The screening of various biochars for Cd2+ removal at relevant soil pH

•Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is an important Cd2+ removal mechanism for chicken manure biochar.•Amorphous Cd2+ species are formed on the biochar surface.•Short Cd2+ removal...

Full description

Saved in:
Bibliographic Details
Published in:Waste management (Elmsford) Vol. 168; pp. 376 - 385
Main Authors: Lataf, A., Carleer, R., Yperman, J., Schreurs, S., D'Haen, J., Cuypers, A., Vandamme, D.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2023
Subjects:
ISSN:0956-053X, 1879-2456, 1879-2456
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is an important Cd2+ removal mechanism for chicken manure biochar.•Amorphous Cd2+ species are formed on the biochar surface.•Short Cd2+ removal experiments might underestimate long-term biochar effects. Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 – 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments.
AbstractList •Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is an important Cd2+ removal mechanism for chicken manure biochar.•Amorphous Cd2+ species are formed on the biochar surface.•Short Cd2+ removal experiments might underestimate long-term biochar effects. Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 – 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments.
Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 - 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments.Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in a pH-buffered solution (pH = 6) to minimise pH effects. Insect frass, spent peat and chicken manure-derived biochars are promising Cd2+ adsorbents. Pyrolysis temperature was crucial for optimising Cd2+ removal by insect frass and spent peat-derived biochars. For these biochars, a pyrolysis temperature of 450 °C was optimal. In contrast, the Cd2+ removal by chicken manure biochars was independent of pyrolysis temperature. The Cd2+ removal by insect-frass and spent peat-derived biochars was associated with chemisorption on surface functionalities, while using chicken manure biochars was more associated with Cd2+ precipitation. The kinetics of Cd2+ removal over the course of ten days showed that insect frass biochar (450 °C) showed a gradual increase from 36 to 75 % Cd2+ removal, while chicken manure and spent peat-derived biochar (450 °C) already showed a higher Cd2+ removal (72 - 89 %) after day 1. This evidences that a long-term Cd2+ removal effect can be expected for some biochars. This should certainly be taken into consideration in future soil-based experiments.
Author Schreurs, S.
Cuypers, A.
D'Haen, J.
Yperman, J.
Lataf, A.
Carleer, R.
Vandamme, D.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0001-9089-4236
  surname: Lataf
  fullname: Lataf, A.
  organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
– sequence: 2
  givenname: R.
  surname: Carleer
  fullname: Carleer, R.
  organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
– sequence: 3
  givenname: J.
  surname: Yperman
  fullname: Yperman, J.
  organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
– sequence: 4
  givenname: S.
  surname: Schreurs
  fullname: Schreurs, S.
  organization: NuTeC, CMK, Hasselt University, Agoralaan Building H, 3590 Diepenbeek, Belgium
– sequence: 5
  givenname: J.
  surname: D'Haen
  fullname: D'Haen, J.
  organization: Institute for Materials Research and Imec division Imomec (IMO-IMOMEC), Hasselt University, 3590 Diepenbeek, Belgium
– sequence: 6
  givenname: A.
  orcidid: 0000-0002-0171-0245
  surname: Cuypers
  fullname: Cuypers, A.
  organization: Environmental Biology, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
– sequence: 7
  givenname: D.
  orcidid: 0000-0003-0941-2434
  surname: Vandamme
  fullname: Vandamme, D.
  email: dries.vandamme@uhasselt.be
  organization: Analytical and Circular Chemistry, IMO, CMK, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
BookMark eNqFkEFLwzAYhoNMcE7_gYccBWlN0iZNPQgynBMGXiZ4C2n61WV0yUy6iv_ejnryoKfvPXzPy8tzjibOO0DoipKUEiput-mnjjvtUkZYlhKREipP0JTKokxYzsUETUnJRUJ49naGzmPcEkJzSckULdYbwNEEAGfdO_YN7nWw_hBxZb3Z6BBx4wOe1-wGB9j5XrdYd0Nsodeuw9HbFu-XF-i00W2Ey587Q6-Lx_V8maxenp7nD6vEMFF2iRG0glrySgKFQuuc1VICrzhURtSigJw2lDc1N02Rl6KqMkYNK4tcVFpwRrIZuh5798F_HCB2amejgbbVDobRiklW5ozLwcMM5eOrCT7GAI3aB7vT4UtRoo7a1FaN2tRRmyJCDdoG7O4XZmynO-tdF7Rt_4PvRxgGB72FoKKx4AzUNoDpVO3t3wXfIW2NYQ
CitedBy_id crossref_primary_10_1186_s12870_025_06217_2
Cites_doi 10.1016/j.scitotenv.2015.09.022
10.1016/j.wasman.2023.05.023
10.1016/j.chemosphere.2014.04.043
10.1016/j.scitotenv.2019.03.437
10.3363/prb1992.15.0_113
10.1016/j.scitotenv.2018.11.396
10.1111/gcbb.12885
10.1007/s11164-017-3094-1
10.1039/C9RA08199B
10.3390/cells10092300
10.1007/s12517-018-3616-1
10.2166/wst.2016.319
10.1016/j.scitotenv.2018.07.402
10.1038/s41598-022-13664-6
10.1021/acs.jpcc.0c02216
10.1016/j.ecoenv.2019.01.110
10.1016/j.chemosphere.2014.04.014
10.1016/j.jece.2018.11.040
10.1007/s11356-017-9134-y
10.1016/j.scitotenv.2018.12.400
10.1016/j.scitotenv.2018.12.419
10.1016/j.biortech.2017.08.122
10.1016/j.biortech.2017.07.082
10.1016/j.biortech.2022.128445
10.1021/acs.est.9b03261
10.1016/j.wasman.2022.10.037
10.1016/j.jenvman.2015.01.043
10.1016/j.chemosphere.2015.04.052
10.1016/j.scitotenv.2020.140696
10.1016/B978-0-12-820042-1.00015-8
10.1016/j.scitotenv.2017.10.209
10.1016/j.scitotenv.2018.04.099
10.1007/s11270-014-2275-4
10.1016/j.scitotenv.2020.139570
10.1016/j.cej.2007.10.002
10.2134/jeq2001.302493x
10.1016/j.ecoenv.2017.02.028
10.1007/s13280-017-0990-y
10.1007/s11356-015-4977-6
10.1016/j.wasman.2019.01.045
10.1016/j.scitotenv.2019.07.369
10.1016/j.jaap.2021.105294
10.1007/s10347-022-00645-4
10.1186/s40064-016-2019-6
10.1016/j.jaap.2022.105728
10.1590/S1984-82502013000200009
10.1007/s42773-019-00026-1
10.3390/ma13102270
10.1039/C4RA15453C
10.1021/acssuschemeng.7b01935
10.1007/s11368-018-1949-8
10.1016/j.jhazmat.2020.123833
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.wasman.2023.06.018
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-2456
EndPage 385
ExternalDocumentID 10_1016_j_wasman_2023_06_018
S0956053X23004518
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
4.4
457
4G.
5VS
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
Y6R
~02
~G-
1~5
29R
53G
7-5
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RPZ
SEN
TAE
WUQ
~HD
7X8
ID FETCH-LOGICAL-c269t-c61bed85b8e1e7aa42d88e5b5ebc6d67e41f15fd5cf7496bb321c29746ba65203
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035845400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-053X
1879-2456
IngestDate Sat Sep 27 22:09:19 EDT 2025
Sat Nov 29 07:09:14 EST 2025
Tue Nov 18 21:46:40 EST 2025
Fri Feb 23 02:35:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cadmium
Adsorption
Biochar
Long-term effect
Agro-residues
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-c61bed85b8e1e7aa42d88e5b5ebc6d67e41f15fd5cf7496bb321c29746ba65203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0171-0245
0000-0003-0941-2434
0000-0001-9089-4236
PQID 2829425802
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2829425802
crossref_primary_10_1016_j_wasman_2023_06_018
crossref_citationtrail_10_1016_j_wasman_2023_06_018
elsevier_sciencedirect_doi_10_1016_j_wasman_2023_06_018
PublicationCentury 2000
PublicationDate 2023-08-01
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Waste management (Elmsford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References 15(0), pp. 113–118. Available at: https://doi.org/10.3363/prb1992.15.0_113.
Ribeiro, Tarelho, Gomes (b0180) 2018; 18
Pyrzynska (b0165) 2019; 7
Joseph (b0080) 2021; 13
Segneanu (b0195) 2022; 12
Godlewska, Ok, Oleszczuk (b0055) 2021; 403
López (b0120) 2020; 124
Elsevier, pp. 163–187. Available at: https://doi.org/10.1016/B978-0-12-820042-1.00015-8.
Williams (b0255) 2019; 1
Lee (b0095) 2015; 226
Lataf (b0090) 2022; 168
Sun (b0215) 2018
Viaene (b0240) 2023; 167
Sergey, S. (ed.) 2017
Haeldermans (b0065) 2019
Abbas (b0005) 2017; 140
Ramtahal (b0170) 2019; 693
Toplak (b0225) 2021; 10
Lustosa Filho (b0125) 2017; 5
Liu (b0115) 2019; 656
,
Schröder (b0190) 2018; 616–617
.
Shirley, Jarochowska (b0205) 2022; 68
Penido, Carrijo (b0150) 2019; 671
Cherifa, A. Ben and Jemal, M. (2004) ‘Enthalpy of Formation and Mixing of Calcium-Cadmium Phosphoapatites’
Xu (b0270) 2014; 111
Ma, Zhao, Diao (b0130) 2016; 74
Wang (b0250) 2020; 13
Penido, Martins (b0155) 2019; 172
Jiang (b0075) 2019; 53
Ferreira (b0050) 2015; 5
Liu (b0110) 2019; 87
Tasharrofi (b0220) 2020; 736
Yuan (b0275) 2019; 659
Gu (b0060) 2020; 743
Viaene (b0245) 2023; 155
49(2), pp. 275–283. Available at: https://doi.org/10.1590/S1984-82502013000200009.
Tsui (b0230) 2023; 369
Daneluti, A.L.M. and Matos, J. do R. (2013) ‘Study of thermal behavior of phytic acid’
Puga (b0160) 2015; 22
Balkaya, Cesur (b0010) 2008; 140
Lefebvre (b0100) 2021; 11
Nie, J., Zhi, D. and Zhou, Y. 2021 ‘Magnetic biochar-based composites for removal of recalcitrant pollutants in water’, in
Leng (b0105) 2019; 647
Cui (b0025) 2016; 539
Fan (b0045) 2018; 44
Vercruysse (b0235) 2021; 159
Chen (b0015) 2015; 134
Zhang (b0280) 2015; 153
Oliveira (b0145) 2017; 246
Cuixia (b0030) 2020; 10
Ribeiro (b0175) 2017; 24
European Biochar Foundation (EBC) (2022) ‘Guidelines for a Sustainable Production of Biochar’, pp. 1–22. Available at
Xu (b0265) 2014; 111
Woldetsadik (b0260) 2016; 5
Hamid (b0070) 2019; 660
McGowen, Basta, Brown (b0135) 2001; 30
Robinson (b0185) 2018; 47
Kamran (b0085) 2018; 11
Zong, Xiao, Lu (b0285) 2020; 321
Sizmur (b0210) 2017; 246
Pyrzynska (10.1016/j.wasman.2023.06.018_b0165) 2019; 7
Sizmur (10.1016/j.wasman.2023.06.018_b0210) 2017; 246
10.1016/j.wasman.2023.06.018_b0035
Ribeiro (10.1016/j.wasman.2023.06.018_b0175) 2017; 24
Wang (10.1016/j.wasman.2023.06.018_b0250) 2020; 13
Lee (10.1016/j.wasman.2023.06.018_b0095) 2015; 226
Liu (10.1016/j.wasman.2023.06.018_b0115) 2019; 656
Robinson (10.1016/j.wasman.2023.06.018_b0185) 2018; 47
Viaene (10.1016/j.wasman.2023.06.018_b0245) 2023; 155
Yuan (10.1016/j.wasman.2023.06.018_b0275) 2019; 659
Leng (10.1016/j.wasman.2023.06.018_b0105) 2019; 647
Penido (10.1016/j.wasman.2023.06.018_b0150) 2019; 671
Cui (10.1016/j.wasman.2023.06.018_b0025) 2016; 539
Oliveira (10.1016/j.wasman.2023.06.018_b0145) 2017; 246
Abbas (10.1016/j.wasman.2023.06.018_b0005) 2017; 140
Lustosa Filho (10.1016/j.wasman.2023.06.018_b0125) 2017; 5
Zong (10.1016/j.wasman.2023.06.018_b0285) 2020; 321
Fan (10.1016/j.wasman.2023.06.018_b0045) 2018; 44
Schröder (10.1016/j.wasman.2023.06.018_b0190) 2018; 616–617
10.1016/j.wasman.2023.06.018_b0200
Xu (10.1016/j.wasman.2023.06.018_b0265) 2014; 111
10.1016/j.wasman.2023.06.018_b0040
Haeldermans (10.1016/j.wasman.2023.06.018_b0065) 2019
Hamid (10.1016/j.wasman.2023.06.018_b0070) 2019; 660
Lataf (10.1016/j.wasman.2023.06.018_b0090) 2022; 168
Woldetsadik (10.1016/j.wasman.2023.06.018_b0260) 2016; 5
Tasharrofi (10.1016/j.wasman.2023.06.018_b0220) 2020; 736
Ramtahal (10.1016/j.wasman.2023.06.018_b0170) 2019; 693
Segneanu (10.1016/j.wasman.2023.06.018_b0195) 2022; 12
Cuixia (10.1016/j.wasman.2023.06.018_b0030) 2020; 10
Ferreira (10.1016/j.wasman.2023.06.018_b0050) 2015; 5
Penido (10.1016/j.wasman.2023.06.018_b0155) 2019; 172
López (10.1016/j.wasman.2023.06.018_b0120) 2020; 124
Godlewska (10.1016/j.wasman.2023.06.018_b0055) 2021; 403
Joseph (10.1016/j.wasman.2023.06.018_b0080) 2021; 13
Puga (10.1016/j.wasman.2023.06.018_b0160) 2015; 22
Viaene (10.1016/j.wasman.2023.06.018_b0240) 2023; 167
Lefebvre (10.1016/j.wasman.2023.06.018_b0100) 2021; 11
Kamran (10.1016/j.wasman.2023.06.018_b0085) 2018; 11
Shirley (10.1016/j.wasman.2023.06.018_b0205) 2022; 68
Xu (10.1016/j.wasman.2023.06.018_b0270) 2014; 111
Tsui (10.1016/j.wasman.2023.06.018_b0230) 2023; 369
Ma (10.1016/j.wasman.2023.06.018_b0130) 2016; 74
Sun (10.1016/j.wasman.2023.06.018_b0215) 2018
Williams (10.1016/j.wasman.2023.06.018_b0255) 2019; 1
Zhang (10.1016/j.wasman.2023.06.018_b0280) 2015; 153
Gu (10.1016/j.wasman.2023.06.018_b0060) 2020; 743
Jiang (10.1016/j.wasman.2023.06.018_b0075) 2019; 53
McGowen (10.1016/j.wasman.2023.06.018_b0135) 2001; 30
10.1016/j.wasman.2023.06.018_b0140
Vercruysse (10.1016/j.wasman.2023.06.018_b0235) 2021; 159
10.1016/j.wasman.2023.06.018_b0020
Chen (10.1016/j.wasman.2023.06.018_b0015) 2015; 134
Liu (10.1016/j.wasman.2023.06.018_b0110) 2019; 87
Balkaya (10.1016/j.wasman.2023.06.018_b0010) 2008; 140
Toplak (10.1016/j.wasman.2023.06.018_b0225) 2021; 10
Ribeiro (10.1016/j.wasman.2023.06.018_b0180) 2018; 18
References_xml – volume: 30
  start-page: 493
  year: 2001
  end-page: 500
  ident: b0135
  article-title: Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil
  publication-title: J. Environ. Qual.
– volume: 44
  start-page: 135
  year: 2018
  end-page: 154
  ident: b0045
  article-title: Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste
  publication-title: Res. Chem. Intermed.
– year: 2018
  ident: b0215
  article-title: ‘Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions’
  publication-title: Sci. Total Environ. [Preprint] Available at:
– volume: 660
  start-page: 80
  year: 2019
  end-page: 96
  ident: b0070
  article-title: An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain
  publication-title: Sci. Total Environ.
– volume: 140
  start-page: 37
  year: 2017
  end-page: 47
  ident: b0005
  article-title: Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 13
  start-page: 2270
  year: 2020
  ident: b0250
  article-title: Characterization of acid-aged biochar and its ammonium adsorption in an aqueous solution
  publication-title: Materials
– volume: 140
  start-page: 247
  year: 2008
  end-page: 254
  ident: b0010
  article-title: Adsorption of cadmium from aqueous solution by phosphogypsum
  publication-title: Chem. Eng. J.
– volume: 155
  start-page: 230
  year: 2023
  end-page: 239
  ident: b0245
  article-title: Screening tests for N sorption allow to select and engineer biochars for N mitigation during biomass processing
  publication-title: Waste Manag.
– volume: 68
  start-page: 7
  year: 2022
  ident: b0205
  article-title: Chemical characterisation is rough: the impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals
  publication-title: Facies
– reference: European Biochar Foundation (EBC) (2022) ‘Guidelines for a Sustainable Production of Biochar’, pp. 1–22. Available at:
– volume: 736
  year: 2020
  ident: b0220
  article-title: Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs
  publication-title: Sci. Total Environ.
– volume: 124
  start-page: 14592
  year: 2020
  end-page: 14602
  ident: b0120
  article-title: Adsorption of cadmium using biochars produced from agro-residues
  publication-title: J. Phys. Chem. C
– volume: 7
  year: 2019
  ident: b0165
  article-title: ‘Removal of cadmium from wastewaters with low-cost adsorbents’
  publication-title: J. Environ. Chem. Eng.
– volume: 12
  start-page: 9676
  year: 2022
  ident: b0195
  article-title: Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solution
  publication-title: Sci. Rep.
– volume: 47
  start-page: 73
  year: 2018
  end-page: 82
  ident: b0185
  article-title: Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis
  publication-title: Ambio
– volume: 168
  year: 2022
  ident: b0090
  article-title: The effect of pyrolysis temperature and feedstock on biochar agronomic properties
  publication-title: J. Anal. Appl. Pyrol.
– volume: 10
  start-page: 2300
  year: 2021
  ident: b0225
  article-title: Quasar: easy machine learning for biospectroscopy
  publication-title: Cells
– volume: 403
  year: 2021
  ident: b0055
  article-title: THE DARK SIDE OF BLACK GOLD: ecotoxicological aspects of biochar and biochar-amended soils
  publication-title: J. Hazard. Mater.
– volume: 111
  start-page: 320
  year: 2014
  end-page: 326
  ident: b0265
  article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties
  publication-title: Chemosphere
– volume: 18
  start-page: 2023
  year: 2018
  end-page: 2031
  ident: b0180
  article-title: Incorporation of biomass fly ash and biological sludge in the soil: effects along the soil profile and in the leachate water
  publication-title: J. Soil. Sediment.
– volume: 11
  year: 2018
  ident: b0085
  article-title: ‘Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils’,
  publication-title: Arabian J. Geosciences
– reference: Daneluti, A.L.M. and Matos, J. do R. (2013) ‘Study of thermal behavior of phytic acid’,
– volume: 321
  year: 2020
  ident: b0285
  article-title: Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: cadmium immobilization mechanisms and environmental implication
  publication-title: Bioresour. Technol.
– volume: 647
  start-page: 210
  year: 2019
  end-page: 222
  ident: b0105
  article-title: Biochar stability assessment methods: a review
  publication-title: Sci. Total Environ.
– volume: 153
  start-page: 68
  year: 2015
  end-page: 73
  ident: b0280
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manage.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0100
  article-title: Assessing the carbon capture potential of a reforestation project
  publication-title: Nature
– volume: 5
  start-page: 30989
  year: 2015
  end-page: 31003
  ident: b0050
  article-title: ‘(Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review’,
  publication-title: RSC Advances
– volume: 671
  start-page: 1134
  year: 2019
  end-page: 1143
  ident: b0150
  article-title: Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars
  publication-title: Sci. Total Environ.
– reference: ,
– volume: 246
  start-page: 110
  year: 2017
  end-page: 122
  ident: b0145
  article-title: Environmental application of biochar: current status and perspectives
  publication-title: Bioresour. Technol.
– reference: Sergey, S. (ed.) 2017
– volume: 24
  start-page: 15270
  year: 2017
  end-page: 15277
  ident: b0175
  article-title: Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions
  publication-title: Environ. Sci. Pollut. Res.
– reference: , 49(2), pp. 275–283. Available at: https://doi.org/10.1590/S1984-82502013000200009.
– volume: 22
  start-page: 17606
  year: 2015
  end-page: 17614
  ident: b0160
  article-title: Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar
  publication-title: Environ. Sci. Pollut. Res.
– volume: 167
  start-page: 39
  year: 2023
  end-page: 45
  ident: b0240
  article-title: Biochar amendment to cattle slurry reduces NH3 emissions during storage without risk of higher NH3 emissions after soil application of the solid fraction
  publication-title: Waste Manag.
– volume: 226
  start-page: 9
  year: 2015
  ident: b0095
  article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions
  publication-title: Water Air Soil Pollut.
– volume: 369
  year: 2023
  ident: b0230
  article-title: Machine learning and circular bioeconomy: building new resource efficiency from diverse waste streams
  publication-title: Bioresour. Technol.
– volume: 246
  start-page: 34
  year: 2017
  end-page: 47
  ident: b0210
  article-title: Biochar modification to enhance sorption of inorganics from water
  publication-title: Bioresour. Technol.
– volume: 659
  start-page: 473
  year: 2019
  end-page: 490
  ident: b0275
  article-title: Review of biochar for the management of contaminated soil: preparation, application and prospect
  publication-title: Sci. Total Environ.
– volume: 656
  start-page: 969
  year: 2019
  end-page: 976
  ident: b0115
  article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis
  publication-title: Sci. Total Environ.
– volume: 693
  year: 2019
  ident: b0170
  article-title: The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 9043
  year: 2017
  end-page: 9052
  ident: b0125
  article-title: Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils
  publication-title: ACS Sustain. Chem. Eng.
– reference: Cherifa, A. Ben and Jemal, M. (2004) ‘Enthalpy of Formation and Mixing of Calcium-Cadmium Phosphoapatites’,
– reference: Nie, J., Zhi, D. and Zhou, Y. 2021 ‘Magnetic biochar-based composites for removal of recalcitrant pollutants in water’, in
– reference: . Elsevier, pp. 163–187. Available at: https://doi.org/10.1016/B978-0-12-820042-1.00015-8.
– volume: 172
  start-page: 326
  year: 2019
  end-page: 333
  ident: b0155
  article-title: Combining biochar and sewage sludge for immobilization of heavy metals in mining soils
  publication-title: Ecotoxicol. Environ. Saf.
– year: 2019
  ident: b0065
  article-title: ‘Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln’,
  publication-title: Available at:
– volume: 53
  start-page: 13841
  year: 2019
  end-page: 13849
  ident: b0075
  article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray Diffraction, Fourier transform infrared, and solid-state NMR spectroscopy
  publication-title: Environ. Sci. Tech.
– volume: 10
  start-page: 3667
  year: 2020
  end-page: 3674
  ident: b0030
  article-title: ‘Effect of different pyrolysis temperatures on physico-chemical characteristics and lead removal of biochar derived from chicken manure’
  publication-title: RSC Advances
– volume: 13
  start-page: 1731
  year: 2021
  end-page: 1764
  ident: b0080
  article-title: How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar
  publication-title: GCB Bioenergy
– reference: .
– volume: 1
  start-page: 237
  year: 2019
  end-page: 248
  ident: b0255
  article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility
  publication-title: Biochar
– volume: 87
  start-page: 71
  year: 2019
  end-page: 77
  ident: b0110
  article-title: Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO
  publication-title: Waste Manag.
– volume: 111
  start-page: 296
  year: 2014
  end-page: 303
  ident: b0270
  article-title: Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal
  publication-title: Chemosphere
– volume: 134
  start-page: 286
  year: 2015
  end-page: 293
  ident: b0015
  article-title: Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism
  publication-title: Chemosphere
– volume: 5
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0260
  article-title: Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils
  publication-title: Springerplus
– volume: 616–617
  start-page: 1101
  year: 2018
  end-page: 1123
  ident: b0190
  article-title: Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands
  publication-title: Sci. Total Environ.
– volume: 74
  start-page: 1335
  year: 2016
  end-page: 1345
  ident: b0130
  article-title: Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution
  publication-title: Water Sci. Technol.
– reference: , 15(0), pp. 113–118. Available at: https://doi.org/10.3363/prb1992.15.0_113.
– volume: 539
  start-page: 566
  year: 2016
  end-page: 575
  ident: b0025
  article-title: Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars
  publication-title: Sci. Total Environ.
– volume: 159
  year: 2021
  ident: b0235
  article-title: Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties
  publication-title: J. Anal. Appl. Pyrol.
– volume: 743
  year: 2020
  ident: b0060
  article-title: Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: a meta-analysis
  publication-title: Sci. Total Environ.
– volume: 539
  start-page: 566
  year: 2016
  ident: 10.1016/j.wasman.2023.06.018_b0025
  article-title: Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.022
– volume: 167
  start-page: 39
  year: 2023
  ident: 10.1016/j.wasman.2023.06.018_b0240
  article-title: Biochar amendment to cattle slurry reduces NH3 emissions during storage without risk of higher NH3 emissions after soil application of the solid fraction
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2023.05.023
– volume: 111
  start-page: 320
  year: 2014
  ident: 10.1016/j.wasman.2023.06.018_b0265
  article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.04.043
– volume: 671
  start-page: 1134
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0150
  article-title: Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.437
– ident: 10.1016/j.wasman.2023.06.018_b0020
  doi: 10.3363/prb1992.15.0_113
– volume: 656
  start-page: 969
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0115
  article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.396
– volume: 13
  start-page: 1731
  issue: 11
  year: 2021
  ident: 10.1016/j.wasman.2023.06.018_b0080
  article-title: How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12885
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.wasman.2023.06.018_b0100
  article-title: Assessing the carbon capture potential of a reforestation project
  publication-title: Nature
– volume: 44
  start-page: 135
  issue: 1
  year: 2018
  ident: 10.1016/j.wasman.2023.06.018_b0045
  article-title: Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-017-3094-1
– volume: 10
  start-page: 3667
  issue: 7
  year: 2020
  ident: 10.1016/j.wasman.2023.06.018_b0030
  article-title: ‘Effect of different pyrolysis temperatures on physico-chemical characteristics and lead removal of biochar derived from chicken manure’
  publication-title: RSC Advances
  doi: 10.1039/C9RA08199B
– volume: 10
  start-page: 2300
  issue: 9
  year: 2021
  ident: 10.1016/j.wasman.2023.06.018_b0225
  article-title: Quasar: easy machine learning for biospectroscopy
  publication-title: Cells
  doi: 10.3390/cells10092300
– volume: 11
  issue: 11
  year: 2018
  ident: 10.1016/j.wasman.2023.06.018_b0085
  article-title: ‘Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils’,
  publication-title: Arabian J. Geosciences
  doi: 10.1007/s12517-018-3616-1
– volume: 74
  start-page: 1335
  issue: 6
  year: 2016
  ident: 10.1016/j.wasman.2023.06.018_b0130
  article-title: Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2016.319
– volume: 647
  start-page: 210
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0105
  article-title: Biochar stability assessment methods: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.402
– volume: 12
  start-page: 9676
  issue: 1
  year: 2022
  ident: 10.1016/j.wasman.2023.06.018_b0195
  article-title: Highly efficient engineered waste eggshell-fly ash for cadmium removal from aqueous solution
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-13664-6
– ident: 10.1016/j.wasman.2023.06.018_b0200
– year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0065
  article-title: ‘Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln’, Powder Technology [Preprint]
  publication-title: Available at:
– volume: 124
  start-page: 14592
  issue: 27
  year: 2020
  ident: 10.1016/j.wasman.2023.06.018_b0120
  article-title: Adsorption of cadmium using biochars produced from agro-residues
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c02216
– volume: 172
  start-page: 326
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0155
  article-title: Combining biochar and sewage sludge for immobilization of heavy metals in mining soils
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.01.110
– volume: 321
  year: 2020
  ident: 10.1016/j.wasman.2023.06.018_b0285
  article-title: Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: cadmium immobilization mechanisms and environmental implication
  publication-title: Bioresour. Technol.
– volume: 111
  start-page: 296
  year: 2014
  ident: 10.1016/j.wasman.2023.06.018_b0270
  article-title: Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.04.014
– ident: 10.1016/j.wasman.2023.06.018_b0040
– volume: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0165
  article-title: ‘Removal of cadmium from wastewaters with low-cost adsorbents’
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.11.040
– volume: 24
  start-page: 15270
  issue: 18
  year: 2017
  ident: 10.1016/j.wasman.2023.06.018_b0175
  article-title: Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9134-y
– volume: 659
  start-page: 473
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0275
  article-title: Review of biochar for the management of contaminated soil: preparation, application and prospect
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.400
– volume: 660
  start-page: 80
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0070
  article-title: An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.419
– volume: 246
  start-page: 110
  year: 2017
  ident: 10.1016/j.wasman.2023.06.018_b0145
  article-title: Environmental application of biochar: current status and perspectives
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.122
– volume: 246
  start-page: 34
  year: 2017
  ident: 10.1016/j.wasman.2023.06.018_b0210
  article-title: Biochar modification to enhance sorption of inorganics from water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.082
– volume: 369
  year: 2023
  ident: 10.1016/j.wasman.2023.06.018_b0230
  article-title: Machine learning and circular bioeconomy: building new resource efficiency from diverse waste streams
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.128445
– volume: 53
  start-page: 13841
  issue: 23
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0075
  article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray Diffraction, Fourier transform infrared, and solid-state NMR spectroscopy
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.9b03261
– volume: 155
  start-page: 230
  year: 2023
  ident: 10.1016/j.wasman.2023.06.018_b0245
  article-title: Screening tests for N sorption allow to select and engineer biochars for N mitigation during biomass processing
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2022.10.037
– volume: 153
  start-page: 68
  year: 2015
  ident: 10.1016/j.wasman.2023.06.018_b0280
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2015.01.043
– volume: 134
  start-page: 286
  year: 2015
  ident: 10.1016/j.wasman.2023.06.018_b0015
  article-title: Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.04.052
– volume: 743
  year: 2020
  ident: 10.1016/j.wasman.2023.06.018_b0060
  article-title: Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140696
– ident: 10.1016/j.wasman.2023.06.018_b0140
  doi: 10.1016/B978-0-12-820042-1.00015-8
– volume: 616–617
  start-page: 1101
  year: 2018
  ident: 10.1016/j.wasman.2023.06.018_b0190
  article-title: Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.209
– year: 2018
  ident: 10.1016/j.wasman.2023.06.018_b0215
  article-title: ‘Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions’
  publication-title: Sci. Total Environ. [Preprint] Available at:
  doi: 10.1016/j.scitotenv.2018.04.099
– volume: 226
  start-page: 9
  issue: 2
  year: 2015
  ident: 10.1016/j.wasman.2023.06.018_b0095
  article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-014-2275-4
– volume: 736
  year: 2020
  ident: 10.1016/j.wasman.2023.06.018_b0220
  article-title: Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139570
– volume: 140
  start-page: 247
  issue: 1–3
  year: 2008
  ident: 10.1016/j.wasman.2023.06.018_b0010
  article-title: Adsorption of cadmium from aqueous solution by phosphogypsum
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.10.002
– volume: 30
  start-page: 493
  issue: 2
  year: 2001
  ident: 10.1016/j.wasman.2023.06.018_b0135
  article-title: Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.302493x
– volume: 140
  start-page: 37
  year: 2017
  ident: 10.1016/j.wasman.2023.06.018_b0005
  article-title: Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.02.028
– volume: 47
  start-page: 73
  issue: s1
  year: 2018
  ident: 10.1016/j.wasman.2023.06.018_b0185
  article-title: Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis
  publication-title: Ambio
  doi: 10.1007/s13280-017-0990-y
– volume: 22
  start-page: 17606
  issue: 22
  year: 2015
  ident: 10.1016/j.wasman.2023.06.018_b0160
  article-title: Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4977-6
– volume: 87
  start-page: 71
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0110
  article-title: Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.01.045
– volume: 693
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0170
  article-title: The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.369
– volume: 159
  year: 2021
  ident: 10.1016/j.wasman.2023.06.018_b0235
  article-title: Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2021.105294
– volume: 68
  start-page: 7
  issue: 2
  year: 2022
  ident: 10.1016/j.wasman.2023.06.018_b0205
  article-title: Chemical characterisation is rough: the impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals
  publication-title: Facies
  doi: 10.1007/s10347-022-00645-4
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.wasman.2023.06.018_b0260
  article-title: Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils
  publication-title: Springerplus
  doi: 10.1186/s40064-016-2019-6
– volume: 168
  year: 2022
  ident: 10.1016/j.wasman.2023.06.018_b0090
  article-title: The effect of pyrolysis temperature and feedstock on biochar agronomic properties
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2022.105728
– ident: 10.1016/j.wasman.2023.06.018_b0035
  doi: 10.1590/S1984-82502013000200009
– volume: 1
  start-page: 237
  issue: 3
  year: 2019
  ident: 10.1016/j.wasman.2023.06.018_b0255
  article-title: Effects of 7 years of field weathering on biochar recalcitrance and solubility
  publication-title: Biochar
  doi: 10.1007/s42773-019-00026-1
– volume: 13
  start-page: 2270
  issue: 10
  year: 2020
  ident: 10.1016/j.wasman.2023.06.018_b0250
  article-title: Characterization of acid-aged biochar and its ammonium adsorption in an aqueous solution
  publication-title: Materials
  doi: 10.3390/ma13102270
– volume: 5
  start-page: 30989
  issue: 39
  year: 2015
  ident: 10.1016/j.wasman.2023.06.018_b0050
  article-title: ‘(Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review’,
  publication-title: RSC Advances
  doi: 10.1039/C4RA15453C
– volume: 5
  start-page: 9043
  issue: 10
  year: 2017
  ident: 10.1016/j.wasman.2023.06.018_b0125
  article-title: Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01935
– volume: 18
  start-page: 2023
  issue: 5
  year: 2018
  ident: 10.1016/j.wasman.2023.06.018_b0180
  article-title: Incorporation of biomass fly ash and biological sludge in the soil: effects along the soil profile and in the leachate water
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-018-1949-8
– volume: 403
  year: 2021
  ident: 10.1016/j.wasman.2023.06.018_b0055
  article-title: THE DARK SIDE OF BLACK GOLD: ecotoxicological aspects of biochar and biochar-amended soils
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123833
SSID ssj0014810
Score 2.408095
Snippet •Chicken manure biochars are excellent Cd2+ adsorbents.•The optimal pyrolysis temperature to produce biochar-based Cd2+ adsorbents is 450 °C.•Precipitation is...
Fourteen biochars from seven biomass sources were investigated on their long-term Cd2+ removal. The experiments consisted of a ten-day batch Cd2+ adsorption in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 376
SubjectTerms Adsorption
Agro-residues
Biochar
Cadmium
Long-term effect
Title The screening of various biochars for Cd2+ removal at relevant soil pH
URI https://dx.doi.org/10.1016/j.wasman.2023.06.018
https://www.proquest.com/docview/2829425802
Volume 168
WOSCitedRecordID wos001035845400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dixMxEA93PUF9ED09PD-OCPpUtnSTzcc-nqVHFTmEnlifliSbhR7ttrR7tX--k012Wz3kVPBlWcJ-hMwvk5lk5jcIvRU54wWPTZQYlkbOgYikNP2or5K0EDQtKM_rYhPi8lJOJunng4NtkwuzmYmylNttuvyvooY2ELZLnf0LcbcfhQa4B6HDFcQO1z8WPOgC8E9DQPMG3GEX6KqnC5djVRMwdAc5eUfed1d2vtg4uoCqrp4CZnXVXS-ms-5ytG-2flUAhhDpOg8kpcPZfO0j49u9hE-qUp7ksbc721jNbKiv3DZ-W7r1wGeFtI1jA7C68RXbxr393QhC21i4sEXWpMnsYpL8XiOPYLZP_KLjNa0U7mjHs4q3qtiX2AnKlAq-ty5TX9rnlsr3uw_Xve9qDT3vuU7VjKxBrf9Mpj12XXE9IbRm1pGH6IgIlsoOOjr_MJx8bE-gElkzWbRdb9Iu69jA2__6nVnzywJfWy1Xj9Gj4G7gcw-TJ-jAlsfo_qCp8neMHu4RUj5FFwAe3IIHLwocwIMb8GAQOQbwdHGADlYVbqCDHXTwcvQMfbkYXg1GUai0ERnC0yoyPNY2l0xLG1uhVEJyKS3TzGrDcy5sEhcxK3JmCpGkXGtKYkPAFeVacUb69AR1ykVpnyNsYHYXOmeEsjzpJyqlShaJ0UwXPE8FPUW0GajMBBp6Vw1lljXxhteZH97MDW_mwi5jeYqi9q2lp2G543nRyCALpqQ3ETOAzR1vvmlEloEo3PGZKi0MdOZiDmCFk33y4p-__hI92M2aV6hTrW7sa3TPbKrpenWGDsVEngUk_gAL-aPw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+screening+of+various+biochars+for+Cd2%2B+removal+at+relevant+soil+pH&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Lataf%2C+A.&rft.au=Carleer%2C+R.&rft.au=Yperman%2C+J.&rft.au=Schreurs%2C+S.&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=168&rft.spage=376&rft.epage=385&rft_id=info:doi/10.1016%2Fj.wasman.2023.06.018&rft.externalDocID=S0956053X23004518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon