Evaluating the impact of data preprocessing to develop a robust MEP-based forecasting model for building integrated with PCM

Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated bui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 324; S. 135763
Hauptverfasser: Nazir, Kashif, Memon, Shazim Ali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2025
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated buildings, there was no study before this research evaluating the impact of data preprocessing for establishing a robust machine learning based model to forecast their energy consumption (EC). Therefore, for the first time, this research presents an application of the data preprocessing process to compare the results of the formulated multi-expression programming (MEP)-based prediction model's accuracy for predicting the EC of PCM-integrated buildings using processed with actual databases. Data cleaning, outlier detection and removal, and data smoothing were performed on the actual EC database during the data preprocessing process. Results of model evaluation and validation processes for the articulated prediction models showed that the data preprocessing improved the MEP-based prediction model by 33 % to predict the EC precisely. Conclusively, model interpretability (sensitivity, parametric, and energy saving analysis) demonstrated that the developed more reliable prediction model provides energy savings of approximately 20 % by integrating optimum PCM. •Evaluated impact of data preprocessing to develop robust prediction model.•Compared MEP's prediction model precision for actual and processed EC database.•Prediction model (MEPPP23) using processed database was the most reliable.•MEPPP23 developed for PCM-integrated building showed R2>95 % with CV-RMSE<10 %.•Performed sensitivity & parametric analysis on best prediction model.
AbstractList Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated buildings, there was no study before this research evaluating the impact of data preprocessing for establishing a robust machine learning based model to forecast their energy consumption (EC). Therefore, for the first time, this research presents an application of the data preprocessing process to compare the results of the formulated multi-expression programming (MEP)-based prediction model's accuracy for predicting the EC of PCM-integrated buildings using processed with actual databases. Data cleaning, outlier detection and removal, and data smoothing were performed on the actual EC database during the data preprocessing process. Results of model evaluation and validation processes for the articulated prediction models showed that the data preprocessing improved the MEP-based prediction model by 33 % to predict the EC precisely. Conclusively, model interpretability (sensitivity, parametric, and energy saving analysis) demonstrated that the developed more reliable prediction model provides energy savings of approximately 20 % by integrating optimum PCM. •Evaluated impact of data preprocessing to develop robust prediction model.•Compared MEP's prediction model precision for actual and processed EC database.•Prediction model (MEPPP23) using processed database was the most reliable.•MEPPP23 developed for PCM-integrated building showed R2>95 % with CV-RMSE<10 %.•Performed sensitivity & parametric analysis on best prediction model.
Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated buildings, there was no study before this research evaluating the impact of data preprocessing for establishing a robust machine learning based model to forecast their energy consumption (EC). Therefore, for the first time, this research presents an application of the data preprocessing process to compare the results of the formulated multi-expression programming (MEP)-based prediction model's accuracy for predicting the EC of PCM-integrated buildings using processed with actual databases. Data cleaning, outlier detection and removal, and data smoothing were performed on the actual EC database during the data preprocessing process. Results of model evaluation and validation processes for the articulated prediction models showed that the data preprocessing improved the MEP-based prediction model by 33 % to predict the EC precisely. Conclusively, model interpretability (sensitivity, parametric, and energy saving analysis) demonstrated that the developed more reliable prediction model provides energy savings of approximately 20 % by integrating optimum PCM.
ArticleNumber 135763
Author Nazir, Kashif
Memon, Shazim Ali
Author_xml – sequence: 1
  givenname: Kashif
  surname: Nazir
  fullname: Nazir, Kashif
– sequence: 2
  givenname: Shazim Ali
  orcidid: 0000-0001-6625-8811
  surname: Memon
  fullname: Memon, Shazim Ali
  email: shazim.memon@nu.edu.kz
BookMark eNqFkDtPwzAUhT2ARHn8AwaPLCm2kzgxAxKqykMCwQCz5dg3xVUaB9spqsSPJ2mYGGC60tF3jnS_Y3TQuhYQOqdkTgnll-s5tOBXuzkjLJ_TNC94eoBmJOUkybOMHaHjENaEkLwUYoa-llvV9CradoXjO2C76ZSO2NXYqKhw56HzTkMIe8BhA1toXIcV9q7qQ8RPy5ekUgEMrp0HrcJ-auMMNGOCq942ZoxsG2HlVRzITxvf8cvi6RQd1qoJcPZzT9Db7fJ1cZ88Pt89LG4eE824iAkQKpTKU0Y5VbwoBCc51WVhSs2yjNdVXWYGRkaUtBQ0B2OAVZrUtMyFFukJuph2h18-eghRbmzQ0DSqBdcHmbKMEV5SVgzo1YRq70LwUEtt46DHtdEr20hK5KhZruWkWY6a5aR5KGe_yp23G-V3_9WupxoMDrYWvAzaQqvB2MFolMbZvwe-AaBlntE
CitedBy_id crossref_primary_10_1080_10643389_2025_2557306
Cites_doi 10.1016/j.esd.2021.11.002
10.1016/j.rser.2017.04.095
10.1016/j.adapen.2023.100123
10.1016/j.egypro.2015.07.161
10.1016/j.jprocont.2009.07.006
10.22531/muglajsci.269972
10.37934/cfdl.15.2.4152
10.1016/j.est.2021.102395
10.1016/j.applthermaleng.2020.115750
10.1016/j.rser.2014.09.020
10.1016/j.apenergy.2017.05.107
10.1016/j.energy.2024.133248
10.1016/j.anbehav.2014.05.003
10.1016/j.enbuild.2014.04.027
10.1080/17512549.2018.1488614
10.1016/j.jclepro.2020.125287
10.1109/TIE.2009.2027926
10.3389/fenrg.2021.652801
10.3390/app9132630
10.1016/j.enbuild.2006.03.033
10.1016/j.enbuild.2023.113829
10.1016/j.scs.2019.101596
10.1155/2024/6812425
10.3390/en11010111
10.1016/j.enbuild.2023.112807
10.1353/csd.2006.0002
10.1016/j.energy.2022.123631
10.1016/j.conbuildmat.2020.121315
10.1016/j.enbuild.2023.113479
10.1002/er.5149
10.3390/buildings13020532
10.1016/j.est.2023.106913
10.3390/s21092946
10.3390/w14060947
10.1016/j.energy.2021.119877
10.7717/peerj-cs.623
10.1016/j.trgeo.2021.100608
10.1016/j.buildenv.2021.107927
10.1016/j.scs.2018.08.028
10.1016/j.enbuild.2018.01.017
10.1016/j.compgeo.2010.11.008
10.1016/j.est.2024.112495
10.3390/buildings13030806
10.1016/j.enbuild.2020.110601
10.1016/j.enbuild.2020.110355
10.1016/j.enbuild.2022.111832
10.1016/j.est.2023.107807
10.3390/en10101587
10.3389/fenrg.2022.1047614
10.1016/j.est.2023.107568
10.1016/j.rser.2022.113045
10.3390/en10081186
10.1007/978-981-13-8181-2_5
10.1016/j.tsep.2017.12.012
10.1016/j.buildenv.2012.02.019
10.1016/j.apenergy.2016.09.027
10.1016/j.apenergy.2019.113500
10.1016/j.energy.2023.127973
10.1016/j.apenergy.2016.02.141
10.1016/j.est.2024.110945
10.1016/j.energy.2020.118988
10.1016/j.solener.2019.09.003
10.1016/j.est.2020.101772
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2025.135763
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_135763
S0360544225014057
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
~HD
29G
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
7S9
L.6
ID FETCH-LOGICAL-c269t-e019aa532161a67796051c87d8c2446fbf84de19aa9818915edde2bc0f1859c93
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465346400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Thu Oct 02 21:40:08 EDT 2025
Tue Nov 18 22:43:12 EST 2025
Sat Nov 29 07:22:43 EST 2025
Sat Oct 25 17:52:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Energy consumption
Phase change material
Model interpretability
Multi-expression programming
Data preprocessing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-e019aa532161a67796051c87d8c2446fbf84de19aa9818915edde2bc0f1859c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6625-8811
PQID 3242068127
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3242068127
crossref_citationtrail_10_1016_j_energy_2025_135763
crossref_primary_10_1016_j_energy_2025_135763
elsevier_sciencedirect_doi_10_1016_j_energy_2025_135763
PublicationCentury 2000
PublicationDate 2025-06-01
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Luo, Wang, Guo, Zhu (bib24) 2017; 10
Ascione, De Masi, de Rossi, Ruggiero, Vanoli (bib53) 2016; 183
(accessed February 26, 2024).
sun Zeng, hou Gao (bib32) 2009; 19
Abilkhassenova, Memon, Ahmad, Saurbayeva, Kim (bib83) 2023; 297
Saurbayeva, Memon, Kim (bib85) 2023; 278
Chen, Xiao, Guo, Yan (bib15) 2023; 9
Puth, Neuhäuser, Ruxton (bib64) 2014; 93
Park, Berardi, Chang, Wi, Kang, Kim (bib71) 2021; 222
El-Maraghy, Metawie, Safaan, Saad Eldin, Hamdy, El Sharkawy, Abdelaty, Azab, Marzouk (bib27) 2024; 303
Seem (bib36) 2007; 39
Alasadi, Bhaya (bib29) 2017; 12
Kishore, Bianchi, Booten, Vidal, Jackson (bib76) 2020; 226
Al-Yasiri, Szabó (bib11) 2021; 36
Nazir, Memon, Saurbayeva, Ahmad (bib19) 2023; 68
Li, Jia, Zhong, John, Zhai (bib78) 2021; 215
Xiao, Gang, Yuan, Chen, Li, Wang, Feng (bib25) 2022; 258
Le, Nguyen, Dou, Zhou (bib67) 2019; 9
Sukontasukkul, Sutthiphasilp, Chalodhorn, Chindaprasirt (bib8) 2019; 13
Aldrees, Khan, Tariq, Mohamed, Ng, Taha (bib41) 2022; 14
Saurbayeva, Memon, Kim (bib60) 2023; 64
Feng, Lu, Wang (bib54) 2019; 50
Mohtasim, Das (bib13) 2024; 84
Zhao, Zhang (bib82) 2023; 10
Nazir, Memon, Saurbayeva (bib55) 2024; 94
Jalal, Xu, Iqbal, Jamhiri, Javed (bib66) 2021; 30
(PDF) Multi Expression Programming, (n.d.).
M. Salonvaara, A. Desjarlais, The impact of the solar absorption coefficient of roof and wall surfaces on energy use and peak demand, (n.d.).
Ahmad, Chen, Guo, Wang (bib16) 2018; 165
Olu-Ajayi, Alaka, Sulaimon, Sunmola, Ajayi (bib69) 2022; 66
Saeipourdizaj, Sarbakhsh, Gholampour (bib34) 2021; 8
Tabares-Velasco, Christensen, Bianchi (bib61) 2012; 54
Mahdaoui, Hamdaoui, Ait Msaad, Kousksou, El Rhafiki, Jamil, Ahachad (bib4) 2021; 269
Delgarm, Sajadi, Kowsary, Delgarm (bib56) 2016; 170
Li, Bowers, Schnier (bib35) 2010; 57
(bib65) 1994
Tunçbilek, Arıcı, Krajčík, Nižetić, Karabay (bib6) 2020; 179
Kapp, Choi, Hong (bib23) 2023; 172
Oktay, Argunhan, Yumrutaş, Işık, Budak (bib73) 2016; 2
Elhabyb, Baina, Bellafkih, Deifalla (bib22) 2024; 2024
Amasyali, El-Gohary (bib28) 2018; 81
Markarian, Fazelpour (bib50) 2019; 191
Fan, Chen, Wang, Huang, Wang (bib31) 2021
Do Yun, Ahn, Jang, Khil, Park, Kim (bib9) 2019; 13
Rashid, Al-Obaidi, Dulaimi, Mahmood, Sopian (bib84) 2023; 7
(accessed February 11, 2025).
Zhu, Li, Hu, Wei, Deng, Lei (bib5) 2018; 43
Liu, Ding, Tang, Xiao (bib33) 2021; 231
Vigna, Bianco, Goia, Serra (bib10) 2018; 11
Yang, Xu, Shi, Tang, Liu, Yunusa-Kaltungo, Cui (bib20) 2023; 68
Roy, Roy (bib45) 2008; 27
(PDF) Data Preprocessing for Supervised Learning, (n.d.).
Mollahasani, Alavi, Gandomi (bib44) 2011; 38
Aghakhani, Ghaffarkhah, Arjmand, Karimi, Afrand (bib12) 2022; 56
Chicco, Warrens, Jurman (bib68) 2021; 7
Saffari, de Gracia, Fernández, Cabeza (bib47) 2017; 202
Brown, Greene (bib63) 2006; 47
Fan, Chen, Wang, Wang, Huang (bib21) 2021; 9
Ciulla, D'Amico (bib42) 2019; 253
C.C. de N.-E. 15251, undefined 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, Cir.Nii.Ac.Jp (n.d.). EN 2007;15251.https://cir.nii.ac.jp/crid/1574231874026563968 (accessed February 11, 2025).
Anter, Sultan, Hegazi, El Bouz (bib75) 2023; 67
Muruganantham (bib57) 2010
Zhussupbekov, Memon, Khawaja, Nazir, Kim (bib18) 2023; 70
Liu, Liang, Liu, Wu, Liu, Liang, Liu, Wu (bib14) 2023; 13
Gao, Meng (bib1) 2023; 62
(bib48) 2024
Ruiz, Bandera (bib43) 2017; 10
White Box Technologies Weather Data, (n.d.).
Fallahpour, Wong, Rajoo, Tian (bib38) 2021; 283
Bhamare, Saikia, Rathod, Rakshit, Banerjee (bib17) 2021; 199
Alam, Jamil, Sanjayan, Wilson (bib58) 2014; 78
Fateh, Borelli, Devia, Weinläder (bib72) 2018; 6
Aliyeva, Memon, Nazir, Kim (bib59) 2024; 310
Dardouri, Tunçbilek, Khaldi, Arıcı, Sghaier (bib81) 2023; 13
Gong, Zheng, Yu, Liu (bib7) 2020; 44
Goel, Rosenberg, Athalye, Xie, Wang (bib46) 2014
Oltean (bib39) 2021
Sharma, Ojha (bib62) 2020; 39
Jurj, Czumbil, Bârgăuan, Ceclan, Polycarpou, Micu (bib37) 2021; 21
Zakaria, Omar, Mukhtar (bib79) 2023; 15
Liang, Zhang, Ji (bib3) 2021; 36
Sapnken, Hamed, Soldo, Gaston Tamba (bib26) 2023; 283
Rashid, Al-Obaidi, Dulaimi, Mahmood, Sopian (bib2) 2023; 7
Bagheri-Esfeh, Safikhani, Motahar (bib52) 2020; 32
Jiang, Ma, Li, Ding (bib70) 2022; 249
Hee, Alghoul, Bakhtyar, Elayeb, Shameri, Alrubaih, Sopian (bib77) 2015; 42
Long, Ye (bib74) 2015; 75
Saffari (10.1016/j.energy.2025.135763_bib47) 2017; 202
Xiao (10.1016/j.energy.2025.135763_bib25) 2022; 258
Bagheri-Esfeh (10.1016/j.energy.2025.135763_bib52) 2020; 32
Amasyali (10.1016/j.energy.2025.135763_bib28) 2018; 81
Aghakhani (10.1016/j.energy.2025.135763_bib12) 2022; 56
Rashid (10.1016/j.energy.2025.135763_bib2) 2023; 7
Hee (10.1016/j.energy.2025.135763_bib77) 2015; 42
Mohtasim (10.1016/j.energy.2025.135763_bib13) 2024; 84
Markarian (10.1016/j.energy.2025.135763_bib50) 2019; 191
El-Maraghy (10.1016/j.energy.2025.135763_bib27) 2024; 303
Li (10.1016/j.energy.2025.135763_bib35) 2010; 57
Zhu (10.1016/j.energy.2025.135763_bib5) 2018; 43
Bhamare (10.1016/j.energy.2025.135763_bib17) 2021; 199
Do Yun (10.1016/j.energy.2025.135763_bib9) 2019; 13
10.1016/j.energy.2025.135763_bib49
Delgarm (10.1016/j.energy.2025.135763_bib56) 2016; 170
Puth (10.1016/j.energy.2025.135763_bib64) 2014; 93
Al-Yasiri (10.1016/j.energy.2025.135763_bib11) 2021; 36
Goel (10.1016/j.energy.2025.135763_bib46)
Saurbayeva (10.1016/j.energy.2025.135763_bib60) 2023; 64
Ascione (10.1016/j.energy.2025.135763_bib53) 2016; 183
Kishore (10.1016/j.energy.2025.135763_bib76) 2020; 226
10.1016/j.energy.2025.135763_bib40
Tabares-Velasco (10.1016/j.energy.2025.135763_bib61) 2012; 54
Alam (10.1016/j.energy.2025.135763_bib58) 2014; 78
Fateh (10.1016/j.energy.2025.135763_bib72) 2018; 6
Ciulla (10.1016/j.energy.2025.135763_bib42) 2019; 253
Muruganantham (10.1016/j.energy.2025.135763_bib57)
Chen (10.1016/j.energy.2025.135763_bib15) 2023; 9
Jurj (10.1016/j.energy.2025.135763_bib37) 2021; 21
Dardouri (10.1016/j.energy.2025.135763_bib81) 2023; 13
Zhao (10.1016/j.energy.2025.135763_bib82) 2023; 10
Zhussupbekov (10.1016/j.energy.2025.135763_bib18) 2023; 70
Elhabyb (10.1016/j.energy.2025.135763_bib22) 2024; 2024
Ahmad (10.1016/j.energy.2025.135763_bib16) 2018; 165
(10.1016/j.energy.2025.135763_bib48) 2024
Sukontasukkul (10.1016/j.energy.2025.135763_bib8) 2019; 13
Liu (10.1016/j.energy.2025.135763_bib14) 2023; 13
Long (10.1016/j.energy.2025.135763_bib74) 2015; 75
Gao (10.1016/j.energy.2025.135763_bib1) 2023; 62
Fan (10.1016/j.energy.2025.135763_bib31) 2021
Abilkhassenova (10.1016/j.energy.2025.135763_bib83) 2023; 297
10.1016/j.energy.2025.135763_bib51
Vigna (10.1016/j.energy.2025.135763_bib10) 2018; 11
Alasadi (10.1016/j.energy.2025.135763_bib29) 2017; 12
Ruiz (10.1016/j.energy.2025.135763_bib43) 2017; 10
Mahdaoui (10.1016/j.energy.2025.135763_bib4) 2021; 269
sun Zeng (10.1016/j.energy.2025.135763_bib32) 2009; 19
Aldrees (10.1016/j.energy.2025.135763_bib41) 2022; 14
Olu-Ajayi (10.1016/j.energy.2025.135763_bib69) 2022; 66
Rashid (10.1016/j.energy.2025.135763_bib84) 2023; 7
Anter (10.1016/j.energy.2025.135763_bib75) 2023; 67
Aliyeva (10.1016/j.energy.2025.135763_bib59) 2024; 310
Park (10.1016/j.energy.2025.135763_bib71) 2021; 222
Zakaria (10.1016/j.energy.2025.135763_bib79) 2023; 15
Tunçbilek (10.1016/j.energy.2025.135763_bib6) 2020; 179
Brown (10.1016/j.energy.2025.135763_bib63) 2006; 47
Le (10.1016/j.energy.2025.135763_bib67) 2019; 9
Kapp (10.1016/j.energy.2025.135763_bib23) 2023; 172
Saurbayeva (10.1016/j.energy.2025.135763_bib85) 2023; 278
Jalal (10.1016/j.energy.2025.135763_bib66) 2021; 30
Sharma (10.1016/j.energy.2025.135763_bib62) 2020; 39
Sapnken (10.1016/j.energy.2025.135763_bib26) 2023; 283
Chicco (10.1016/j.energy.2025.135763_bib68) 2021; 7
Fan (10.1016/j.energy.2025.135763_bib21) 2021; 9
Liu (10.1016/j.energy.2025.135763_bib33) 2021; 231
10.1016/j.energy.2025.135763_bib80
Oltean (10.1016/j.energy.2025.135763_bib39)
Nazir (10.1016/j.energy.2025.135763_bib55) 2024; 94
Jiang (10.1016/j.energy.2025.135763_bib70) 2022; 249
Oktay (10.1016/j.energy.2025.135763_bib73) 2016; 2
Seem (10.1016/j.energy.2025.135763_bib36) 2007; 39
Feng (10.1016/j.energy.2025.135763_bib54) 2019; 50
Fallahpour (10.1016/j.energy.2025.135763_bib38) 2021; 283
Gong (10.1016/j.energy.2025.135763_bib7) 2020; 44
Saeipourdizaj (10.1016/j.energy.2025.135763_bib34) 2021; 8
Mollahasani (10.1016/j.energy.2025.135763_bib44) 2011; 38
Roy (10.1016/j.energy.2025.135763_bib45) 2008; 27
Li (10.1016/j.energy.2025.135763_bib78) 2021; 215
Lin (10.1016/j.energy.2025.135763_bib24) 2017; 10
(10.1016/j.energy.2025.135763_bib65) 1994
Nazir (10.1016/j.energy.2025.135763_bib19) 2023; 68
10.1016/j.energy.2025.135763_bib30
Liang (10.1016/j.energy.2025.135763_bib3) 2021; 36
Yang (10.1016/j.energy.2025.135763_bib20) 2023; 68
References_xml – volume: 9
  year: 2021
  ident: bib21
  article-title: A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data
  publication-title: Front Energy Res
– volume: 7
  start-page: 1
  year: 2021
  end-page: 24
  ident: bib68
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
– volume: 191
  start-page: 481
  year: 2019
  end-page: 496
  ident: bib50
  article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM
  publication-title: Sol Energy
– volume: 43
  start-page: 251
  year: 2018
  end-page: 264
  ident: bib5
  article-title: A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years
  publication-title: Sustain Cities Soc
– volume: 12
  start-page: 4102
  year: 2017
  end-page: 4107
  ident: bib29
  article-title: Review of data preprocessing techniques in data mining
  publication-title: J Eng Appl Sci
– volume: 13
  start-page: 806
  year: 2023
  ident: bib81
  article-title: Optimizing PCM integrated wall and roof for energy saving in building under various climatic conditions of mediterranean region
  publication-title: Build
– volume: 6
  start-page: 361
  year: 2018
  end-page: 369
  ident: bib72
  article-title: Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: effect of orientation and melting point temperature
  publication-title: Therm Sci Eng Prog
– volume: 179
  year: 2020
  ident: bib6
  article-title: Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation
  publication-title: Appl Therm Eng
– volume: 93
  start-page: 183
  year: 2014
  end-page: 189
  ident: bib64
  article-title: Effective use of Pearson's product–moment correlation coefficient
  publication-title: Anim Behav
– volume: 9
  start-page: 2630
  year: 2019
  ident: bib67
  article-title: A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings' energy efficiency for smart city planning
  publication-title: Appl Sci
– volume: 68
  year: 2023
  ident: bib20
  article-title: Multi-objective optimization designs of phase change material-enhanced building using the integration of the Stacking model and NSGA-III algorithm
  publication-title: J Energy Storage
– volume: 38
  start-page: 281
  year: 2011
  end-page: 286
  ident: bib44
  article-title: Empirical modeling of plate load test moduli of soil via gene expression programming
  publication-title: Comput Geotech
– volume: 62
  year: 2023
  ident: bib1
  article-title: A comprehensive review of integrating phase change materials in building bricks: methods, performance and applications
  publication-title: J Energy Storage
– volume: 2024
  year: 2024
  ident: bib22
  article-title: Machine learning algorithms for predicting energy consumption in educational buildings
  publication-title: Int J Energy Res
– reference: (PDF) Multi Expression Programming, (n.d.).
– volume: 57
  start-page: 3639
  year: 2010
  end-page: 3644
  ident: bib35
  article-title: Classification of energy consumption in buildings with outlier detection
  publication-title: IEEE Trans Ind Electron
– year: 2021
  ident: bib39
  article-title: Multi expression programming -- an in-depth description
– volume: 9
  year: 2023
  ident: bib15
  article-title: Interpretable machine learning for building energy management: a state-of-the-art review
  publication-title: Adv. Appl. Energy
– volume: 21
  start-page: 2946
  year: 2021
  ident: bib37
  article-title: Custom outlier detection for electrical energy consumption data applied in case of demand response in block of buildings
  publication-title: Sensors
– volume: 54
  start-page: 186
  year: 2012
  end-page: 196
  ident: bib61
  article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies
  publication-title: Build Environ
– volume: 30
  year: 2021
  ident: bib66
  article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms
  publication-title: Transp. Geotech.
– start-page: 205
  year: 2021
  end-page: 217
  ident: bib31
  article-title: A critical review on data preprocessing techniques for building operational data analysis
  publication-title: Proc. 25th int. Symp. Adv. Constr. Manag. Real estate
– volume: 13
  start-page: 220
  year: 2019
  end-page: 240
  ident: bib8
  article-title: Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures: paraffin and polyethylene glycol
  publication-title: Adv Build Energy Res
– volume: 10
  start-page: 1587
  year: 2017
  ident: bib43
  article-title: Validation of calibrated energy models: common errors
  publication-title: Energies
– volume: 13
  start-page: 532
  year: 2023
  ident: bib14
  article-title: A review of data-driven building energy prediction
  publication-title: Build
– volume: 249
  year: 2022
  ident: bib70
  article-title: Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model
  publication-title: Energy
– year: 2010
  ident: bib57
  article-title: Application of phase change material in buildings: field data vs. EnergyPlus simulation
– volume: 10
  year: 2023
  ident: bib82
  article-title: Energy consumption and heat island effect mitigation analysis of different roofs considering superposition coupling
  publication-title: Front Energy Res
– volume: 44
  start-page: 3674
  year: 2020
  end-page: 3686
  ident: bib7
  article-title: Adjustable insulation for enhancing the performance of phase change materials in buildings
  publication-title: Int J Energy Res
– volume: 8
  start-page: 215
  year: 2021
  end-page: 226
  ident: bib34
  article-title: Application of imputation methods for missing values of PM10 and O3 data: interpolation, moving average and K-nearest neighbor methods
  publication-title: Environ. Heal. Eng. Manag. J.
– volume: 27
  start-page: 302
  year: 2008
  end-page: 313
  ident: bib45
  article-title: On some aspects of variable selection for partial least squares regression models, QSAR comb
  publication-title: Sci.
– volume: 303
  year: 2024
  ident: bib27
  article-title: Predicting energy consumption of mosque buildings during the operation stage using deep learning approach
  publication-title: Energy Build
– volume: 170
  start-page: 293
  year: 2016
  end-page: 303
  ident: bib56
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl Energy
– volume: 183
  start-page: 938
  year: 2016
  end-page: 957
  ident: bib53
  article-title: Optimization of building envelope design for nZEBs in Mediterranean climate: performance analysis of residential case study
  publication-title: Appl Energy
– reference: (accessed February 26, 2024).
– volume: 94
  year: 2024
  ident: bib55
  article-title: Predicting the PCM-incorporated building's performance using optimized linear kernel and tree-based machine learning methods
  publication-title: J Energy Storage
– volume: 19
  start-page: 1519
  year: 2009
  end-page: 1528
  ident: bib32
  article-title: Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation
  publication-title: J Process Control
– volume: 7
  start-page: 90
  year: 2023
  ident: bib84
  article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy
  publication-title: Des
– volume: 42
  start-page: 323
  year: 2015
  end-page: 343
  ident: bib77
  article-title: The role of window glazing on daylighting and energy saving in buildings
  publication-title: Renew Sustain Energy Rev
– volume: 78
  start-page: 192
  year: 2014
  end-page: 201
  ident: bib58
  article-title: Energy saving potential of phase change materials in major Australian cities
  publication-title: Energy Build
– volume: 165
  start-page: 301
  year: 2018
  end-page: 320
  ident: bib16
  article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review
  publication-title: Energy Build
– volume: 66
  start-page: 12
  year: 2022
  end-page: 25
  ident: bib69
  article-title: Machine learning for energy performance prediction at the design stage of buildings
  publication-title: Energy Sustain. Dev.
– volume: 50
  year: 2019
  ident: bib54
  article-title: Assessing environmental performance in early building design stage: an integrated parametric design and machine learning method
  publication-title: Sustain Cities Soc
– volume: 75
  start-page: 1850
  year: 2015
  end-page: 1855
  ident: bib74
  article-title: Effects of thermophysical properties of wall materials on energy performance in an active building
  publication-title: Energy Proc
– volume: 310
  year: 2024
  ident: bib59
  article-title: Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios
  publication-title: Energy
– volume: 283
  year: 2021
  ident: bib38
  article-title: An evolutionary-based predictive soft computing model for the prediction of electricity consumption using multi expression programming
  publication-title: J Clean Prod
– volume: 202
  start-page: 420
  year: 2017
  end-page: 434
  ident: bib47
  article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings
  publication-title: Appl Energy
– volume: 64
  year: 2023
  ident: bib60
  article-title: Sensitivity analysis and optimization of PCM integrated buildings in a tropical savanna climate
  publication-title: J Build Eng
– volume: 278
  year: 2023
  ident: bib85
  article-title: Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones
  publication-title: Energy
– volume: 13
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib9
  article-title: Thermal and mechanical behaviors of concrete with incorporation of strontium-based phase change material (PCM)
  publication-title: Int. J. Concr. Struct. Mater.
– volume: 10
  start-page: 1186
  year: 2017
  ident: bib24
  article-title: An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting
  publication-title: Energies
– reference: (PDF) Data Preprocessing for Supervised Learning, (n.d.).
– volume: 36
  year: 2021
  ident: bib11
  article-title: Incorporation of phase change materials into building envelope for thermal comfort and energy saving: a comprehensive analysis
  publication-title: J Build Eng
– volume: 231
  year: 2021
  ident: bib33
  article-title: A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data
  publication-title: Energy Build
– volume: 253
  year: 2019
  ident: bib42
  article-title: Building energy performance forecasting: a multiple linear regression approach
  publication-title: Appl Energy
– volume: 15
  start-page: 41
  year: 2023
  end-page: 52
  ident: bib79
  article-title: Numerical study on the thermal insulation of smart windows embedded with low thermal conductivity materials to improve the energy efficiency of buildings
  publication-title: CFD Lett
– reference: M. Salonvaara, A. Desjarlais, The impact of the solar absorption coefficient of roof and wall surfaces on energy use and peak demand, (n.d.).
– volume: 84
  year: 2024
  ident: bib13
  article-title: Biomimetic and bio-derived composite Phase Change Materials for Thermal Energy Storage applications: a thorough analysis and future research directions
  publication-title: J Energy Storage
– volume: 70
  year: 2023
  ident: bib18
  article-title: Forecasting energy demand of PCM integrated residential buildings: a machine learning approach
  publication-title: J Build Eng
– reference: C.C. de N.-E. 15251, undefined 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, Cir.Nii.Ac.Jp (n.d.). EN 2007;15251.https://cir.nii.ac.jp/crid/1574231874026563968 (accessed February 11, 2025).
– volume: 215
  year: 2021
  ident: bib78
  article-title: Analysis of factors influencing actual absorption of solar energy by building walls
  publication-title: Energy
– volume: 81
  start-page: 1192
  year: 2018
  end-page: 1205
  ident: bib28
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
– year: 1994
  ident: bib65
  publication-title: The data analysis handbook
– volume: 297
  year: 2023
  ident: bib83
  article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide
  publication-title: Energy Build
– reference: White Box Technologies Weather Data, (n.d.).
– volume: 56
  year: 2022
  ident: bib12
  article-title: Phase change materials: agents towards energy performance improvement in inclined, vertical, and horizontal walls of residential buildings
  publication-title: J Build Eng
– volume: 199
  year: 2021
  ident: bib17
  article-title: A machine learning and deep learning based approach to predict the thermal performance of phase change material integrated building envelope
  publication-title: Build Environ
– volume: 11
  start-page: 111
  year: 2018
  ident: bib10
  article-title: Phase change materials in transparent building envelopes: a strengths, weakness, opportunities and threats (swot) analysis
  publication-title: Energies
– volume: 226
  year: 2020
  ident: bib76
  article-title: Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings
  publication-title: Energy Build
– volume: 67
  year: 2023
  ident: bib75
  article-title: Thermal performance and energy saving using phase change materials (PCM) integrated in building walls
  publication-title: J Energy Storage
– volume: 7
  start-page: 90
  year: 2023
  ident: bib2
  article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy
  publication-title: Des
– volume: 283
  year: 2023
  ident: bib26
  article-title: Modeling energy-efficient building loads using machine-learning algorithms for the design phase
  publication-title: Energy Build
– year: 2024
  ident: bib48
  publication-title: ANSI/ASHRAE/IES standard 90.1-2022: energy savings analysis
– reference: (accessed February 11, 2025).
– volume: 172
  year: 2023
  ident: bib23
  article-title: Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters
  publication-title: Renew Sustain Energy Rev
– volume: 222
  year: 2021
  ident: bib71
  article-title: Energy retrofit of PCM-applied apartment buildings considering building orientation and height
  publication-title: Energy
– volume: 36
  year: 2021
  ident: bib3
  article-title: Hygroscopic phase change composite material——a review
  publication-title: J Energy Storage
– volume: 269
  year: 2021
  ident: bib4
  article-title: Building bricks with phase change material (PCM): thermal performances
  publication-title: Constr Build Mater
– volume: 39
  start-page: 59
  year: 2020
  end-page: 70
  ident: bib62
  article-title: Statistical parameters of hydrometeorological variables: standard deviation, SNR, skewness and kurtosis
  publication-title: Lect. Notes Civ. Eng.
– volume: 47
  start-page: 1
  year: 2006
  end-page: 19
  ident: bib63
  article-title: The wisdom development scale: translating the conceptual to the concrete
  publication-title: J. Coll. Stud. Dev.
– year: 2014
  ident: bib46
  article-title: Enhancements to ASHRAE standard 90.1 prototype building models
– volume: 258
  year: 2022
  ident: bib25
  article-title: Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning
  publication-title: Energy Build
– volume: 14
  start-page: 947
  year: 2022
  ident: bib41
  article-title: Multi-expression programming (MEP): water quality assessment using water quality indices
  publication-title: Water
– volume: 32
  year: 2020
  ident: bib52
  article-title: Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm
  publication-title: J Energy Storage
– volume: 68
  year: 2023
  ident: bib19
  article-title: Energy consumption predictions by genetic programming methods for PCM integrated building in the tropical savanna climate zone
  publication-title: J Build Eng
– volume: 2
  start-page: 48
  year: 2016
  end-page: 54
  ident: bib73
  article-title: AN investigation of the influence of thermophysical properties of multilayer walls and roofs on the dynamic thermal characteristics
  publication-title: Mugla J. Sci. Technol.
– volume: 39
  start-page: 52
  year: 2007
  end-page: 58
  ident: bib36
  article-title: Using intelligent data analysis to detect abnormal energy consumption in buildings
  publication-title: Energy Build
– ident: 10.1016/j.energy.2025.135763_bib40
– volume: 66
  start-page: 12
  year: 2022
  ident: 10.1016/j.energy.2025.135763_bib69
  article-title: Machine learning for energy performance prediction at the design stage of buildings
  publication-title: Energy Sustain. Dev.
  doi: 10.1016/j.esd.2021.11.002
– year: 1994
  ident: 10.1016/j.energy.2025.135763_bib65
– volume: 81
  start-page: 1192
  year: 2018
  ident: 10.1016/j.energy.2025.135763_bib28
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.095
– ident: 10.1016/j.energy.2025.135763_bib39
– volume: 9
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib15
  article-title: Interpretable machine learning for building energy management: a state-of-the-art review
  publication-title: Adv. Appl. Energy
  doi: 10.1016/j.adapen.2023.100123
– volume: 75
  start-page: 1850
  year: 2015
  ident: 10.1016/j.energy.2025.135763_bib74
  article-title: Effects of thermophysical properties of wall materials on energy performance in an active building
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2015.07.161
– volume: 19
  start-page: 1519
  year: 2009
  ident: 10.1016/j.energy.2025.135763_bib32
  article-title: Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2009.07.006
– volume: 2
  start-page: 48
  year: 2016
  ident: 10.1016/j.energy.2025.135763_bib73
  article-title: AN investigation of the influence of thermophysical properties of multilayer walls and roofs on the dynamic thermal characteristics
  publication-title: Mugla J. Sci. Technol.
  doi: 10.22531/muglajsci.269972
– volume: 15
  start-page: 41
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib79
  article-title: Numerical study on the thermal insulation of smart windows embedded with low thermal conductivity materials to improve the energy efficiency of buildings
  publication-title: CFD Lett
  doi: 10.37934/cfdl.15.2.4152
– volume: 36
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib3
  article-title: Hygroscopic phase change composite material——a review
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102395
– start-page: 205
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib31
  article-title: A critical review on data preprocessing techniques for building operational data analysis
– volume: 179
  year: 2020
  ident: 10.1016/j.energy.2025.135763_bib6
  article-title: Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115750
– volume: 42
  start-page: 323
  year: 2015
  ident: 10.1016/j.energy.2025.135763_bib77
  article-title: The role of window glazing on daylighting and energy saving in buildings
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.09.020
– volume: 202
  start-page: 420
  year: 2017
  ident: 10.1016/j.energy.2025.135763_bib47
  article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.107
– volume: 310
  year: 2024
  ident: 10.1016/j.energy.2025.135763_bib59
  article-title: Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133248
– volume: 93
  start-page: 183
  year: 2014
  ident: 10.1016/j.energy.2025.135763_bib64
  article-title: Effective use of Pearson's product–moment correlation coefficient
  publication-title: Anim Behav
  doi: 10.1016/j.anbehav.2014.05.003
– volume: 36
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib11
  article-title: Incorporation of phase change materials into building envelope for thermal comfort and energy saving: a comprehensive analysis
  publication-title: J Build Eng
– volume: 78
  start-page: 192
  year: 2014
  ident: 10.1016/j.energy.2025.135763_bib58
  article-title: Energy saving potential of phase change materials in major Australian cities
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.04.027
– volume: 13
  start-page: 220
  year: 2019
  ident: 10.1016/j.energy.2025.135763_bib8
  article-title: Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures: paraffin and polyethylene glycol
  publication-title: Adv Build Energy Res
  doi: 10.1080/17512549.2018.1488614
– volume: 283
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib38
  article-title: An evolutionary-based predictive soft computing model for the prediction of electricity consumption using multi expression programming
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125287
– volume: 57
  start-page: 3639
  year: 2010
  ident: 10.1016/j.energy.2025.135763_bib35
  article-title: Classification of energy consumption in buildings with outlier detection
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2009.2027926
– volume: 9
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib21
  article-title: A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.652801
– volume: 9
  start-page: 2630
  year: 2019
  ident: 10.1016/j.energy.2025.135763_bib67
  article-title: A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings' energy efficiency for smart city planning
  publication-title: Appl Sci
  doi: 10.3390/app9132630
– volume: 68
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib19
  article-title: Energy consumption predictions by genetic programming methods for PCM integrated building in the tropical savanna climate zone
  publication-title: J Build Eng
– ident: 10.1016/j.energy.2025.135763_bib51
– volume: 39
  start-page: 52
  year: 2007
  ident: 10.1016/j.energy.2025.135763_bib36
  article-title: Using intelligent data analysis to detect abnormal energy consumption in buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2006.03.033
– ident: 10.1016/j.energy.2025.135763_bib30
– volume: 303
  year: 2024
  ident: 10.1016/j.energy.2025.135763_bib27
  article-title: Predicting energy consumption of mosque buildings during the operation stage using deep learning approach
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2023.113829
– volume: 12
  start-page: 4102
  year: 2017
  ident: 10.1016/j.energy.2025.135763_bib29
  article-title: Review of data preprocessing techniques in data mining
  publication-title: J Eng Appl Sci
– volume: 7
  start-page: 90
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib84
  article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy
  publication-title: Des
– ident: 10.1016/j.energy.2025.135763_bib49
– volume: 50
  year: 2019
  ident: 10.1016/j.energy.2025.135763_bib54
  article-title: Assessing environmental performance in early building design stage: an integrated parametric design and machine learning method
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101596
– ident: 10.1016/j.energy.2025.135763_bib57
– volume: 2024
  year: 2024
  ident: 10.1016/j.energy.2025.135763_bib22
  article-title: Machine learning algorithms for predicting energy consumption in educational buildings
  publication-title: Int J Energy Res
  doi: 10.1155/2024/6812425
– volume: 11
  start-page: 111
  year: 2018
  ident: 10.1016/j.energy.2025.135763_bib10
  article-title: Phase change materials in transparent building envelopes: a strengths, weakness, opportunities and threats (swot) analysis
  publication-title: Energies
  doi: 10.3390/en11010111
– volume: 283
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib26
  article-title: Modeling energy-efficient building loads using machine-learning algorithms for the design phase
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2023.112807
– volume: 64
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib60
  article-title: Sensitivity analysis and optimization of PCM integrated buildings in a tropical savanna climate
  publication-title: J Build Eng
– volume: 47
  start-page: 1
  year: 2006
  ident: 10.1016/j.energy.2025.135763_bib63
  article-title: The wisdom development scale: translating the conceptual to the concrete
  publication-title: J. Coll. Stud. Dev.
  doi: 10.1353/csd.2006.0002
– volume: 249
  year: 2022
  ident: 10.1016/j.energy.2025.135763_bib70
  article-title: Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123631
– volume: 269
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib4
  article-title: Building bricks with phase change material (PCM): thermal performances
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.121315
– volume: 297
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib83
  article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2023.113479
– volume: 44
  start-page: 3674
  year: 2020
  ident: 10.1016/j.energy.2025.135763_bib7
  article-title: Adjustable insulation for enhancing the performance of phase change materials in buildings
  publication-title: Int J Energy Res
  doi: 10.1002/er.5149
– volume: 13
  start-page: 532
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib14
  article-title: A review of data-driven building energy prediction
  publication-title: Build
  doi: 10.3390/buildings13020532
– volume: 7
  start-page: 90
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib2
  article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy
  publication-title: Des
– volume: 62
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib1
  article-title: A comprehensive review of integrating phase change materials in building bricks: methods, performance and applications
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.106913
– volume: 21
  start-page: 2946
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib37
  article-title: Custom outlier detection for electrical energy consumption data applied in case of demand response in block of buildings
  publication-title: Sensors
  doi: 10.3390/s21092946
– volume: 14
  start-page: 947
  year: 2022
  ident: 10.1016/j.energy.2025.135763_bib41
  article-title: Multi-expression programming (MEP): water quality assessment using water quality indices
  publication-title: Water
  doi: 10.3390/w14060947
– volume: 222
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib71
  article-title: Energy retrofit of PCM-applied apartment buildings considering building orientation and height
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119877
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib68
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.623
– volume: 30
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib66
  article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2021.100608
– volume: 199
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib17
  article-title: A machine learning and deep learning based approach to predict the thermal performance of phase change material integrated building envelope
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2021.107927
– volume: 43
  start-page: 251
  year: 2018
  ident: 10.1016/j.energy.2025.135763_bib5
  article-title: A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2018.08.028
– volume: 165
  start-page: 301
  year: 2018
  ident: 10.1016/j.energy.2025.135763_bib16
  article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.01.017
– volume: 38
  start-page: 281
  year: 2011
  ident: 10.1016/j.energy.2025.135763_bib44
  article-title: Empirical modeling of plate load test moduli of soil via gene expression programming
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2010.11.008
– volume: 70
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib18
  article-title: Forecasting energy demand of PCM integrated residential buildings: a machine learning approach
  publication-title: J Build Eng
– volume: 94
  year: 2024
  ident: 10.1016/j.energy.2025.135763_bib55
  article-title: Predicting the PCM-incorporated building's performance using optimized linear kernel and tree-based machine learning methods
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2024.112495
– volume: 13
  start-page: 806
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib81
  article-title: Optimizing PCM integrated wall and roof for energy saving in building under various climatic conditions of mediterranean region
  publication-title: Build
  doi: 10.3390/buildings13030806
– year: 2024
  ident: 10.1016/j.energy.2025.135763_bib48
– volume: 231
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib33
  article-title: A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2020.110601
– ident: 10.1016/j.energy.2025.135763_bib80
– volume: 226
  year: 2020
  ident: 10.1016/j.energy.2025.135763_bib76
  article-title: Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2020.110355
– volume: 258
  year: 2022
  ident: 10.1016/j.energy.2025.135763_bib25
  article-title: Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2022.111832
– volume: 68
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib20
  article-title: Multi-objective optimization designs of phase change material-enhanced building using the integration of the Stacking model and NSGA-III algorithm
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107807
– volume: 56
  year: 2022
  ident: 10.1016/j.energy.2025.135763_bib12
  article-title: Phase change materials: agents towards energy performance improvement in inclined, vertical, and horizontal walls of residential buildings
  publication-title: J Build Eng
– volume: 13
  start-page: 1
  year: 2019
  ident: 10.1016/j.energy.2025.135763_bib9
  article-title: Thermal and mechanical behaviors of concrete with incorporation of strontium-based phase change material (PCM)
  publication-title: Int. J. Concr. Struct. Mater.
– volume: 10
  start-page: 1587
  year: 2017
  ident: 10.1016/j.energy.2025.135763_bib43
  article-title: Validation of calibrated energy models: common errors
  publication-title: Energies
  doi: 10.3390/en10101587
– volume: 27
  start-page: 302
  year: 2008
  ident: 10.1016/j.energy.2025.135763_bib45
  article-title: On some aspects of variable selection for partial least squares regression models, QSAR comb
  publication-title: Sci.
– volume: 10
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib82
  article-title: Energy consumption and heat island effect mitigation analysis of different roofs considering superposition coupling
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.1047614
– volume: 67
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib75
  article-title: Thermal performance and energy saving using phase change materials (PCM) integrated in building walls
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107568
– volume: 172
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib23
  article-title: Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.113045
– volume: 10
  start-page: 1186
  year: 2017
  ident: 10.1016/j.energy.2025.135763_bib24
  article-title: An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting
  publication-title: Energies
  doi: 10.3390/en10081186
– volume: 39
  start-page: 59
  year: 2020
  ident: 10.1016/j.energy.2025.135763_bib62
  article-title: Statistical parameters of hydrometeorological variables: standard deviation, SNR, skewness and kurtosis
  publication-title: Lect. Notes Civ. Eng.
  doi: 10.1007/978-981-13-8181-2_5
– volume: 6
  start-page: 361
  year: 2018
  ident: 10.1016/j.energy.2025.135763_bib72
  article-title: Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: effect of orientation and melting point temperature
  publication-title: Therm Sci Eng Prog
  doi: 10.1016/j.tsep.2017.12.012
– volume: 54
  start-page: 186
  year: 2012
  ident: 10.1016/j.energy.2025.135763_bib61
  article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2012.02.019
– volume: 183
  start-page: 938
  year: 2016
  ident: 10.1016/j.energy.2025.135763_bib53
  article-title: Optimization of building envelope design for nZEBs in Mediterranean climate: performance analysis of residential case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.027
– volume: 253
  year: 2019
  ident: 10.1016/j.energy.2025.135763_bib42
  article-title: Building energy performance forecasting: a multiple linear regression approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113500
– volume: 278
  year: 2023
  ident: 10.1016/j.energy.2025.135763_bib85
  article-title: Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127973
– volume: 170
  start-page: 293
  year: 2016
  ident: 10.1016/j.energy.2025.135763_bib56
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.141
– volume: 84
  year: 2024
  ident: 10.1016/j.energy.2025.135763_bib13
  article-title: Biomimetic and bio-derived composite Phase Change Materials for Thermal Energy Storage applications: a thorough analysis and future research directions
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2024.110945
– volume: 215
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib78
  article-title: Analysis of factors influencing actual absorption of solar energy by building walls
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118988
– volume: 8
  start-page: 215
  year: 2021
  ident: 10.1016/j.energy.2025.135763_bib34
  article-title: Application of imputation methods for missing values of PM10 and O3 data: interpolation, moving average and K-nearest neighbor methods
  publication-title: Environ. Heal. Eng. Manag. J.
– volume: 191
  start-page: 481
  year: 2019
  ident: 10.1016/j.energy.2025.135763_bib50
  article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.09.003
– volume: 32
  year: 2020
  ident: 10.1016/j.energy.2025.135763_bib52
  article-title: Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101772
– ident: 10.1016/j.energy.2025.135763_bib46
SSID ssj0005899
Score 2.4708278
Snippet Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135763
SubjectTerms Data preprocessing
data quality
energy
Energy consumption
Model interpretability
model validation
Multi-expression programming
Phase change material
phase transition
prediction
Title Evaluating the impact of data preprocessing to develop a robust MEP-based forecasting model for building integrated with PCM
URI https://dx.doi.org/10.1016/j.energy.2025.135763
https://www.proquest.com/docview/3242068127
Volume 324
WOSCitedRecordID wos001465346400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbOthextattN0HGuwtOPhDtuTHMDy2sYXAOsibkWWJprR2iJ0Ryv74nT5sJy1b14e9GFucFJH7-XSSf3eH0Ht4CYhfUuGRUHKPMEU8lqTwqAjxC8qLxCZJ-kpnM7ZYpHP3KaYx5QRoVbHtNl39V1VDGyhbh87eQ939oNAA96B0uILa4fpPis9c_m4XBjWEQWoyqM4JsLKxAUag7qKmxny8rotN046_ZXNPr22lZiBKwRszlKmYY7mdrpD2kGnCEdjnLmNzd85vowp1OtOtZdD3Zw4zfr10XI7mfKl6pcsrywH4fg4CV-Pp5XL3UCKMB_JUH4zlezEhe4Y2CsmOqQyi2Nm2W1bcHihcTKSZ6ET_wGQQ30-afWMx6ymGHXvtIrej5HqU3I7yEB2ENE7ZCB1MP2eLLwMniJmCo_3su1hLQwi8PZs_-TI3VnXjqpw9Q0_dHgNPLTaeoweyOkSPuxD05hAdZUN4Iwg6-968QL8G8GAAD7bgwbXCGjx4Dzy4rbEDD-bYggf34ME74MEGPLoFd-DBA3iwBg8G8LxEPz5mZx8-ea4-hyfCJG09CdsDzuMohF0DTyiFzXAcCEZLJsBpTFShGCmllknBLUyDWMJaGhbCV-AkpiKNjtCoqit5rDMHiKJMfMrDpCSskDwpo4AECrxz6MLUCYq6fzoXLnm9rqFymf9NzyfI63utbPKWO-Rpp8TcOaDWscwBmXf0fNfpPAf7rD-68UrWmybXGxZfJ_mjp_eczSv0ZHi1XqNRu97IN-iR-Nkum_VbB93fkZK3AA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+impact+of+data+preprocessing+to+develop+a+robust+MEP-based+forecasting+model+for+building+integrated+with+PCM&rft.jtitle=Energy+%28Oxford%29&rft.au=Nazir%2C+Kashif&rft.au=Memon%2C+Shazim+Ali&rft.date=2025-06-01&rft.issn=0360-5442&rft.volume=324&rft.spage=135763&rft_id=info:doi/10.1016%2Fj.energy.2025.135763&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2025_135763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon