144 Liang (10.1016/j.energy.2022.124807_bib6) Rupp (10.1016/j.energy.2022.124807_bib23) 2019; 237 Huang (10.1016/j.energy.2022.124807_bib19) 2017; 188 Ies-synergy (10.1016/j.energy.2022.124807_bib8) Wąsowicz (10.1016/j.energy.2022.124807_bib40) 2020; 94 Che (10.1016/j.energy.2022.124807_bib13) 2019; 201 He (10.1016/j.energy.2022.124807_bib29) 2018; 227 Sustainable-bus (10.1016/j.energy.2022.124807_bib9) Lajunen (10.1016/j.energy.2022.124807_bib26) 2014; 38 Meng (10.1016/j.energy.2022.124807_bib34) 2020; 196 Jana (10.1016/j.energy.2022.124807_bib31) 2019; 422 Chen (10.1016/j.energy.2022.124807_bib38) 2018; 49 Iwamura (10.1016/j.energy.2022.124807_bib41) 1996; 17 Nordelöf (10.1016/j.energy.2022.124807_bib1) 2019; 75 Liu (10.1016/j.energy.2022.124807_bib4) 2021; 99 Zhang (10.1016/j.energy.2022.124807_bib32) 2021; 154 Khayyam (10.1016/j.energy.2022.124807_bib17) 2013; 51 Gallet (10.1016/j.energy.2022.124807_bib28) 2018; 230 An (10.1016/j.energy.2022.124807_bib3) 2020; 111 Tian (10.1016/j.energy.2022.124807_bib10) 2015; 89 Chen (10.1016/j.energy.2022.124807_bib33) 2021; 98 xBeckers (10.1016/j.energy.2022.124807_bib2) 2020; 86 (10.1016/j.energy.2022.124807_bib11) 2020 Rogge (10.1016/j.energy.2022.124807_bib24) 2018; 211 Yuan (10.1016/j.energy.2022.124807_bib15) 2021; 14 Xie (10.1016/j.energy.2022.124807_bib21) 2021; 182 Du (10.1016/j.energy.2022.124807_bib25) 2019; 176 Li (10.1016/j.energy.2022.124807_bib12) 2020; 127 Saadon Al-Ogaili (10.1016/j.energy.2022.124807_bib22) 2020; 280 Suh (10.1016/j.energy.2022.124807_bib27) 2015; 81 Bolton (10.1016/j.energy.2022.124807_bib37) 1980; 108 Fanger (10.1016/j.energy.2022.124807_bib35) 1970 Jazizadeh (10.1016/j.energy.2022.124807_bib14) 2018; 220 Uslu (10.1016/j.energy.2022.124807_bib5) 2021; 90 (10.1016/j.energy.2022.124807_bib36) 2005 |
| References_xml | – volume: 211 start-page: 282 year: 2018 end-page: 295 ident: bib24 article-title: Electric bus fleet size and mix problem with optimization of charging infrastructure publication-title: Appl Energy – volume: 81 start-page: 262 year: 2015 end-page: 273 ident: bib27 article-title: Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging publication-title: Energy – volume: 99 year: 2021 ident: bib4 article-title: Optimal charging strategy for large-scale electric buses considering resource constraints publication-title: Transport Res D-Tr E – year: 2004 ident: bib42 publication-title: ASHRAE 55, thermal environmental conditions for human occupancy – year: 2020 ident: bib9 – volume: 280 year: 2020 ident: bib22 article-title: Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study publication-title: Appl Energy – volume: 89 start-page: 101 year: 2015 end-page: 114 ident: bib10 article-title: Electric vehicle air conditioning system performance prediction based on artificial neural network publication-title: Appl Therm Eng – volume: 75 start-page: 211 year: 2019 end-page: 222 ident: bib1 article-title: Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel publication-title: Transport Res C-Emer – volume: 49 start-page: 141 year: 2018 end-page: 152 ident: bib38 article-title: Fast iteratively reweighted least squares algorithms for analysis-based sparse reconstruction publication-title: Med Image Anal – volume: 230 start-page: 344 year: 2018 end-page: 356 ident: bib28 article-title: Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks publication-title: Appl Energy – year: 2020 ident: bib7 – volume: 86 year: 2020 ident: bib2 article-title: Assessing the impact of cornering losses on the energy consumption of electric city buses publication-title: Transport Res D-Tr E – volume: 111 start-page: 572 year: 2020 end-page: 587 ident: bib3 article-title: Battery electric bus infrastructure planning under demand uncertainty publication-title: Transport Res C-Emer – year: 2005 ident: bib36 publication-title: ISO 7730, Moderate thermal environments-determination of the PMV and PPD indices and specification of the conditions for thermal comfort – volume: 182 year: 2021 ident: bib21 article-title: An improved intelligent model predictive controller for cooling system of electric vehicle publication-title: Appl Therm Eng – year: 2017 ident: bib6 – volume: 237 start-page: 618 year: 2019 end-page: 634 ident: bib23 article-title: Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: a case study of electric buses in Germany publication-title: Appl Energy – volume: 66 start-page: 342 year: 2014 end-page: 353 ident: bib18 article-title: Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles) publication-title: Energy – volume: 188 start-page: 576 year: 2017 end-page: 585 ident: bib19 article-title: An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems publication-title: Appl Energy – volume: 227 start-page: 249 year: 2018 end-page: 261 ident: bib29 article-title: Predictive air-conditioner control for electric buses with passenger amount variation forecast publication-title: Appl Energy – volume: 51 start-page: 1154 year: 2013 end-page: 1161 ident: bib17 article-title: Adaptive intelligent control of vehicle air conditioning system publication-title: Appl Therm Eng – year: 2020 ident: bib11 publication-title: National engineering laboratory for electric vehicles – volume: 127 year: 2020 ident: bib12 article-title: A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics publication-title: Renew Sustain Energy Rev – volume: 220 start-page: 829 year: 2018 end-page: 841 ident: bib14 article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control publication-title: Appl Energy – volume: 207 start-page: 594 year: 2017 end-page: 603 ident: bib20 article-title: Analysis of resorption working pairs for air conditioners of electric vehicles publication-title: Appl Energy – volume: 154 year: 2021 ident: bib32 article-title: Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile publication-title: Transport Res E-Log – year: 2021 ident: bib8 – year: 1970 ident: bib35 article-title: Thermal comfort – volume: 17 start-page: 409 year: 1996 end-page: 422 ident: bib41 article-title: A genetic algorithm for chance constrained programming publication-title: J Inf Optim Sci – volume: 90 year: 2021 ident: bib5 article-title: Location and capacity decisions for electric bus charging stations considering waiting times publication-title: Transport Res D-Tr E – volume: 196 year: 2020 ident: bib34 article-title: Optimization of the thermal environment of a small-scale data center in China publication-title: Energy – volume: 14 start-page: 75 year: 2021 end-page: 87 ident: bib15 article-title: Study on the application of reinforcement learning in the operation optimization of HVAC system publication-title: Build Simulat – volume: 38 start-page: 1 year: 2014 end-page: 15 ident: bib26 article-title: Energy consumption and cost-benefit analysis of hybrid and electric city buses publication-title: Transport Res C-Emer – volume: 176 start-page: 309 year: 2019 end-page: 319 ident: bib25 article-title: Evaluating the technological evolution of battery electric buses: China as a case publication-title: Energy – volume: 94 start-page: 887 year: 2020 end-page: 898 ident: bib40 article-title: On a certain adaptive method of approximate integration and its stopping criterion publication-title: Aequationes Math – volume: 144 start-page: 365 year: 2018 end-page: 385 ident: bib16 article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms publication-title: Build Environ – volume: 207 year: 2020 ident: bib30 article-title: Comprehensive energy modeling methodology for battery electric buses publication-title: Energy – volume: 422 start-page: 185 year: 2019 end-page: 195 ident: bib31 article-title: Physical, on the fly, capacity degradation prediction of LiNiMnCoO2-graphite cells publication-title: J Power Sources – volume: 2 year: 2022 ident: bib39 article-title: Trip energy consumption estimation for electric buses based on multivariate regression modelling publication-title: Communications in Transportation Research – volume: 98 year: 2021 ident: bib33 article-title: Data-driven estimation of energy consumption for electric bus under real-world driving conditions publication-title: Transport Res D-Tr E – volume: 108 start-page: 1046 year: 1980 end-page: 1053 ident: bib37 article-title: The computation of equivalent potential temperature publication-title: Mon Weather Rev – volume: 201 start-page: 202 year: 2019 end-page: 215 ident: bib13 article-title: Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system publication-title: Energy Build – volume: 17 start-page: 409 issue: 2 year: 1996 ident: 10.1016/j.energy.2022.124807_bib41 article-title: A genetic algorithm for chance constrained programming publication-title: J Inf Optim Sci – volume: 237 start-page: 618 year: 2019 ident: 10.1016/j.energy.2022.124807_bib23 article-title: Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: a case study of electric buses in Germany publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.059 – year: 2004 ident: 10.1016/j.energy.2022.124807_bib42 – year: 2005 ident: 10.1016/j.energy.2022.124807_bib36 – volume: 127 year: 2020 ident: 10.1016/j.energy.2022.124807_bib12 article-title: A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109885 – year: 1970 ident: 10.1016/j.energy.2022.124807_bib35 – volume: 99 year: 2021 ident: 10.1016/j.energy.2022.124807_bib4 article-title: Optimal charging strategy for large-scale electric buses considering resource constraints publication-title: Transport Res D-Tr E doi: 10.1016/j.trd.2021.103009 – volume: 230 start-page: 344 year: 2018 ident: 10.1016/j.energy.2022.124807_bib28 article-title: Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.086 – year: 2020 ident: 10.1016/j.energy.2022.124807_bib11 – volume: 207 start-page: 594 year: 2017 ident: 10.1016/j.energy.2022.124807_bib20 article-title: Analysis of resorption working pairs for air conditioners of electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.077 – volume: 188 start-page: 576 year: 2017 ident: 10.1016/j.energy.2022.124807_bib19 article-title: An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.033 – volume: 66 start-page: 342 year: 2014 ident: 10.1016/j.energy.2022.124807_bib18 article-title: Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles) publication-title: Energy doi: 10.1016/j.energy.2014.01.029 – volume: 227 start-page: 249 year: 2018 ident: 10.1016/j.energy.2022.124807_bib29 article-title: Predictive air-conditioner control for electric buses with passenger amount variation forecast publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.181 – ident: 10.1016/j.energy.2022.124807_bib9 – volume: 75 start-page: 211 year: 2019 ident: 10.1016/j.energy.2022.124807_bib1 article-title: Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel publication-title: Transport Res C-Emer – volume: 86 year: 2020 ident: 10.1016/j.energy.2022.124807_bib2 article-title: Assessing the impact of cornering losses on the energy consumption of electric city buses publication-title: Transport Res D-Tr E – volume: 51 start-page: 1154 issue: 1–2 year: 2013 ident: 10.1016/j.energy.2022.124807_bib17 article-title: Adaptive intelligent control of vehicle air conditioning system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.10.028 – volume: 201 start-page: 202 year: 2019 ident: 10.1016/j.energy.2022.124807_bib13 article-title: Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system publication-title: Energy Build doi: 10.1016/j.enbuild.2019.06.029 – ident: 10.1016/j.energy.2022.124807_bib7 – volume: 176 start-page: 309 year: 2019 ident: 10.1016/j.energy.2022.124807_bib25 article-title: Evaluating the technological evolution of battery electric buses: China as a case publication-title: Energy doi: 10.1016/j.energy.2019.03.084 – volume: 81 start-page: 262 year: 2015 ident: 10.1016/j.energy.2022.124807_bib27 article-title: Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging publication-title: Energy doi: 10.1016/j.energy.2014.12.038 – ident: 10.1016/j.energy.2022.124807_bib8 – volume: 196 year: 2020 ident: 10.1016/j.energy.2022.124807_bib34 article-title: Optimization of the thermal environment of a small-scale data center in China publication-title: Energy doi: 10.1016/j.energy.2020.117080 – volume: 108 start-page: 1046 issue: 7 year: 1980 ident: 10.1016/j.energy.2022.124807_bib37 article-title: The computation of equivalent potential temperature publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2 – volume: 49 start-page: 141 year: 2018 ident: 10.1016/j.energy.2022.124807_bib38 article-title: Fast iteratively reweighted least squares algorithms for analysis-based sparse reconstruction publication-title: Med Image Anal doi: 10.1016/j.media.2018.08.002 – volume: 2 year: 2022 ident: 10.1016/j.energy.2022.124807_bib39 article-title: Trip energy consumption estimation for electric buses based on multivariate regression modelling publication-title: Communications in Transportation Research doi: 10.1016/j.commtr.2022.100069 – volume: 94 start-page: 887 issue: 5 year: 2020 ident: 10.1016/j.energy.2022.124807_bib40 article-title: On a certain adaptive method of approximate integration and its stopping criterion publication-title: Aequationes Math doi: 10.1007/s00010-020-00719-0 – volume: 144 start-page: 365 year: 2018 ident: 10.1016/j.energy.2022.124807_bib16 article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms publication-title: Build Environ doi: 10.1016/j.buildenv.2018.08.046 – volume: 182 year: 2021 ident: 10.1016/j.energy.2022.124807_bib21 article-title: An improved intelligent model predictive controller for cooling system of electric vehicle publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.116084 – volume: 98 year: 2021 ident: 10.1016/j.energy.2022.124807_bib33 article-title: Data-driven estimation of energy consumption for electric bus under real-world driving conditions publication-title: Transport Res D-Tr E doi: 10.1016/j.trd.2021.102969 – volume: 38 start-page: 1 year: 2014 ident: 10.1016/j.energy.2022.124807_bib26 article-title: Energy consumption and cost-benefit analysis of hybrid and electric city buses publication-title: Transport Res C-Emer doi: 10.1016/j.trc.2013.10.008 – ident: 10.1016/j.energy.2022.124807_bib6 – volume: 422 start-page: 185 year: 2019 ident: 10.1016/j.energy.2022.124807_bib31 article-title: Physical, on the fly, capacity degradation prediction of LiNiMnCoO2-graphite cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.02.073 – volume: 89 start-page: 101 year: 2015 ident: 10.1016/j.energy.2022.124807_bib10 article-title: Electric vehicle air conditioning system performance prediction based on artificial neural network publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.06.002 – volume: 207 year: 2020 ident: 10.1016/j.energy.2022.124807_bib30 article-title: Comprehensive energy modeling methodology for battery electric buses publication-title: Energy doi: 10.1016/j.energy.2020.118241 – volume: 211 start-page: 282 year: 2018 ident: 10.1016/j.energy.2022.124807_bib24 article-title: Electric bus fleet size and mix problem with optimization of charging infrastructure publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.11.051 – volume: 111 start-page: 572 year: 2020 ident: 10.1016/j.energy.2022.124807_bib3 article-title: Battery electric bus infrastructure planning under demand uncertainty publication-title: Transport Res C-Emer doi: 10.1016/j.trc.2020.01.009 – volume: 90 year: 2021 ident: 10.1016/j.energy.2022.124807_bib5 article-title: Location and capacity decisions for electric bus charging stations considering waiting times publication-title: Transport Res D-Tr E doi: 10.1016/j.trd.2020.102645 – volume: 220 start-page: 829 year: 2018 ident: 10.1016/j.energy.2022.124807_bib14 article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.049 – volume: 14 start-page: 75 year: 2021 ident: 10.1016/j.energy.2022.124807_bib15 article-title: Study on the application of reinforcement learning in the operation optimization of HVAC system publication-title: Build Simulat doi: 10.1007/s12273-020-0602-9 – volume: 280 year: 2020 ident: 10.1016/j.energy.2022.124807_bib22 article-title: Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115873 – volume: 154 year: 2021 ident: 10.1016/j.energy.2022.124807_bib32 article-title: Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile publication-title: Transport Res E-Log doi: 10.1016/j.tre.2021.102445 |
| SSID | ssj0005899 |
| Score | 2.4902768 |
| Snippet | Turning on the heating, ventilation and air-conditioning (HVAC) system is one effective measure to improve the thermal comfort of passengers in an electric bus... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124807 |
| SubjectTerms | batteries case studies Chance constrained programming Electric bus energy HAVC system heat Operation planning system optimization temperature Thermal comfort |
| Title | HVAC operation planning for electric bus trips based on chance-constrained programming |
| URI | https://dx.doi.org/10.1016/j.energy.2022.124807 https://www.proquest.com/docview/2718277829 |
| Volume | 258 |
| WOSCitedRecordID | wos000848513300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQ4IXBIOJjQ8ZibfKVZK6sfNYpqKB0ITEmMpT5NiOlmqk0dKw_vmcvxK2CsYeeIkiy3ac3C935_N9IPSuVNSkgElIWqqC0AmLiQDBQQoG0lCa_CvCBgp_ZicnfLHIvniDfmvLCbC65ptN1vxXUkMbENuEzt6B3P2k0AD3QHS4Atnh-k-EPz6bHY1WjfakbXxVIpfb2xa9qaSpPTmCm6YdGTGmzJGBCQGWmkijMJq6EVoF560fQbwFC76LFzSJSjfON763Jrx3xx3fq36McfapOtsolt3gAGS9CL6eV1fdYNN3fAe2x-crP9rbI2ArG_f2iBCHFZEppdd4bOLys3suCToFd7Vutxi4syUsx9q-ydg8YDx0v54v-4Yc670Lg-PaMnez5GaW3M1yH-0mbJoBC9-dfZwvPg3uQNzWGu1XH8IsrS_g9mr-pMbcEOhWSzl9gh777QWeOVg8Rfd0vYcehujzdg_tz4fIRujoWXv7DJ0Z3OAeNzjgBgOFccANBtxgixtscYOh4zZu8G-4eY6-fZifHh0TX3SDyCTN1kTHccnLQmhBBVOgrfJkQrVOuJKKq6lkNItKXnAaRyplmU6F1mkkp4WkWmpQiPbRTr2q9QuEdTKZFiyKRRkLygpRcFDvRSoyHXMmInWAJuEb5tJnpDcLvcj_RsEDRPpRjcvIckt_FsiTe63SaYs5YO6WkW8DNXNguuYkTdR61bV5AhpdwuDTZId3XM1L9Gj4aV6hnfVlp1-jB_Lnumov33hQ_gJMdKce |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HVAC+operation+planning+for+electric+bus+trips+based+on+chance-constrained+programming&rft.jtitle=Energy+%28Oxford%29&rft.au=Bie%2C+Yiming&rft.au=Liu%2C+Yajun&rft.au=Li%2C+Shiwu&rft.au=Wang%2C+Linhong&rft.date=2022-11-01&rft.issn=0360-5442&rft.volume=258&rft.spage=124807&rft_id=info:doi/10.1016%2Fj.energy.2022.124807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_124807 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |