The screening of various biochars for Cd2+ removal at relevant soil pH
•Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is an important Cd2+ removal mechanism for chicken manure biochar.•Amorphous Cd2+ species are formed on the biochar surface.•Short Cd2+ removal...
Saved in:
| Published in: | Waste management (Elmsford) Vol. 168; pp. 376 - 385 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2023
|
| Subjects: | |
| ISSN: | 0956-053X, 1879-2456, 1879-2456 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is an important Cd2+ removal mechanism for chicken manure biochar.•Amorphous Cd2+ species are formed on the biochar surface.•Short Cd2+ removal experiments might underestimate long-term biochar effects.
Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 – 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments. |
|---|---|
| AbstractList | •Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is an important Cd2+ removal mechanism for chicken manure biochar.•Amorphous Cd2+ species are formed on the biochar surface.•Short Cd2+ removal experiments might underestimate long-term biochar effects.
Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 – 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments. Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 - 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments.Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 - 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments. |
| Author | Schreurs, S. Cuypers, A. D'Haen, J. Yperman, J. Lataf, A. Carleer, R. Vandamme, D. |
| Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0001-9089-4236 surname: Lataf fullname: Lataf, A. organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium – sequence: 2 givenname: R. surname: Carleer fullname: Carleer, R. organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium – sequence: 3 givenname: J. surname: Yperman fullname: Yperman, J. organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium – sequence: 4 givenname: S. surname: Schreurs fullname: Schreurs, S. organization: NuTeC, CMK, Hasselt University, Agoralaan Building H, 3590 Diepenbeek, Belgium – sequence: 5 givenname: J. surname: D'Haen fullname: D'Haen, J. organization: Institute for Materials Research and Imec division Imomec (IMO-IMOMEC), Hasselt University, 3590 Diepenbeek, Belgium – sequence: 6 givenname: A. orcidid: 0000-0002-0171-0245 surname: Cuypers fullname: Cuypers, A. organization: Environmental Biology, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium – sequence: 7 givenname: D. orcidid: 0000-0003-0941-2434 surname: Vandamme fullname: Vandamme, D. email: dries.vandamme@uhasselt.be organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium |
| BookMark | eNqFkEFLwzAYhoNMcE7_gYccBWlN0iZNPQgynBMGXiZ4C2n61WV0yUy6iv_ejnryoKfvPXzPy8tzjibOO0DoipKUEiput-mnjjvtUkZYlhKREipP0JTKokxYzsUETUnJRUJ49naGzmPcEkJzSckULdYbwNEEAGfdO_YN7nWw_hBxZb3Z6BBx4wOe1-wGB9j5XrdYd0Nsodeuw9HbFu-XF-i00W2Ey587Q6-Lx_V8maxenp7nD6vEMFF2iRG0glrySgKFQuuc1VICrzhURtSigJw2lDc1N02Rl6KqMkYNK4tcVFpwRrIZuh5798F_HCB2amejgbbVDobRiklW5ozLwcMM5eOrCT7GAI3aB7vT4UtRoo7a1FaN2tRRmyJCDdoG7O4XZmynO-tdF7Rt_4PvRxgGB72FoKKx4AzUNoDpVO3t3wXfIW2NYQ |
| CitedBy_id | crossref_primary_10_1186_s12870_025_06217_2 |
| Cites_doi | 10.1016/j.scitotenv.2015.09.022 10.1016/j.wasman.2023.05.023 10.1016/j.chemosphere.2014.04.043 10.1016/j.scitotenv.2019.03.437 10.3363/prb1992.15.0_113 10.1016/j.scitotenv.2018.11.396 10.1111/gcbb.12885 10.1007/s11164-017-3094-1 10.1039/C9RA08199B 10.3390/cells10092300 10.1007/s12517-018-3616-1 10.2166/wst.2016.319 10.1016/j.scitotenv.2018.07.402 10.1038/s41598-022-13664-6 10.1021/acs.jpcc.0c02216 10.1016/j.ecoenv.2019.01.110 10.1016/j.chemosphere.2014.04.014 10.1016/j.jece.2018.11.040 10.1007/s11356-017-9134-y 10.1016/j.scitotenv.2018.12.400 10.1016/j.scitotenv.2018.12.419 10.1016/j.biortech.2017.08.122 10.1016/j.biortech.2017.07.082 10.1016/j.biortech.2022.128445 10.1021/acs.est.9b03261 10.1016/j.wasman.2022.10.037 10.1016/j.jenvman.2015.01.043 10.1016/j.chemosphere.2015.04.052 10.1016/j.scitotenv.2020.140696 10.1016/B978-0-12-820042-1.00015-8 10.1016/j.scitotenv.2017.10.209 10.1016/j.scitotenv.2018.04.099 10.1007/s11270-014-2275-4 10.1016/j.scitotenv.2020.139570 10.1016/j.cej.2007.10.002 10.2134/jeq2001.302493x 10.1016/j.ecoenv.2017.02.028 10.1007/s13280-017-0990-y 10.1007/s11356-015-4977-6 10.1016/j.wasman.2019.01.045 10.1016/j.scitotenv.2019.07.369 10.1016/j.jaap.2021.105294 10.1007/s10347-022-00645-4 10.1186/s40064-016-2019-6 10.1016/j.jaap.2022.105728 10.1590/S1984-82502013000200009 10.1007/s42773-019-00026-1 10.3390/ma13102270 10.1039/C4RA15453C 10.1021/acssuschemeng.7b01935 10.1007/s11368-018-1949-8 10.1016/j.jhazmat.2020.123833 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.wasman.2023.06.018 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-2456 |
| EndPage | 385 |
| ExternalDocumentID | 10_1016_j_wasman_2023_06_018 S0956053X23004518 |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 4.4 457 4G. 5VS 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SES SEW SPC SPCBC SSE SSJ SSZ T5K Y6R ~02 ~G- 1~5 29R 53G 7-5 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RPZ SEN TAE WUQ ~HD 7X8 |
| ID | FETCH-LOGICAL-c269t-c61bed85b8e1e7aa42d88e5b5ebc6d67e41f15fd5cf7496bb321c29746ba65203 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035845400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-053X 1879-2456 |
| IngestDate | Sat Sep 27 22:09:19 EDT 2025 Sat Nov 29 07:09:14 EST 2025 Tue Nov 18 21:46:40 EST 2025 Fri Feb 23 02:35:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cadmium Adsorption Biochar Long-term effect Agro-residues |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-c61bed85b8e1e7aa42d88e5b5ebc6d67e41f15fd5cf7496bb321c29746ba65203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0171-0245 0000-0003-0941-2434 0000-0001-9089-4236 |
| PQID | 2829425802 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2829425802 crossref_primary_10_1016_j_wasman_2023_06_018 crossref_citationtrail_10_1016_j_wasman_2023_06_018 elsevier_sciencedirect_doi_10_1016_j_wasman_2023_06_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 2023-08-00 20230801 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Waste management (Elmsford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | 15(0), pp. 113–118. Available at: https://doi.org/10.3363/prb1992.15.0_113. Ribeiro, Tarelho, Gomes (b0180) 2018; 18 Pyrzynska (b0165) 2019; 7 Joseph (b0080) 2021; 13 Segneanu (b0195) 2022; 12 Godlewska, Ok, Oleszczuk (b0055) 2021; 403 López (b0120) 2020; 124 Elsevier, pp. 163–187. Available at: https://doi.org/10.1016/B978-0-12-820042-1.00015-8. Williams (b0255) 2019; 1 Lee (b0095) 2015; 226 Lataf (b0090) 2022; 168 Sun (b0215) 2018 Viaene (b0240) 2023; 167 Sergey, S. (ed.) 2017 Haeldermans (b0065) 2019 Abbas (b0005) 2017; 140 Ramtahal (b0170) 2019; 693 Toplak (b0225) 2021; 10 Lustosa Filho (b0125) 2017; 5 Liu (b0115) 2019; 656 , Schröder (b0190) 2018; 616–617 . Shirley, Jarochowska (b0205) 2022; 68 Penido, Carrijo (b0150) 2019; 671 Cherifa, A. Ben and Jemal, M. (2004) ‘Enthalpy of Formation and Mixing of Calcium-Cadmium Phosphoapatites’ Xu (b0270) 2014; 111 Ma, Zhao, Diao (b0130) 2016; 74 Wang (b0250) 2020; 13 Penido, Martins (b0155) 2019; 172 Jiang (b0075) 2019; 53 Ferreira (b0050) 2015; 5 Liu (b0110) 2019; 87 Tasharrofi (b0220) 2020; 736 Yuan (b0275) 2019; 659 Gu (b0060) 2020; 743 Viaene (b0245) 2023; 155 49(2), pp. 275–283. Available at: https://doi.org/10.1590/S1984-82502013000200009. Tsui (b0230) 2023; 369 Daneluti, A.L.M. and Matos, J. do R. (2013) ‘Study of thermal behavior of phytic acid’ Puga (b0160) 2015; 22 Balkaya, Cesur (b0010) 2008; 140 Lefebvre (b0100) 2021; 11 Nie, J., Zhi, D. and Zhou, Y. 2021 ‘Magnetic biochar-based composites for removal of recalcitrant pollutants in water’, in Leng (b0105) 2019; 647 Cui (b0025) 2016; 539 Fan (b0045) 2018; 44 Vercruysse (b0235) 2021; 159 Chen (b0015) 2015; 134 Zhang (b0280) 2015; 153 Oliveira (b0145) 2017; 246 Cuixia (b0030) 2020; 10 Ribeiro (b0175) 2017; 24 European Biochar Foundation (EBC) (2022) ‘Guidelines for a Sustainable Production of Biochar’, pp. 1–22. Available at Xu (b0265) 2014; 111 Woldetsadik (b0260) 2016; 5 Hamid (b0070) 2019; 660 McGowen, Basta, Brown (b0135) 2001; 30 Robinson (b0185) 2018; 47 Kamran (b0085) 2018; 11 Zong, Xiao, Lu (b0285) 2020; 321 Sizmur (b0210) 2017; 246 Pyrzynska (10.1016/j.wasman.2023.06.018_b0165) 2019; 7 Sizmur (10.1016/j.wasman.2023.06.018_b0210) 2017; 246 10.1016/j.wasman.2023.06.018_b0035 Ribeiro (10.1016/j.wasman.2023.06.018_b0175) 2017; 24 Wang (10.1016/j.wasman.2023.06.018_b0250) 2020; 13 Lee (10.1016/j.wasman.2023.06.018_b0095) 2015; 226 Liu (10.1016/j.wasman.2023.06.018_b0115) 2019; 656 Robinson (10.1016/j.wasman.2023.06.018_b0185) 2018; 47 Viaene (10.1016/j.wasman.2023.06.018_b0245) 2023; 155 Yuan (10.1016/j.wasman.2023.06.018_b0275) 2019; 659 Leng (10.1016/j.wasman.2023.06.018_b0105) 2019; 647 Penido (10.1016/j.wasman.2023.06.018_b0150) 2019; 671 Cui (10.1016/j.wasman.2023.06.018_b0025) 2016; 539 Oliveira (10.1016/j.wasman.2023.06.018_b0145) 2017; 246 Abbas (10.1016/j.wasman.2023.06.018_b0005) 2017; 140 Lustosa Filho (10.1016/j.wasman.2023.06.018_b0125) 2017; 5 Zong (10.1016/j.wasman.2023.06.018_b0285) 2020; 321 Fan (10.1016/j.wasman.2023.06.018_b0045) 2018; 44 Schröder (10.1016/j.wasman.2023.06.018_b0190) 2018; 616–617 10.1016/j.wasman.2023.06.018_b0200 Xu (10.1016/j.wasman.2023.06.018_b0265) 2014; 111 10.1016/j.wasman.2023.06.018_b0040 Haeldermans (10.1016/j.wasman.2023.06.018_b0065) 2019 Hamid (10.1016/j.wasman.2023.06.018_b0070) 2019; 660 Lataf (10.1016/j.wasman.2023.06.018_b0090) 2022; 168 Woldetsadik (10.1016/j.wasman.2023.06.018_b0260) 2016; 5 Tasharrofi (10.1016/j.wasman.2023.06.018_b0220) 2020; 736 Ramtahal (10.1016/j.wasman.2023.06.018_b0170) 2019; 693 Segneanu (10.1016/j.wasman.2023.06.018_b0195) 2022; 12 Cuixia (10.1016/j.wasman.2023.06.018_b0030) 2020; 10 Ferreira (10.1016/j.wasman.2023.06.018_b0050) 2015; 5 Penido (10.1016/j.wasman.2023.06.018_b0155) 2019; 172 López (10.1016/j.wasman.2023.06.018_b0120) 2020; 124 Godlewska (10.1016/j.wasman.2023.06.018_b0055) 2021; 403 Joseph (10.1016/j.wasman.2023.06.018_b0080) 2021; 13 Puga (10.1016/j.wasman.2023.06.018_b0160) 2015; 22 Viaene (10.1016/j.wasman.2023.06.018_b0240) 2023; 167 Lefebvre (10.1016/j.wasman.2023.06.018_b0100) 2021; 11 Kamran (10.1016/j.wasman.2023.06.018_b0085) 2018; 11 Shirley (10.1016/j.wasman.2023.06.018_b0205) 2022; 68 Xu (10.1016/j.wasman.2023.06.018_b0270) 2014; 111 Tsui (10.1016/j.wasman.2023.06.018_b0230) 2023; 369 Ma (10.1016/j.wasman.2023.06.018_b0130) 2016; 74 Sun (10.1016/j.wasman.2023.06.018_b0215) 2018 Williams (10.1016/j.wasman.2023.06.018_b0255) 2019; 1 Zhang (10.1016/j.wasman.2023.06.018_b0280) 2015; 153 Gu (10.1016/j.wasman.2023.06.018_b0060) 2020; 743 Jiang (10.1016/j.wasman.2023.06.018_b0075) 2019; 53 McGowen (10.1016/j.wasman.2023.06.018_b0135) 2001; 30 10.1016/j.wasman.2023.06.018_b0140 Vercruysse (10.1016/j.wasman.2023.06.018_b0235) 2021; 159 10.1016/j.wasman.2023.06.018_b0020 Chen (10.1016/j.wasman.2023.06.018_b0015) 2015; 134 Liu (10.1016/j.wasman.2023.06.018_b0110) 2019; 87 Balkaya (10.1016/j.wasman.2023.06.018_b0010) 2008; 140 Toplak (10.1016/j.wasman.2023.06.018_b0225) 2021; 10 Ribeiro (10.1016/j.wasman.2023.06.018_b0180) 2018; 18 |
| References_xml | – volume: 30 start-page: 493 year: 2001 end-page: 500 ident: b0135 article-title: Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil publication-title: J. Environ. Qual. – volume: 44 start-page: 135 year: 2018 end-page: 154 ident: b0045 article-title: Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste publication-title: Res. Chem. Intermed. – year: 2018 ident: b0215 article-title: ‘Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions’ publication-title: Sci. Total Environ. [Preprint] Available at: – volume: 660 start-page: 80 year: 2019 end-page: 96 ident: b0070 article-title: An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain publication-title: Sci. Total Environ. – volume: 140 start-page: 37 year: 2017 end-page: 47 ident: b0005 article-title: Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination publication-title: Ecotoxicol. Environ. Saf. – volume: 13 start-page: 2270 year: 2020 ident: b0250 article-title: Characterization of acid-aged biochar and its ammonium adsorption in an aqueous solution publication-title: Materials – volume: 140 start-page: 247 year: 2008 end-page: 254 ident: b0010 article-title: Adsorption of cadmium from aqueous solution by phosphogypsum publication-title: Chem. Eng. J. – volume: 155 start-page: 230 year: 2023 end-page: 239 ident: b0245 article-title: Screening tests for N sorption allow to select and engineer biochars for N mitigation during biomass processing publication-title: Waste Manag. – volume: 68 start-page: 7 year: 2022 ident: b0205 article-title: Chemical characterisation is rough: the impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals publication-title: Facies – reference: European Biochar Foundation (EBC) (2022) ‘Guidelines for a Sustainable Production of Biochar’, pp. 1–22. Available at: – volume: 736 year: 2020 ident: b0220 article-title: Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs publication-title: Sci. Total Environ. – volume: 124 start-page: 14592 year: 2020 end-page: 14602 ident: b0120 article-title: Adsorption of cadmium using biochars produced from agro-residues publication-title: J. Phys. Chem. C – volume: 7 year: 2019 ident: b0165 article-title: ‘Removal of cadmium from wastewaters with low-cost adsorbents’ publication-title: J. Environ. Chem. Eng. – volume: 12 start-page: 9676 year: 2022 ident: b0195 article-title: Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solution publication-title: Sci. Rep. – volume: 47 start-page: 73 year: 2018 end-page: 82 ident: b0185 article-title: Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis publication-title: Ambio – volume: 168 year: 2022 ident: b0090 article-title: The effect of pyrolysis temperature and feedstock on biochar agronomic properties publication-title: J. Anal. Appl. Pyrol. – volume: 10 start-page: 2300 year: 2021 ident: b0225 article-title: Quasar: easy machine learning for biospectroscopy publication-title: Cells – volume: 403 year: 2021 ident: b0055 article-title: THE DARK SIDE OF BLACK GOLD: ecotoxicological aspects of biochar and biochar-amended soils publication-title: J. Hazard. Mater. – volume: 111 start-page: 320 year: 2014 end-page: 326 ident: b0265 article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties publication-title: Chemosphere – volume: 18 start-page: 2023 year: 2018 end-page: 2031 ident: b0180 article-title: Incorporation of biomass fly ash and biological sludge in the soil: effects along the soil profile and in the leachate water publication-title: J. Soil. Sediment. – volume: 11 year: 2018 ident: b0085 article-title: ‘Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils’, publication-title: Arabian J. Geosciences – reference: Daneluti, A.L.M. and Matos, J. do R. (2013) ‘Study of thermal behavior of phytic acid’, – volume: 321 year: 2020 ident: b0285 article-title: Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: cadmium immobilization mechanisms and environmental implication publication-title: Bioresour. Technol. – volume: 647 start-page: 210 year: 2019 end-page: 222 ident: b0105 article-title: Biochar stability assessment methods: a review publication-title: Sci. Total Environ. – volume: 153 start-page: 68 year: 2015 end-page: 73 ident: b0280 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manage. – volume: 11 start-page: 1 year: 2021 end-page: 10 ident: b0100 article-title: Assessing the carbon capture potential of a reforestation project publication-title: Nature – volume: 5 start-page: 30989 year: 2015 end-page: 31003 ident: b0050 article-title: ‘(Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review’, publication-title: RSC Advances – volume: 671 start-page: 1134 year: 2019 end-page: 1143 ident: b0150 article-title: Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars publication-title: Sci. Total Environ. – reference: , – volume: 246 start-page: 110 year: 2017 end-page: 122 ident: b0145 article-title: Environmental application of biochar: current status and perspectives publication-title: Bioresour. Technol. – reference: Sergey, S. (ed.) 2017 – volume: 24 start-page: 15270 year: 2017 end-page: 15277 ident: b0175 article-title: Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions publication-title: Environ. Sci. Pollut. Res. – reference: , 49(2), pp. 275–283. Available at: https://doi.org/10.1590/S1984-82502013000200009. – volume: 22 start-page: 17606 year: 2015 end-page: 17614 ident: b0160 article-title: Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar publication-title: Environ. Sci. Pollut. Res. – volume: 167 start-page: 39 year: 2023 end-page: 45 ident: b0240 article-title: Biochar amendment to cattle slurry reduces NH3 emissions during storage without risk of higher NH3 emissions after soil application of the solid fraction publication-title: Waste Manag. – volume: 226 start-page: 9 year: 2015 ident: b0095 article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions publication-title: Water Air Soil Pollut. – volume: 369 year: 2023 ident: b0230 article-title: Machine learning and circular bioeconomy: building new resource efficiency from diverse waste streams publication-title: Bioresour. Technol. – volume: 246 start-page: 34 year: 2017 end-page: 47 ident: b0210 article-title: Biochar modification to enhance sorption of inorganics from water publication-title: Bioresour. Technol. – volume: 659 start-page: 473 year: 2019 end-page: 490 ident: b0275 article-title: Review of biochar for the management of contaminated soil: preparation, application and prospect publication-title: Sci. Total Environ. – volume: 656 start-page: 969 year: 2019 end-page: 976 ident: b0115 article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis publication-title: Sci. Total Environ. – volume: 693 year: 2019 ident: b0170 article-title: The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L publication-title: Sci. Total Environ. – volume: 5 start-page: 9043 year: 2017 end-page: 9052 ident: b0125 article-title: Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils publication-title: ACS Sustain. Chem. Eng. – reference: Cherifa, A. Ben and Jemal, M. (2004) ‘Enthalpy of Formation and Mixing of Calcium-Cadmium Phosphoapatites’, – reference: Nie, J., Zhi, D. and Zhou, Y. 2021 ‘Magnetic biochar-based composites for removal of recalcitrant pollutants in water’, in – reference: . Elsevier, pp. 163–187. Available at: https://doi.org/10.1016/B978-0-12-820042-1.00015-8. – volume: 172 start-page: 326 year: 2019 end-page: 333 ident: b0155 article-title: Combining biochar and sewage sludge for immobilization of heavy metals in mining soils publication-title: Ecotoxicol. Environ. Saf. – year: 2019 ident: b0065 article-title: ‘Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln’, publication-title: Available at: – volume: 53 start-page: 13841 year: 2019 end-page: 13849 ident: b0075 article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray Diffraction, Fourier transform infrared, and solid-state NMR spectroscopy publication-title: Environ. Sci. Tech. – volume: 10 start-page: 3667 year: 2020 end-page: 3674 ident: b0030 article-title: ‘Effect of different pyrolysis temperatures on physico-chemical characteristics and lead removal of biochar derived from chicken manure’ publication-title: RSC Advances – volume: 13 start-page: 1731 year: 2021 end-page: 1764 ident: b0080 article-title: How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar publication-title: GCB Bioenergy – reference: . – volume: 1 start-page: 237 year: 2019 end-page: 248 ident: b0255 article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility publication-title: Biochar – volume: 87 start-page: 71 year: 2019 end-page: 77 ident: b0110 article-title: Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO publication-title: Waste Manag. – volume: 111 start-page: 296 year: 2014 end-page: 303 ident: b0270 article-title: Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal publication-title: Chemosphere – volume: 134 start-page: 286 year: 2015 end-page: 293 ident: b0015 article-title: Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism publication-title: Chemosphere – volume: 5 start-page: 1 year: 2016 end-page: 16 ident: b0260 article-title: Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils publication-title: Springerplus – volume: 616–617 start-page: 1101 year: 2018 end-page: 1123 ident: b0190 article-title: Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands publication-title: Sci. Total Environ. – volume: 74 start-page: 1335 year: 2016 end-page: 1345 ident: b0130 article-title: Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution publication-title: Water Sci. Technol. – reference: , 15(0), pp. 113–118. Available at: https://doi.org/10.3363/prb1992.15.0_113. – volume: 539 start-page: 566 year: 2016 end-page: 575 ident: b0025 article-title: Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars publication-title: Sci. Total Environ. – volume: 159 year: 2021 ident: b0235 article-title: Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties publication-title: J. Anal. Appl. Pyrol. – volume: 743 year: 2020 ident: b0060 article-title: Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: a meta-analysis publication-title: Sci. Total Environ. – volume: 539 start-page: 566 year: 2016 ident: 10.1016/j.wasman.2023.06.018_b0025 article-title: Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.022 – volume: 167 start-page: 39 year: 2023 ident: 10.1016/j.wasman.2023.06.018_b0240 article-title: Biochar amendment to cattle slurry reduces NH3 emissions during storage without risk of higher NH3 emissions after soil application of the solid fraction publication-title: Waste Manag. doi: 10.1016/j.wasman.2023.05.023 – volume: 111 start-page: 320 year: 2014 ident: 10.1016/j.wasman.2023.06.018_b0265 article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.04.043 – volume: 671 start-page: 1134 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0150 article-title: Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.437 – ident: 10.1016/j.wasman.2023.06.018_b0020 doi: 10.3363/prb1992.15.0_113 – volume: 656 start-page: 969 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0115 article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.396 – volume: 13 start-page: 1731 issue: 11 year: 2021 ident: 10.1016/j.wasman.2023.06.018_b0080 article-title: How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar publication-title: GCB Bioenergy doi: 10.1111/gcbb.12885 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.wasman.2023.06.018_b0100 article-title: Assessing the carbon capture potential of a reforestation project publication-title: Nature – volume: 44 start-page: 135 issue: 1 year: 2018 ident: 10.1016/j.wasman.2023.06.018_b0045 article-title: Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-017-3094-1 – volume: 10 start-page: 3667 issue: 7 year: 2020 ident: 10.1016/j.wasman.2023.06.018_b0030 article-title: ‘Effect of different pyrolysis temperatures on physico-chemical characteristics and lead removal of biochar derived from chicken manure’ publication-title: RSC Advances doi: 10.1039/C9RA08199B – volume: 10 start-page: 2300 issue: 9 year: 2021 ident: 10.1016/j.wasman.2023.06.018_b0225 article-title: Quasar: easy machine learning for biospectroscopy publication-title: Cells doi: 10.3390/cells10092300 – volume: 11 issue: 11 year: 2018 ident: 10.1016/j.wasman.2023.06.018_b0085 article-title: ‘Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils’, publication-title: Arabian J. Geosciences doi: 10.1007/s12517-018-3616-1 – volume: 74 start-page: 1335 issue: 6 year: 2016 ident: 10.1016/j.wasman.2023.06.018_b0130 article-title: Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution publication-title: Water Sci. Technol. doi: 10.2166/wst.2016.319 – volume: 647 start-page: 210 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0105 article-title: Biochar stability assessment methods: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.402 – volume: 12 start-page: 9676 issue: 1 year: 2022 ident: 10.1016/j.wasman.2023.06.018_b0195 article-title: Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solution publication-title: Sci. Rep. doi: 10.1038/s41598-022-13664-6 – ident: 10.1016/j.wasman.2023.06.018_b0200 – year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0065 article-title: ‘Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln’, Powder Technology [Preprint] publication-title: Available at: – volume: 124 start-page: 14592 issue: 27 year: 2020 ident: 10.1016/j.wasman.2023.06.018_b0120 article-title: Adsorption of cadmium using biochars produced from agro-residues publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c02216 – volume: 172 start-page: 326 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0155 article-title: Combining biochar and sewage sludge for immobilization of heavy metals in mining soils publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.01.110 – volume: 321 year: 2020 ident: 10.1016/j.wasman.2023.06.018_b0285 article-title: Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: cadmium immobilization mechanisms and environmental implication publication-title: Bioresour. Technol. – volume: 111 start-page: 296 year: 2014 ident: 10.1016/j.wasman.2023.06.018_b0270 article-title: Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.04.014 – ident: 10.1016/j.wasman.2023.06.018_b0040 – volume: 7 issue: 1 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0165 article-title: ‘Removal of cadmium from wastewaters with low-cost adsorbents’ publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.11.040 – volume: 24 start-page: 15270 issue: 18 year: 2017 ident: 10.1016/j.wasman.2023.06.018_b0175 article-title: Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9134-y – volume: 659 start-page: 473 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0275 article-title: Review of biochar for the management of contaminated soil: preparation, application and prospect publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.400 – volume: 660 start-page: 80 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0070 article-title: An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.419 – volume: 246 start-page: 110 year: 2017 ident: 10.1016/j.wasman.2023.06.018_b0145 article-title: Environmental application of biochar: current status and perspectives publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.122 – volume: 246 start-page: 34 year: 2017 ident: 10.1016/j.wasman.2023.06.018_b0210 article-title: Biochar modification to enhance sorption of inorganics from water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.082 – volume: 369 year: 2023 ident: 10.1016/j.wasman.2023.06.018_b0230 article-title: Machine learning and circular bioeconomy: building new resource efficiency from diverse waste streams publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.128445 – volume: 53 start-page: 13841 issue: 23 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0075 article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray Diffraction, Fourier transform infrared, and solid-state NMR spectroscopy publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.9b03261 – volume: 155 start-page: 230 year: 2023 ident: 10.1016/j.wasman.2023.06.018_b0245 article-title: Screening tests for N sorption allow to select and engineer biochars for N mitigation during biomass processing publication-title: Waste Manag. doi: 10.1016/j.wasman.2022.10.037 – volume: 153 start-page: 68 year: 2015 ident: 10.1016/j.wasman.2023.06.018_b0280 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2015.01.043 – volume: 134 start-page: 286 year: 2015 ident: 10.1016/j.wasman.2023.06.018_b0015 article-title: Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.04.052 – volume: 743 year: 2020 ident: 10.1016/j.wasman.2023.06.018_b0060 article-title: Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140696 – ident: 10.1016/j.wasman.2023.06.018_b0140 doi: 10.1016/B978-0-12-820042-1.00015-8 – volume: 616–617 start-page: 1101 year: 2018 ident: 10.1016/j.wasman.2023.06.018_b0190 article-title: Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.209 – year: 2018 ident: 10.1016/j.wasman.2023.06.018_b0215 article-title: ‘Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions’ publication-title: Sci. Total Environ. [Preprint] Available at: doi: 10.1016/j.scitotenv.2018.04.099 – volume: 226 start-page: 9 issue: 2 year: 2015 ident: 10.1016/j.wasman.2023.06.018_b0095 article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-014-2275-4 – volume: 736 year: 2020 ident: 10.1016/j.wasman.2023.06.018_b0220 article-title: Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139570 – volume: 140 start-page: 247 issue: 1–3 year: 2008 ident: 10.1016/j.wasman.2023.06.018_b0010 article-title: Adsorption of cadmium from aqueous solution by phosphogypsum publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.10.002 – volume: 30 start-page: 493 issue: 2 year: 2001 ident: 10.1016/j.wasman.2023.06.018_b0135 article-title: Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2001.302493x – volume: 140 start-page: 37 year: 2017 ident: 10.1016/j.wasman.2023.06.018_b0005 article-title: Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.02.028 – volume: 47 start-page: 73 issue: s1 year: 2018 ident: 10.1016/j.wasman.2023.06.018_b0185 article-title: Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis publication-title: Ambio doi: 10.1007/s13280-017-0990-y – volume: 22 start-page: 17606 issue: 22 year: 2015 ident: 10.1016/j.wasman.2023.06.018_b0160 article-title: Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4977-6 – volume: 87 start-page: 71 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0110 article-title: Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.01.045 – volume: 693 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0170 article-title: The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.369 – volume: 159 year: 2021 ident: 10.1016/j.wasman.2023.06.018_b0235 article-title: Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2021.105294 – volume: 68 start-page: 7 issue: 2 year: 2022 ident: 10.1016/j.wasman.2023.06.018_b0205 article-title: Chemical characterisation is rough: the impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals publication-title: Facies doi: 10.1007/s10347-022-00645-4 – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.wasman.2023.06.018_b0260 article-title: Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils publication-title: Springerplus doi: 10.1186/s40064-016-2019-6 – volume: 168 year: 2022 ident: 10.1016/j.wasman.2023.06.018_b0090 article-title: The effect of pyrolysis temperature and feedstock on biochar agronomic properties publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2022.105728 – ident: 10.1016/j.wasman.2023.06.018_b0035 doi: 10.1590/S1984-82502013000200009 – volume: 1 start-page: 237 issue: 3 year: 2019 ident: 10.1016/j.wasman.2023.06.018_b0255 article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility publication-title: Biochar doi: 10.1007/s42773-019-00026-1 – volume: 13 start-page: 2270 issue: 10 year: 2020 ident: 10.1016/j.wasman.2023.06.018_b0250 article-title: Characterization of acid-aged biochar and its ammonium adsorption in an aqueous solution publication-title: Materials doi: 10.3390/ma13102270 – volume: 5 start-page: 30989 issue: 39 year: 2015 ident: 10.1016/j.wasman.2023.06.018_b0050 article-title: ‘(Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review’, publication-title: RSC Advances doi: 10.1039/C4RA15453C – volume: 5 start-page: 9043 issue: 10 year: 2017 ident: 10.1016/j.wasman.2023.06.018_b0125 article-title: Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01935 – volume: 18 start-page: 2023 issue: 5 year: 2018 ident: 10.1016/j.wasman.2023.06.018_b0180 article-title: Incorporation of biomass fly ash and biological sludge in the soil: effects along the soil profile and in the leachate water publication-title: J. Soil. Sediment. doi: 10.1007/s11368-018-1949-8 – volume: 403 year: 2021 ident: 10.1016/j.wasman.2023.06.018_b0055 article-title: THE DARK SIDE OF BLACK GOLD: ecotoxicological aspects of biochar and biochar-amended soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123833 |
| SSID | ssj0014810 |
| Score | 2.408095 |
| Snippet | •Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is... Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 376 |
| SubjectTerms | Adsorption Agro-residues Biochar Cadmium Long-term effect |
| Title | The screening of various biochars for Cd2+ removal at relevant soil pH |
| URI | https://dx.doi.org/10.1016/j.wasman.2023.06.018 https://www.proquest.com/docview/2829425802 |
| Volume | 168 |
| WOSCitedRecordID | wos001035845400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dixMxEA93PUF9ED09PD-OCPpUtnSTzcc-nqVHFTmEnlifliSbhR7ttrR7tX--k012Wz3kVPBlWcJ-hMwvk5lk5jcIvRU54wWPTZQYlkbOgYikNP2or5K0EDQtKM_rYhPi8lJOJunng4NtkwuzmYmylNttuvyvooY2ELZLnf0LcbcfhQa4B6HDFcQO1z8WPOgC8E9DQPMG3GEX6KqnC5djVRMwdAc5eUfed1d2vtg4uoCqrp4CZnXVXS-ms-5ytG-2flUAhhDpOg8kpcPZfO0j49u9hE-qUp7ksbc721jNbKiv3DZ-W7r1wGeFtI1jA7C68RXbxr393QhC21i4sEXWpMnsYpL8XiOPYLZP_KLjNa0U7mjHs4q3qtiX2AnKlAq-ty5TX9rnlsr3uw_Xve9qDT3vuU7VjKxBrf9Mpj12XXE9IbRm1pGH6IgIlsoOOjr_MJx8bE-gElkzWbRdb9Iu69jA2__6nVnzywJfWy1Xj9Gj4G7gcw-TJ-jAlsfo_qCp8neMHu4RUj5FFwAe3IIHLwocwIMb8GAQOQbwdHGADlYVbqCDHXTwcvQMfbkYXg1GUai0ERnC0yoyPNY2l0xLG1uhVEJyKS3TzGrDcy5sEhcxK3JmCpGkXGtKYkPAFeVacUb69AR1ykVpnyNsYHYXOmeEsjzpJyqlShaJ0UwXPE8FPUW0GajMBBp6Vw1lljXxhteZH97MDW_mwi5jeYqi9q2lp2G543nRyCALpqQ3ETOAzR1vvmlEloEo3PGZKi0MdOZiDmCFk33y4p-__hI92M2aV6hTrW7sa3TPbKrpenWGDsVEngUk_gAL-aPw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+screening+of+various+biochars+for+Cd2%2B+removal+at+relevant+soil+pH&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Lataf%2C+A.&rft.au=Carleer%2C+R.&rft.au=Yperman%2C+J.&rft.au=Schreurs%2C+S.&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=168&rft.spage=376&rft.epage=385&rft_id=info:doi/10.1016%2Fj.wasman.2023.06.018&rft.externalDocID=S0956053X23004518 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon |