Evaluating the impact of data preprocessing to develop a robust MEP-based forecasting model for building integrated with PCM
Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated bui...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 324; S. 135763 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2025
|
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated buildings, there was no study before this research evaluating the impact of data preprocessing for establishing a robust machine learning based model to forecast their energy consumption (EC). Therefore, for the first time, this research presents an application of the data preprocessing process to compare the results of the formulated multi-expression programming (MEP)-based prediction model's accuracy for predicting the EC of PCM-integrated buildings using processed with actual databases. Data cleaning, outlier detection and removal, and data smoothing were performed on the actual EC database during the data preprocessing process. Results of model evaluation and validation processes for the articulated prediction models showed that the data preprocessing improved the MEP-based prediction model by 33 % to predict the EC precisely. Conclusively, model interpretability (sensitivity, parametric, and energy saving analysis) demonstrated that the developed more reliable prediction model provides energy savings of approximately 20 % by integrating optimum PCM.
•Evaluated impact of data preprocessing to develop robust prediction model.•Compared MEP's prediction model precision for actual and processed EC database.•Prediction model (MEPPP23) using processed database was the most reliable.•MEPPP23 developed for PCM-integrated building showed R2>95 % with CV-RMSE<10 %.•Performed sensitivity & parametric analysis on best prediction model. |
|---|---|
| AbstractList | Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated buildings, there was no study before this research evaluating the impact of data preprocessing for establishing a robust machine learning based model to forecast their energy consumption (EC). Therefore, for the first time, this research presents an application of the data preprocessing process to compare the results of the formulated multi-expression programming (MEP)-based prediction model's accuracy for predicting the EC of PCM-integrated buildings using processed with actual databases. Data cleaning, outlier detection and removal, and data smoothing were performed on the actual EC database during the data preprocessing process. Results of model evaluation and validation processes for the articulated prediction models showed that the data preprocessing improved the MEP-based prediction model by 33 % to predict the EC precisely. Conclusively, model interpretability (sensitivity, parametric, and energy saving analysis) demonstrated that the developed more reliable prediction model provides energy savings of approximately 20 % by integrating optimum PCM.
•Evaluated impact of data preprocessing to develop robust prediction model.•Compared MEP's prediction model precision for actual and processed EC database.•Prediction model (MEPPP23) using processed database was the most reliable.•MEPPP23 developed for PCM-integrated building showed R2>95 % with CV-RMSE<10 %.•Performed sensitivity & parametric analysis on best prediction model. Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data quality when a database does not match the criteria for evolving a robust prediction model. Regarding phase change material (PCM)-incorporated buildings, there was no study before this research evaluating the impact of data preprocessing for establishing a robust machine learning based model to forecast their energy consumption (EC). Therefore, for the first time, this research presents an application of the data preprocessing process to compare the results of the formulated multi-expression programming (MEP)-based prediction model's accuracy for predicting the EC of PCM-integrated buildings using processed with actual databases. Data cleaning, outlier detection and removal, and data smoothing were performed on the actual EC database during the data preprocessing process. Results of model evaluation and validation processes for the articulated prediction models showed that the data preprocessing improved the MEP-based prediction model by 33 % to predict the EC precisely. Conclusively, model interpretability (sensitivity, parametric, and energy saving analysis) demonstrated that the developed more reliable prediction model provides energy savings of approximately 20 % by integrating optimum PCM. |
| ArticleNumber | 135763 |
| Author | Nazir, Kashif Memon, Shazim Ali |
| Author_xml | – sequence: 1 givenname: Kashif surname: Nazir fullname: Nazir, Kashif – sequence: 2 givenname: Shazim Ali orcidid: 0000-0001-6625-8811 surname: Memon fullname: Memon, Shazim Ali email: shazim.memon@nu.edu.kz |
| BookMark | eNqFkDtPwzAUhT2ARHn8AwaPLCm2kzgxAxKqykMCwQCz5dg3xVUaB9spqsSPJ2mYGGC60tF3jnS_Y3TQuhYQOqdkTgnll-s5tOBXuzkjLJ_TNC94eoBmJOUkybOMHaHjENaEkLwUYoa-llvV9CradoXjO2C76ZSO2NXYqKhw56HzTkMIe8BhA1toXIcV9q7qQ8RPy5ekUgEMrp0HrcJ-auMMNGOCq942ZoxsG2HlVRzITxvf8cvi6RQd1qoJcPZzT9Db7fJ1cZ88Pt89LG4eE824iAkQKpTKU0Y5VbwoBCc51WVhSs2yjNdVXWYGRkaUtBQ0B2OAVZrUtMyFFukJuph2h18-eghRbmzQ0DSqBdcHmbKMEV5SVgzo1YRq70LwUEtt46DHtdEr20hK5KhZruWkWY6a5aR5KGe_yp23G-V3_9WupxoMDrYWvAzaQqvB2MFolMbZvwe-AaBlntE |
| CitedBy_id | crossref_primary_10_1080_10643389_2025_2557306 |
| Cites_doi | 10.1016/j.esd.2021.11.002 10.1016/j.rser.2017.04.095 10.1016/j.adapen.2023.100123 10.1016/j.egypro.2015.07.161 10.1016/j.jprocont.2009.07.006 10.22531/muglajsci.269972 10.37934/cfdl.15.2.4152 10.1016/j.est.2021.102395 10.1016/j.applthermaleng.2020.115750 10.1016/j.rser.2014.09.020 10.1016/j.apenergy.2017.05.107 10.1016/j.energy.2024.133248 10.1016/j.anbehav.2014.05.003 10.1016/j.enbuild.2014.04.027 10.1080/17512549.2018.1488614 10.1016/j.jclepro.2020.125287 10.1109/TIE.2009.2027926 10.3389/fenrg.2021.652801 10.3390/app9132630 10.1016/j.enbuild.2006.03.033 10.1016/j.enbuild.2023.113829 10.1016/j.scs.2019.101596 10.1155/2024/6812425 10.3390/en11010111 10.1016/j.enbuild.2023.112807 10.1353/csd.2006.0002 10.1016/j.energy.2022.123631 10.1016/j.conbuildmat.2020.121315 10.1016/j.enbuild.2023.113479 10.1002/er.5149 10.3390/buildings13020532 10.1016/j.est.2023.106913 10.3390/s21092946 10.3390/w14060947 10.1016/j.energy.2021.119877 10.7717/peerj-cs.623 10.1016/j.trgeo.2021.100608 10.1016/j.buildenv.2021.107927 10.1016/j.scs.2018.08.028 10.1016/j.enbuild.2018.01.017 10.1016/j.compgeo.2010.11.008 10.1016/j.est.2024.112495 10.3390/buildings13030806 10.1016/j.enbuild.2020.110601 10.1016/j.enbuild.2020.110355 10.1016/j.enbuild.2022.111832 10.1016/j.est.2023.107807 10.3390/en10101587 10.3389/fenrg.2022.1047614 10.1016/j.est.2023.107568 10.1016/j.rser.2022.113045 10.3390/en10081186 10.1007/978-981-13-8181-2_5 10.1016/j.tsep.2017.12.012 10.1016/j.buildenv.2012.02.019 10.1016/j.apenergy.2016.09.027 10.1016/j.apenergy.2019.113500 10.1016/j.energy.2023.127973 10.1016/j.apenergy.2016.02.141 10.1016/j.est.2024.110945 10.1016/j.energy.2020.118988 10.1016/j.solener.2019.09.003 10.1016/j.est.2020.101772 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2025.135763 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2025_135763 S0360544225014057 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- ~HD 29G 6TJ 9DU AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ADMUD ADNMO ADXHL AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ 7S9 L.6 |
| ID | FETCH-LOGICAL-c269t-e019aa532161a67796051c87d8c2446fbf84de19aa9818915edde2bc0f1859c93 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465346400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 21:40:08 EDT 2025 Tue Nov 18 22:43:12 EST 2025 Sat Nov 29 07:22:43 EST 2025 Sat Oct 25 17:52:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy consumption Phase change material Model interpretability Multi-expression programming Data preprocessing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-e019aa532161a67796051c87d8c2446fbf84de19aa9818915edde2bc0f1859c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6625-8811 |
| PQID | 3242068127 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3242068127 crossref_citationtrail_10_1016_j_energy_2025_135763 crossref_primary_10_1016_j_energy_2025_135763 elsevier_sciencedirect_doi_10_1016_j_energy_2025_135763 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lin, Luo, Wang, Guo, Zhu (bib24) 2017; 10 Ascione, De Masi, de Rossi, Ruggiero, Vanoli (bib53) 2016; 183 (accessed February 26, 2024). sun Zeng, hou Gao (bib32) 2009; 19 Abilkhassenova, Memon, Ahmad, Saurbayeva, Kim (bib83) 2023; 297 Saurbayeva, Memon, Kim (bib85) 2023; 278 Chen, Xiao, Guo, Yan (bib15) 2023; 9 Puth, Neuhäuser, Ruxton (bib64) 2014; 93 Park, Berardi, Chang, Wi, Kang, Kim (bib71) 2021; 222 El-Maraghy, Metawie, Safaan, Saad Eldin, Hamdy, El Sharkawy, Abdelaty, Azab, Marzouk (bib27) 2024; 303 Seem (bib36) 2007; 39 Alasadi, Bhaya (bib29) 2017; 12 Kishore, Bianchi, Booten, Vidal, Jackson (bib76) 2020; 226 Al-Yasiri, Szabó (bib11) 2021; 36 Nazir, Memon, Saurbayeva, Ahmad (bib19) 2023; 68 Li, Jia, Zhong, John, Zhai (bib78) 2021; 215 Xiao, Gang, Yuan, Chen, Li, Wang, Feng (bib25) 2022; 258 Le, Nguyen, Dou, Zhou (bib67) 2019; 9 Sukontasukkul, Sutthiphasilp, Chalodhorn, Chindaprasirt (bib8) 2019; 13 Aldrees, Khan, Tariq, Mohamed, Ng, Taha (bib41) 2022; 14 Saurbayeva, Memon, Kim (bib60) 2023; 64 Feng, Lu, Wang (bib54) 2019; 50 Mohtasim, Das (bib13) 2024; 84 Zhao, Zhang (bib82) 2023; 10 Nazir, Memon, Saurbayeva (bib55) 2024; 94 Jalal, Xu, Iqbal, Jamhiri, Javed (bib66) 2021; 30 (PDF) Multi Expression Programming, (n.d.). M. Salonvaara, A. Desjarlais, The impact of the solar absorption coefficient of roof and wall surfaces on energy use and peak demand, (n.d.). Ahmad, Chen, Guo, Wang (bib16) 2018; 165 Olu-Ajayi, Alaka, Sulaimon, Sunmola, Ajayi (bib69) 2022; 66 Saeipourdizaj, Sarbakhsh, Gholampour (bib34) 2021; 8 Tabares-Velasco, Christensen, Bianchi (bib61) 2012; 54 Mahdaoui, Hamdaoui, Ait Msaad, Kousksou, El Rhafiki, Jamil, Ahachad (bib4) 2021; 269 Delgarm, Sajadi, Kowsary, Delgarm (bib56) 2016; 170 Li, Bowers, Schnier (bib35) 2010; 57 (bib65) 1994 Tunçbilek, Arıcı, Krajčík, Nižetić, Karabay (bib6) 2020; 179 Kapp, Choi, Hong (bib23) 2023; 172 Oktay, Argunhan, Yumrutaş, Işık, Budak (bib73) 2016; 2 Elhabyb, Baina, Bellafkih, Deifalla (bib22) 2024; 2024 Amasyali, El-Gohary (bib28) 2018; 81 Markarian, Fazelpour (bib50) 2019; 191 Fan, Chen, Wang, Huang, Wang (bib31) 2021 Do Yun, Ahn, Jang, Khil, Park, Kim (bib9) 2019; 13 Rashid, Al-Obaidi, Dulaimi, Mahmood, Sopian (bib84) 2023; 7 (accessed February 11, 2025). Zhu, Li, Hu, Wei, Deng, Lei (bib5) 2018; 43 Liu, Ding, Tang, Xiao (bib33) 2021; 231 Vigna, Bianco, Goia, Serra (bib10) 2018; 11 Yang, Xu, Shi, Tang, Liu, Yunusa-Kaltungo, Cui (bib20) 2023; 68 Roy, Roy (bib45) 2008; 27 (PDF) Data Preprocessing for Supervised Learning, (n.d.). Mollahasani, Alavi, Gandomi (bib44) 2011; 38 Aghakhani, Ghaffarkhah, Arjmand, Karimi, Afrand (bib12) 2022; 56 Chicco, Warrens, Jurman (bib68) 2021; 7 Saffari, de Gracia, Fernández, Cabeza (bib47) 2017; 202 Brown, Greene (bib63) 2006; 47 Fan, Chen, Wang, Wang, Huang (bib21) 2021; 9 Ciulla, D'Amico (bib42) 2019; 253 C.C. de N.-E. 15251, undefined 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, Cir.Nii.Ac.Jp (n.d.). EN 2007;15251.https://cir.nii.ac.jp/crid/1574231874026563968 (accessed February 11, 2025). Anter, Sultan, Hegazi, El Bouz (bib75) 2023; 67 Muruganantham (bib57) 2010 Zhussupbekov, Memon, Khawaja, Nazir, Kim (bib18) 2023; 70 Liu, Liang, Liu, Wu, Liu, Liang, Liu, Wu (bib14) 2023; 13 Gao, Meng (bib1) 2023; 62 (bib48) 2024 Ruiz, Bandera (bib43) 2017; 10 White Box Technologies Weather Data, (n.d.). Fallahpour, Wong, Rajoo, Tian (bib38) 2021; 283 Bhamare, Saikia, Rathod, Rakshit, Banerjee (bib17) 2021; 199 Alam, Jamil, Sanjayan, Wilson (bib58) 2014; 78 Fateh, Borelli, Devia, Weinläder (bib72) 2018; 6 Aliyeva, Memon, Nazir, Kim (bib59) 2024; 310 Dardouri, Tunçbilek, Khaldi, Arıcı, Sghaier (bib81) 2023; 13 Gong, Zheng, Yu, Liu (bib7) 2020; 44 Goel, Rosenberg, Athalye, Xie, Wang (bib46) 2014 Oltean (bib39) 2021 Sharma, Ojha (bib62) 2020; 39 Jurj, Czumbil, Bârgăuan, Ceclan, Polycarpou, Micu (bib37) 2021; 21 Zakaria, Omar, Mukhtar (bib79) 2023; 15 Liang, Zhang, Ji (bib3) 2021; 36 Sapnken, Hamed, Soldo, Gaston Tamba (bib26) 2023; 283 Rashid, Al-Obaidi, Dulaimi, Mahmood, Sopian (bib2) 2023; 7 Bagheri-Esfeh, Safikhani, Motahar (bib52) 2020; 32 Jiang, Ma, Li, Ding (bib70) 2022; 249 Hee, Alghoul, Bakhtyar, Elayeb, Shameri, Alrubaih, Sopian (bib77) 2015; 42 Long, Ye (bib74) 2015; 75 Saffari (10.1016/j.energy.2025.135763_bib47) 2017; 202 Xiao (10.1016/j.energy.2025.135763_bib25) 2022; 258 Bagheri-Esfeh (10.1016/j.energy.2025.135763_bib52) 2020; 32 Amasyali (10.1016/j.energy.2025.135763_bib28) 2018; 81 Aghakhani (10.1016/j.energy.2025.135763_bib12) 2022; 56 Rashid (10.1016/j.energy.2025.135763_bib2) 2023; 7 Hee (10.1016/j.energy.2025.135763_bib77) 2015; 42 Mohtasim (10.1016/j.energy.2025.135763_bib13) 2024; 84 Markarian (10.1016/j.energy.2025.135763_bib50) 2019; 191 El-Maraghy (10.1016/j.energy.2025.135763_bib27) 2024; 303 Li (10.1016/j.energy.2025.135763_bib35) 2010; 57 Zhu (10.1016/j.energy.2025.135763_bib5) 2018; 43 Bhamare (10.1016/j.energy.2025.135763_bib17) 2021; 199 Do Yun (10.1016/j.energy.2025.135763_bib9) 2019; 13 10.1016/j.energy.2025.135763_bib49 Delgarm (10.1016/j.energy.2025.135763_bib56) 2016; 170 Puth (10.1016/j.energy.2025.135763_bib64) 2014; 93 Al-Yasiri (10.1016/j.energy.2025.135763_bib11) 2021; 36 Goel (10.1016/j.energy.2025.135763_bib46) Saurbayeva (10.1016/j.energy.2025.135763_bib60) 2023; 64 Ascione (10.1016/j.energy.2025.135763_bib53) 2016; 183 Kishore (10.1016/j.energy.2025.135763_bib76) 2020; 226 10.1016/j.energy.2025.135763_bib40 Tabares-Velasco (10.1016/j.energy.2025.135763_bib61) 2012; 54 Alam (10.1016/j.energy.2025.135763_bib58) 2014; 78 Fateh (10.1016/j.energy.2025.135763_bib72) 2018; 6 Ciulla (10.1016/j.energy.2025.135763_bib42) 2019; 253 Muruganantham (10.1016/j.energy.2025.135763_bib57) Chen (10.1016/j.energy.2025.135763_bib15) 2023; 9 Jurj (10.1016/j.energy.2025.135763_bib37) 2021; 21 Dardouri (10.1016/j.energy.2025.135763_bib81) 2023; 13 Zhao (10.1016/j.energy.2025.135763_bib82) 2023; 10 Zhussupbekov (10.1016/j.energy.2025.135763_bib18) 2023; 70 Elhabyb (10.1016/j.energy.2025.135763_bib22) 2024; 2024 Ahmad (10.1016/j.energy.2025.135763_bib16) 2018; 165 (10.1016/j.energy.2025.135763_bib48) 2024 Sukontasukkul (10.1016/j.energy.2025.135763_bib8) 2019; 13 Liu (10.1016/j.energy.2025.135763_bib14) 2023; 13 Long (10.1016/j.energy.2025.135763_bib74) 2015; 75 Gao (10.1016/j.energy.2025.135763_bib1) 2023; 62 Fan (10.1016/j.energy.2025.135763_bib31) 2021 Abilkhassenova (10.1016/j.energy.2025.135763_bib83) 2023; 297 10.1016/j.energy.2025.135763_bib51 Vigna (10.1016/j.energy.2025.135763_bib10) 2018; 11 Alasadi (10.1016/j.energy.2025.135763_bib29) 2017; 12 Ruiz (10.1016/j.energy.2025.135763_bib43) 2017; 10 Mahdaoui (10.1016/j.energy.2025.135763_bib4) 2021; 269 sun Zeng (10.1016/j.energy.2025.135763_bib32) 2009; 19 Aldrees (10.1016/j.energy.2025.135763_bib41) 2022; 14 Olu-Ajayi (10.1016/j.energy.2025.135763_bib69) 2022; 66 Rashid (10.1016/j.energy.2025.135763_bib84) 2023; 7 Anter (10.1016/j.energy.2025.135763_bib75) 2023; 67 Aliyeva (10.1016/j.energy.2025.135763_bib59) 2024; 310 Park (10.1016/j.energy.2025.135763_bib71) 2021; 222 Zakaria (10.1016/j.energy.2025.135763_bib79) 2023; 15 Tunçbilek (10.1016/j.energy.2025.135763_bib6) 2020; 179 Brown (10.1016/j.energy.2025.135763_bib63) 2006; 47 Le (10.1016/j.energy.2025.135763_bib67) 2019; 9 Kapp (10.1016/j.energy.2025.135763_bib23) 2023; 172 Saurbayeva (10.1016/j.energy.2025.135763_bib85) 2023; 278 Jalal (10.1016/j.energy.2025.135763_bib66) 2021; 30 Sharma (10.1016/j.energy.2025.135763_bib62) 2020; 39 Sapnken (10.1016/j.energy.2025.135763_bib26) 2023; 283 Chicco (10.1016/j.energy.2025.135763_bib68) 2021; 7 Fan (10.1016/j.energy.2025.135763_bib21) 2021; 9 Liu (10.1016/j.energy.2025.135763_bib33) 2021; 231 10.1016/j.energy.2025.135763_bib80 Oltean (10.1016/j.energy.2025.135763_bib39) Nazir (10.1016/j.energy.2025.135763_bib55) 2024; 94 Jiang (10.1016/j.energy.2025.135763_bib70) 2022; 249 Oktay (10.1016/j.energy.2025.135763_bib73) 2016; 2 Seem (10.1016/j.energy.2025.135763_bib36) 2007; 39 Feng (10.1016/j.energy.2025.135763_bib54) 2019; 50 Fallahpour (10.1016/j.energy.2025.135763_bib38) 2021; 283 Gong (10.1016/j.energy.2025.135763_bib7) 2020; 44 Saeipourdizaj (10.1016/j.energy.2025.135763_bib34) 2021; 8 Mollahasani (10.1016/j.energy.2025.135763_bib44) 2011; 38 Roy (10.1016/j.energy.2025.135763_bib45) 2008; 27 Li (10.1016/j.energy.2025.135763_bib78) 2021; 215 Lin (10.1016/j.energy.2025.135763_bib24) 2017; 10 (10.1016/j.energy.2025.135763_bib65) 1994 Nazir (10.1016/j.energy.2025.135763_bib19) 2023; 68 10.1016/j.energy.2025.135763_bib30 Liang (10.1016/j.energy.2025.135763_bib3) 2021; 36 Yang (10.1016/j.energy.2025.135763_bib20) 2023; 68 |
| References_xml | – volume: 9 year: 2021 ident: bib21 article-title: A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data publication-title: Front Energy Res – volume: 7 start-page: 1 year: 2021 end-page: 24 ident: bib68 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. – volume: 191 start-page: 481 year: 2019 end-page: 496 ident: bib50 article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM publication-title: Sol Energy – volume: 43 start-page: 251 year: 2018 end-page: 264 ident: bib5 article-title: A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years publication-title: Sustain Cities Soc – volume: 12 start-page: 4102 year: 2017 end-page: 4107 ident: bib29 article-title: Review of data preprocessing techniques in data mining publication-title: J Eng Appl Sci – volume: 13 start-page: 806 year: 2023 ident: bib81 article-title: Optimizing PCM integrated wall and roof for energy saving in building under various climatic conditions of mediterranean region publication-title: Build – volume: 6 start-page: 361 year: 2018 end-page: 369 ident: bib72 article-title: Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: effect of orientation and melting point temperature publication-title: Therm Sci Eng Prog – volume: 179 year: 2020 ident: bib6 article-title: Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation publication-title: Appl Therm Eng – volume: 93 start-page: 183 year: 2014 end-page: 189 ident: bib64 article-title: Effective use of Pearson's product–moment correlation coefficient publication-title: Anim Behav – volume: 9 start-page: 2630 year: 2019 ident: bib67 article-title: A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings' energy efficiency for smart city planning publication-title: Appl Sci – volume: 68 year: 2023 ident: bib20 article-title: Multi-objective optimization designs of phase change material-enhanced building using the integration of the Stacking model and NSGA-III algorithm publication-title: J Energy Storage – volume: 38 start-page: 281 year: 2011 end-page: 286 ident: bib44 article-title: Empirical modeling of plate load test moduli of soil via gene expression programming publication-title: Comput Geotech – volume: 62 year: 2023 ident: bib1 article-title: A comprehensive review of integrating phase change materials in building bricks: methods, performance and applications publication-title: J Energy Storage – volume: 2024 year: 2024 ident: bib22 article-title: Machine learning algorithms for predicting energy consumption in educational buildings publication-title: Int J Energy Res – reference: (PDF) Multi Expression Programming, (n.d.). – volume: 57 start-page: 3639 year: 2010 end-page: 3644 ident: bib35 article-title: Classification of energy consumption in buildings with outlier detection publication-title: IEEE Trans Ind Electron – year: 2021 ident: bib39 article-title: Multi expression programming -- an in-depth description – volume: 9 year: 2023 ident: bib15 article-title: Interpretable machine learning for building energy management: a state-of-the-art review publication-title: Adv. Appl. Energy – volume: 21 start-page: 2946 year: 2021 ident: bib37 article-title: Custom outlier detection for electrical energy consumption data applied in case of demand response in block of buildings publication-title: Sensors – volume: 54 start-page: 186 year: 2012 end-page: 196 ident: bib61 article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies publication-title: Build Environ – volume: 30 year: 2021 ident: bib66 article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms publication-title: Transp. Geotech. – start-page: 205 year: 2021 end-page: 217 ident: bib31 article-title: A critical review on data preprocessing techniques for building operational data analysis publication-title: Proc. 25th int. Symp. Adv. Constr. Manag. Real estate – volume: 13 start-page: 220 year: 2019 end-page: 240 ident: bib8 article-title: Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures: paraffin and polyethylene glycol publication-title: Adv Build Energy Res – volume: 10 start-page: 1587 year: 2017 ident: bib43 article-title: Validation of calibrated energy models: common errors publication-title: Energies – volume: 13 start-page: 532 year: 2023 ident: bib14 article-title: A review of data-driven building energy prediction publication-title: Build – volume: 249 year: 2022 ident: bib70 article-title: Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model publication-title: Energy – year: 2010 ident: bib57 article-title: Application of phase change material in buildings: field data vs. EnergyPlus simulation – volume: 10 year: 2023 ident: bib82 article-title: Energy consumption and heat island effect mitigation analysis of different roofs considering superposition coupling publication-title: Front Energy Res – volume: 44 start-page: 3674 year: 2020 end-page: 3686 ident: bib7 article-title: Adjustable insulation for enhancing the performance of phase change materials in buildings publication-title: Int J Energy Res – volume: 8 start-page: 215 year: 2021 end-page: 226 ident: bib34 article-title: Application of imputation methods for missing values of PM10 and O3 data: interpolation, moving average and K-nearest neighbor methods publication-title: Environ. Heal. Eng. Manag. J. – volume: 27 start-page: 302 year: 2008 end-page: 313 ident: bib45 article-title: On some aspects of variable selection for partial least squares regression models, QSAR comb publication-title: Sci. – volume: 303 year: 2024 ident: bib27 article-title: Predicting energy consumption of mosque buildings during the operation stage using deep learning approach publication-title: Energy Build – volume: 170 start-page: 293 year: 2016 end-page: 303 ident: bib56 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl Energy – volume: 183 start-page: 938 year: 2016 end-page: 957 ident: bib53 article-title: Optimization of building envelope design for nZEBs in Mediterranean climate: performance analysis of residential case study publication-title: Appl Energy – reference: (accessed February 26, 2024). – volume: 94 year: 2024 ident: bib55 article-title: Predicting the PCM-incorporated building's performance using optimized linear kernel and tree-based machine learning methods publication-title: J Energy Storage – volume: 19 start-page: 1519 year: 2009 end-page: 1528 ident: bib32 article-title: Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation publication-title: J Process Control – volume: 7 start-page: 90 year: 2023 ident: bib84 article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy publication-title: Des – volume: 42 start-page: 323 year: 2015 end-page: 343 ident: bib77 article-title: The role of window glazing on daylighting and energy saving in buildings publication-title: Renew Sustain Energy Rev – volume: 78 start-page: 192 year: 2014 end-page: 201 ident: bib58 article-title: Energy saving potential of phase change materials in major Australian cities publication-title: Energy Build – volume: 165 start-page: 301 year: 2018 end-page: 320 ident: bib16 article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review publication-title: Energy Build – volume: 66 start-page: 12 year: 2022 end-page: 25 ident: bib69 article-title: Machine learning for energy performance prediction at the design stage of buildings publication-title: Energy Sustain. Dev. – volume: 50 year: 2019 ident: bib54 article-title: Assessing environmental performance in early building design stage: an integrated parametric design and machine learning method publication-title: Sustain Cities Soc – volume: 75 start-page: 1850 year: 2015 end-page: 1855 ident: bib74 article-title: Effects of thermophysical properties of wall materials on energy performance in an active building publication-title: Energy Proc – volume: 310 year: 2024 ident: bib59 article-title: Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios publication-title: Energy – volume: 283 year: 2021 ident: bib38 article-title: An evolutionary-based predictive soft computing model for the prediction of electricity consumption using multi expression programming publication-title: J Clean Prod – volume: 202 start-page: 420 year: 2017 end-page: 434 ident: bib47 article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings publication-title: Appl Energy – volume: 64 year: 2023 ident: bib60 article-title: Sensitivity analysis and optimization of PCM integrated buildings in a tropical savanna climate publication-title: J Build Eng – volume: 278 year: 2023 ident: bib85 article-title: Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones publication-title: Energy – volume: 13 start-page: 1 year: 2019 end-page: 12 ident: bib9 article-title: Thermal and mechanical behaviors of concrete with incorporation of strontium-based phase change material (PCM) publication-title: Int. J. Concr. Struct. Mater. – volume: 10 start-page: 1186 year: 2017 ident: bib24 article-title: An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting publication-title: Energies – reference: (PDF) Data Preprocessing for Supervised Learning, (n.d.). – volume: 36 year: 2021 ident: bib11 article-title: Incorporation of phase change materials into building envelope for thermal comfort and energy saving: a comprehensive analysis publication-title: J Build Eng – volume: 231 year: 2021 ident: bib33 article-title: A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data publication-title: Energy Build – volume: 253 year: 2019 ident: bib42 article-title: Building energy performance forecasting: a multiple linear regression approach publication-title: Appl Energy – volume: 15 start-page: 41 year: 2023 end-page: 52 ident: bib79 article-title: Numerical study on the thermal insulation of smart windows embedded with low thermal conductivity materials to improve the energy efficiency of buildings publication-title: CFD Lett – reference: M. Salonvaara, A. Desjarlais, The impact of the solar absorption coefficient of roof and wall surfaces on energy use and peak demand, (n.d.). – volume: 84 year: 2024 ident: bib13 article-title: Biomimetic and bio-derived composite Phase Change Materials for Thermal Energy Storage applications: a thorough analysis and future research directions publication-title: J Energy Storage – volume: 70 year: 2023 ident: bib18 article-title: Forecasting energy demand of PCM integrated residential buildings: a machine learning approach publication-title: J Build Eng – reference: C.C. de N.-E. 15251, undefined 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, Cir.Nii.Ac.Jp (n.d.). EN 2007;15251.https://cir.nii.ac.jp/crid/1574231874026563968 (accessed February 11, 2025). – volume: 215 year: 2021 ident: bib78 article-title: Analysis of factors influencing actual absorption of solar energy by building walls publication-title: Energy – volume: 81 start-page: 1192 year: 2018 end-page: 1205 ident: bib28 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renew Sustain Energy Rev – year: 1994 ident: bib65 publication-title: The data analysis handbook – volume: 297 year: 2023 ident: bib83 article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide publication-title: Energy Build – reference: White Box Technologies Weather Data, (n.d.). – volume: 56 year: 2022 ident: bib12 article-title: Phase change materials: agents towards energy performance improvement in inclined, vertical, and horizontal walls of residential buildings publication-title: J Build Eng – volume: 199 year: 2021 ident: bib17 article-title: A machine learning and deep learning based approach to predict the thermal performance of phase change material integrated building envelope publication-title: Build Environ – volume: 11 start-page: 111 year: 2018 ident: bib10 article-title: Phase change materials in transparent building envelopes: a strengths, weakness, opportunities and threats (swot) analysis publication-title: Energies – volume: 226 year: 2020 ident: bib76 article-title: Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings publication-title: Energy Build – volume: 67 year: 2023 ident: bib75 article-title: Thermal performance and energy saving using phase change materials (PCM) integrated in building walls publication-title: J Energy Storage – volume: 7 start-page: 90 year: 2023 ident: bib2 article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy publication-title: Des – volume: 283 year: 2023 ident: bib26 article-title: Modeling energy-efficient building loads using machine-learning algorithms for the design phase publication-title: Energy Build – year: 2024 ident: bib48 publication-title: ANSI/ASHRAE/IES standard 90.1-2022: energy savings analysis – reference: (accessed February 11, 2025). – volume: 172 year: 2023 ident: bib23 article-title: Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters publication-title: Renew Sustain Energy Rev – volume: 222 year: 2021 ident: bib71 article-title: Energy retrofit of PCM-applied apartment buildings considering building orientation and height publication-title: Energy – volume: 36 year: 2021 ident: bib3 article-title: Hygroscopic phase change composite material——a review publication-title: J Energy Storage – volume: 269 year: 2021 ident: bib4 article-title: Building bricks with phase change material (PCM): thermal performances publication-title: Constr Build Mater – volume: 39 start-page: 59 year: 2020 end-page: 70 ident: bib62 article-title: Statistical parameters of hydrometeorological variables: standard deviation, SNR, skewness and kurtosis publication-title: Lect. Notes Civ. Eng. – volume: 47 start-page: 1 year: 2006 end-page: 19 ident: bib63 article-title: The wisdom development scale: translating the conceptual to the concrete publication-title: J. Coll. Stud. Dev. – year: 2014 ident: bib46 article-title: Enhancements to ASHRAE standard 90.1 prototype building models – volume: 258 year: 2022 ident: bib25 article-title: Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning publication-title: Energy Build – volume: 14 start-page: 947 year: 2022 ident: bib41 article-title: Multi-expression programming (MEP): water quality assessment using water quality indices publication-title: Water – volume: 32 year: 2020 ident: bib52 article-title: Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm publication-title: J Energy Storage – volume: 68 year: 2023 ident: bib19 article-title: Energy consumption predictions by genetic programming methods for PCM integrated building in the tropical savanna climate zone publication-title: J Build Eng – volume: 2 start-page: 48 year: 2016 end-page: 54 ident: bib73 article-title: AN investigation of the influence of thermophysical properties of multilayer walls and roofs on the dynamic thermal characteristics publication-title: Mugla J. Sci. Technol. – volume: 39 start-page: 52 year: 2007 end-page: 58 ident: bib36 article-title: Using intelligent data analysis to detect abnormal energy consumption in buildings publication-title: Energy Build – ident: 10.1016/j.energy.2025.135763_bib40 – volume: 66 start-page: 12 year: 2022 ident: 10.1016/j.energy.2025.135763_bib69 article-title: Machine learning for energy performance prediction at the design stage of buildings publication-title: Energy Sustain. Dev. doi: 10.1016/j.esd.2021.11.002 – year: 1994 ident: 10.1016/j.energy.2025.135763_bib65 – volume: 81 start-page: 1192 year: 2018 ident: 10.1016/j.energy.2025.135763_bib28 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.095 – ident: 10.1016/j.energy.2025.135763_bib39 – volume: 9 year: 2023 ident: 10.1016/j.energy.2025.135763_bib15 article-title: Interpretable machine learning for building energy management: a state-of-the-art review publication-title: Adv. Appl. Energy doi: 10.1016/j.adapen.2023.100123 – volume: 75 start-page: 1850 year: 2015 ident: 10.1016/j.energy.2025.135763_bib74 article-title: Effects of thermophysical properties of wall materials on energy performance in an active building publication-title: Energy Proc doi: 10.1016/j.egypro.2015.07.161 – volume: 19 start-page: 1519 year: 2009 ident: 10.1016/j.energy.2025.135763_bib32 article-title: Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation publication-title: J Process Control doi: 10.1016/j.jprocont.2009.07.006 – volume: 2 start-page: 48 year: 2016 ident: 10.1016/j.energy.2025.135763_bib73 article-title: AN investigation of the influence of thermophysical properties of multilayer walls and roofs on the dynamic thermal characteristics publication-title: Mugla J. Sci. Technol. doi: 10.22531/muglajsci.269972 – volume: 15 start-page: 41 year: 2023 ident: 10.1016/j.energy.2025.135763_bib79 article-title: Numerical study on the thermal insulation of smart windows embedded with low thermal conductivity materials to improve the energy efficiency of buildings publication-title: CFD Lett doi: 10.37934/cfdl.15.2.4152 – volume: 36 year: 2021 ident: 10.1016/j.energy.2025.135763_bib3 article-title: Hygroscopic phase change composite material——a review publication-title: J Energy Storage doi: 10.1016/j.est.2021.102395 – start-page: 205 year: 2021 ident: 10.1016/j.energy.2025.135763_bib31 article-title: A critical review on data preprocessing techniques for building operational data analysis – volume: 179 year: 2020 ident: 10.1016/j.energy.2025.135763_bib6 article-title: Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115750 – volume: 42 start-page: 323 year: 2015 ident: 10.1016/j.energy.2025.135763_bib77 article-title: The role of window glazing on daylighting and energy saving in buildings publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.09.020 – volume: 202 start-page: 420 year: 2017 ident: 10.1016/j.energy.2025.135763_bib47 article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.107 – volume: 310 year: 2024 ident: 10.1016/j.energy.2025.135763_bib59 article-title: Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios publication-title: Energy doi: 10.1016/j.energy.2024.133248 – volume: 93 start-page: 183 year: 2014 ident: 10.1016/j.energy.2025.135763_bib64 article-title: Effective use of Pearson's product–moment correlation coefficient publication-title: Anim Behav doi: 10.1016/j.anbehav.2014.05.003 – volume: 36 year: 2021 ident: 10.1016/j.energy.2025.135763_bib11 article-title: Incorporation of phase change materials into building envelope for thermal comfort and energy saving: a comprehensive analysis publication-title: J Build Eng – volume: 78 start-page: 192 year: 2014 ident: 10.1016/j.energy.2025.135763_bib58 article-title: Energy saving potential of phase change materials in major Australian cities publication-title: Energy Build doi: 10.1016/j.enbuild.2014.04.027 – volume: 13 start-page: 220 year: 2019 ident: 10.1016/j.energy.2025.135763_bib8 article-title: Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures: paraffin and polyethylene glycol publication-title: Adv Build Energy Res doi: 10.1080/17512549.2018.1488614 – volume: 283 year: 2021 ident: 10.1016/j.energy.2025.135763_bib38 article-title: An evolutionary-based predictive soft computing model for the prediction of electricity consumption using multi expression programming publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125287 – volume: 57 start-page: 3639 year: 2010 ident: 10.1016/j.energy.2025.135763_bib35 article-title: Classification of energy consumption in buildings with outlier detection publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2009.2027926 – volume: 9 year: 2021 ident: 10.1016/j.energy.2025.135763_bib21 article-title: A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data publication-title: Front Energy Res doi: 10.3389/fenrg.2021.652801 – volume: 9 start-page: 2630 year: 2019 ident: 10.1016/j.energy.2025.135763_bib67 article-title: A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings' energy efficiency for smart city planning publication-title: Appl Sci doi: 10.3390/app9132630 – volume: 68 year: 2023 ident: 10.1016/j.energy.2025.135763_bib19 article-title: Energy consumption predictions by genetic programming methods for PCM integrated building in the tropical savanna climate zone publication-title: J Build Eng – ident: 10.1016/j.energy.2025.135763_bib51 – volume: 39 start-page: 52 year: 2007 ident: 10.1016/j.energy.2025.135763_bib36 article-title: Using intelligent data analysis to detect abnormal energy consumption in buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2006.03.033 – ident: 10.1016/j.energy.2025.135763_bib30 – volume: 303 year: 2024 ident: 10.1016/j.energy.2025.135763_bib27 article-title: Predicting energy consumption of mosque buildings during the operation stage using deep learning approach publication-title: Energy Build doi: 10.1016/j.enbuild.2023.113829 – volume: 12 start-page: 4102 year: 2017 ident: 10.1016/j.energy.2025.135763_bib29 article-title: Review of data preprocessing techniques in data mining publication-title: J Eng Appl Sci – volume: 7 start-page: 90 year: 2023 ident: 10.1016/j.energy.2025.135763_bib84 article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy publication-title: Des – ident: 10.1016/j.energy.2025.135763_bib49 – volume: 50 year: 2019 ident: 10.1016/j.energy.2025.135763_bib54 article-title: Assessing environmental performance in early building design stage: an integrated parametric design and machine learning method publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2019.101596 – ident: 10.1016/j.energy.2025.135763_bib57 – volume: 2024 year: 2024 ident: 10.1016/j.energy.2025.135763_bib22 article-title: Machine learning algorithms for predicting energy consumption in educational buildings publication-title: Int J Energy Res doi: 10.1155/2024/6812425 – volume: 11 start-page: 111 year: 2018 ident: 10.1016/j.energy.2025.135763_bib10 article-title: Phase change materials in transparent building envelopes: a strengths, weakness, opportunities and threats (swot) analysis publication-title: Energies doi: 10.3390/en11010111 – volume: 283 year: 2023 ident: 10.1016/j.energy.2025.135763_bib26 article-title: Modeling energy-efficient building loads using machine-learning algorithms for the design phase publication-title: Energy Build doi: 10.1016/j.enbuild.2023.112807 – volume: 64 year: 2023 ident: 10.1016/j.energy.2025.135763_bib60 article-title: Sensitivity analysis and optimization of PCM integrated buildings in a tropical savanna climate publication-title: J Build Eng – volume: 47 start-page: 1 year: 2006 ident: 10.1016/j.energy.2025.135763_bib63 article-title: The wisdom development scale: translating the conceptual to the concrete publication-title: J. Coll. Stud. Dev. doi: 10.1353/csd.2006.0002 – volume: 249 year: 2022 ident: 10.1016/j.energy.2025.135763_bib70 article-title: Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model publication-title: Energy doi: 10.1016/j.energy.2022.123631 – volume: 269 year: 2021 ident: 10.1016/j.energy.2025.135763_bib4 article-title: Building bricks with phase change material (PCM): thermal performances publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121315 – volume: 297 year: 2023 ident: 10.1016/j.energy.2025.135763_bib83 article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide publication-title: Energy Build doi: 10.1016/j.enbuild.2023.113479 – volume: 44 start-page: 3674 year: 2020 ident: 10.1016/j.energy.2025.135763_bib7 article-title: Adjustable insulation for enhancing the performance of phase change materials in buildings publication-title: Int J Energy Res doi: 10.1002/er.5149 – volume: 13 start-page: 532 year: 2023 ident: 10.1016/j.energy.2025.135763_bib14 article-title: A review of data-driven building energy prediction publication-title: Build doi: 10.3390/buildings13020532 – volume: 7 start-page: 90 year: 2023 ident: 10.1016/j.energy.2025.135763_bib2 article-title: A review of recent improvements, developments, and effects of using phase-change materials in buildings to store thermal energy publication-title: Des – volume: 62 year: 2023 ident: 10.1016/j.energy.2025.135763_bib1 article-title: A comprehensive review of integrating phase change materials in building bricks: methods, performance and applications publication-title: J Energy Storage doi: 10.1016/j.est.2023.106913 – volume: 21 start-page: 2946 year: 2021 ident: 10.1016/j.energy.2025.135763_bib37 article-title: Custom outlier detection for electrical energy consumption data applied in case of demand response in block of buildings publication-title: Sensors doi: 10.3390/s21092946 – volume: 14 start-page: 947 year: 2022 ident: 10.1016/j.energy.2025.135763_bib41 article-title: Multi-expression programming (MEP): water quality assessment using water quality indices publication-title: Water doi: 10.3390/w14060947 – volume: 222 year: 2021 ident: 10.1016/j.energy.2025.135763_bib71 article-title: Energy retrofit of PCM-applied apartment buildings considering building orientation and height publication-title: Energy doi: 10.1016/j.energy.2021.119877 – volume: 7 start-page: 1 year: 2021 ident: 10.1016/j.energy.2025.135763_bib68 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.623 – volume: 30 year: 2021 ident: 10.1016/j.energy.2025.135763_bib66 article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2021.100608 – volume: 199 year: 2021 ident: 10.1016/j.energy.2025.135763_bib17 article-title: A machine learning and deep learning based approach to predict the thermal performance of phase change material integrated building envelope publication-title: Build Environ doi: 10.1016/j.buildenv.2021.107927 – volume: 43 start-page: 251 year: 2018 ident: 10.1016/j.energy.2025.135763_bib5 article-title: A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2018.08.028 – volume: 165 start-page: 301 year: 2018 ident: 10.1016/j.energy.2025.135763_bib16 article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review publication-title: Energy Build doi: 10.1016/j.enbuild.2018.01.017 – volume: 38 start-page: 281 year: 2011 ident: 10.1016/j.energy.2025.135763_bib44 article-title: Empirical modeling of plate load test moduli of soil via gene expression programming publication-title: Comput Geotech doi: 10.1016/j.compgeo.2010.11.008 – volume: 70 year: 2023 ident: 10.1016/j.energy.2025.135763_bib18 article-title: Forecasting energy demand of PCM integrated residential buildings: a machine learning approach publication-title: J Build Eng – volume: 94 year: 2024 ident: 10.1016/j.energy.2025.135763_bib55 article-title: Predicting the PCM-incorporated building's performance using optimized linear kernel and tree-based machine learning methods publication-title: J Energy Storage doi: 10.1016/j.est.2024.112495 – volume: 13 start-page: 806 year: 2023 ident: 10.1016/j.energy.2025.135763_bib81 article-title: Optimizing PCM integrated wall and roof for energy saving in building under various climatic conditions of mediterranean region publication-title: Build doi: 10.3390/buildings13030806 – year: 2024 ident: 10.1016/j.energy.2025.135763_bib48 – volume: 231 year: 2021 ident: 10.1016/j.energy.2025.135763_bib33 article-title: A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data publication-title: Energy Build doi: 10.1016/j.enbuild.2020.110601 – ident: 10.1016/j.energy.2025.135763_bib80 – volume: 226 year: 2020 ident: 10.1016/j.energy.2025.135763_bib76 article-title: Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2020.110355 – volume: 258 year: 2022 ident: 10.1016/j.energy.2025.135763_bib25 article-title: Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning publication-title: Energy Build doi: 10.1016/j.enbuild.2022.111832 – volume: 68 year: 2023 ident: 10.1016/j.energy.2025.135763_bib20 article-title: Multi-objective optimization designs of phase change material-enhanced building using the integration of the Stacking model and NSGA-III algorithm publication-title: J Energy Storage doi: 10.1016/j.est.2023.107807 – volume: 56 year: 2022 ident: 10.1016/j.energy.2025.135763_bib12 article-title: Phase change materials: agents towards energy performance improvement in inclined, vertical, and horizontal walls of residential buildings publication-title: J Build Eng – volume: 13 start-page: 1 year: 2019 ident: 10.1016/j.energy.2025.135763_bib9 article-title: Thermal and mechanical behaviors of concrete with incorporation of strontium-based phase change material (PCM) publication-title: Int. J. Concr. Struct. Mater. – volume: 10 start-page: 1587 year: 2017 ident: 10.1016/j.energy.2025.135763_bib43 article-title: Validation of calibrated energy models: common errors publication-title: Energies doi: 10.3390/en10101587 – volume: 27 start-page: 302 year: 2008 ident: 10.1016/j.energy.2025.135763_bib45 article-title: On some aspects of variable selection for partial least squares regression models, QSAR comb publication-title: Sci. – volume: 10 year: 2023 ident: 10.1016/j.energy.2025.135763_bib82 article-title: Energy consumption and heat island effect mitigation analysis of different roofs considering superposition coupling publication-title: Front Energy Res doi: 10.3389/fenrg.2022.1047614 – volume: 67 year: 2023 ident: 10.1016/j.energy.2025.135763_bib75 article-title: Thermal performance and energy saving using phase change materials (PCM) integrated in building walls publication-title: J Energy Storage doi: 10.1016/j.est.2023.107568 – volume: 172 year: 2023 ident: 10.1016/j.energy.2025.135763_bib23 article-title: Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.113045 – volume: 10 start-page: 1186 year: 2017 ident: 10.1016/j.energy.2025.135763_bib24 article-title: An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting publication-title: Energies doi: 10.3390/en10081186 – volume: 39 start-page: 59 year: 2020 ident: 10.1016/j.energy.2025.135763_bib62 article-title: Statistical parameters of hydrometeorological variables: standard deviation, SNR, skewness and kurtosis publication-title: Lect. Notes Civ. Eng. doi: 10.1007/978-981-13-8181-2_5 – volume: 6 start-page: 361 year: 2018 ident: 10.1016/j.energy.2025.135763_bib72 article-title: Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: effect of orientation and melting point temperature publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2017.12.012 – volume: 54 start-page: 186 year: 2012 ident: 10.1016/j.energy.2025.135763_bib61 article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies publication-title: Build Environ doi: 10.1016/j.buildenv.2012.02.019 – volume: 183 start-page: 938 year: 2016 ident: 10.1016/j.energy.2025.135763_bib53 article-title: Optimization of building envelope design for nZEBs in Mediterranean climate: performance analysis of residential case study publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.09.027 – volume: 253 year: 2019 ident: 10.1016/j.energy.2025.135763_bib42 article-title: Building energy performance forecasting: a multiple linear regression approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113500 – volume: 278 year: 2023 ident: 10.1016/j.energy.2025.135763_bib85 article-title: Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones publication-title: Energy doi: 10.1016/j.energy.2023.127973 – volume: 170 start-page: 293 year: 2016 ident: 10.1016/j.energy.2025.135763_bib56 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.141 – volume: 84 year: 2024 ident: 10.1016/j.energy.2025.135763_bib13 article-title: Biomimetic and bio-derived composite Phase Change Materials for Thermal Energy Storage applications: a thorough analysis and future research directions publication-title: J Energy Storage doi: 10.1016/j.est.2024.110945 – volume: 215 year: 2021 ident: 10.1016/j.energy.2025.135763_bib78 article-title: Analysis of factors influencing actual absorption of solar energy by building walls publication-title: Energy doi: 10.1016/j.energy.2020.118988 – volume: 8 start-page: 215 year: 2021 ident: 10.1016/j.energy.2025.135763_bib34 article-title: Application of imputation methods for missing values of PM10 and O3 data: interpolation, moving average and K-nearest neighbor methods publication-title: Environ. Heal. Eng. Manag. J. – volume: 191 start-page: 481 year: 2019 ident: 10.1016/j.energy.2025.135763_bib50 article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM publication-title: Sol Energy doi: 10.1016/j.solener.2019.09.003 – volume: 32 year: 2020 ident: 10.1016/j.energy.2025.135763_bib52 article-title: Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm publication-title: J Energy Storage doi: 10.1016/j.est.2020.101772 – ident: 10.1016/j.energy.2025.135763_bib46 |
| SSID | ssj0005899 |
| Score | 2.4708278 |
| Snippet | Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 135763 |
| SubjectTerms | Data preprocessing data quality energy Energy consumption Model interpretability model validation Multi-expression programming Phase change material phase transition prediction |
| Title | Evaluating the impact of data preprocessing to develop a robust MEP-based forecasting model for building integrated with PCM |
| URI | https://dx.doi.org/10.1016/j.energy.2025.135763 https://www.proquest.com/docview/3242068127 |
| Volume | 324 |
| WOSCitedRecordID | wos001465346400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbOthextattN0HGuwtOPhDtuTHMDy2sYXAOsibkWWJprR2iJ0Ryv74nT5sJy1b14e9GFucFJH7-XSSf3eH0Ht4CYhfUuGRUHKPMEU8lqTwqAjxC8qLxCZJ-kpnM7ZYpHP3KaYx5QRoVbHtNl39V1VDGyhbh87eQ939oNAA96B0uILa4fpPis9c_m4XBjWEQWoyqM4JsLKxAUag7qKmxny8rotN046_ZXNPr22lZiBKwRszlKmYY7mdrpD2kGnCEdjnLmNzd85vowp1OtOtZdD3Zw4zfr10XI7mfKl6pcsrywH4fg4CV-Pp5XL3UCKMB_JUH4zlezEhe4Y2CsmOqQyi2Nm2W1bcHihcTKSZ6ET_wGQQ30-afWMx6ymGHXvtIrej5HqU3I7yEB2ENE7ZCB1MP2eLLwMniJmCo_3su1hLQwi8PZs_-TI3VnXjqpw9Q0_dHgNPLTaeoweyOkSPuxD05hAdZUN4Iwg6-968QL8G8GAAD7bgwbXCGjx4Dzy4rbEDD-bYggf34ME74MEGPLoFd-DBA3iwBg8G8LxEPz5mZx8-ea4-hyfCJG09CdsDzuMohF0DTyiFzXAcCEZLJsBpTFShGCmllknBLUyDWMJaGhbCV-AkpiKNjtCoqit5rDMHiKJMfMrDpCSskDwpo4AECrxz6MLUCYq6fzoXLnm9rqFymf9NzyfI63utbPKWO-Rpp8TcOaDWscwBmXf0fNfpPAf7rD-68UrWmybXGxZfJ_mjp_eczSv0ZHi1XqNRu97IN-iR-Nkum_VbB93fkZK3AA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+impact+of+data+preprocessing+to+develop+a+robust+MEP-based+forecasting+model+for+building+integrated+with+PCM&rft.jtitle=Energy+%28Oxford%29&rft.au=Nazir%2C+Kashif&rft.au=Memon%2C+Shazim+Ali&rft.date=2025-06-01&rft.issn=0360-5442&rft.volume=324&rft.spage=135763&rft_id=info:doi/10.1016%2Fj.energy.2025.135763&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2025_135763 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |