Aspheric grinding surface accuracy optimization by integrating sensitive geometric error detection and in-situ compensation processing

In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the compensation grinding process, geometric errors can induce deviations in the grinding trajectory, thereby adversely affecting the corrective outc...

Full description

Saved in:
Bibliographic Details
Published in:Precision engineering Vol. 95; pp. 566 - 577
Main Authors: He, Xiangbo, Zhang, Kai, Li, Ruirui, Feng, Huiming, Peng, Yunfeng
Format: Journal Article
Language:English
Published: Elsevier Inc 01.08.2025
Subjects:
ISSN:0141-6359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the compensation grinding process, geometric errors can induce deviations in the grinding trajectory, thereby adversely affecting the corrective outcomes for surface accuracy. Consequently, this study introduces an optimization method for aspheric grinding surface accuracy that integrates sensitive geometric error identification with in-situ compensation processing techniques, aiming to mitigate the impacts of geometric errors on compensation processing performance. Initially, a volumetric error model of the grinding machine was established based on multibody system theory, and the evolution pattern of the peak-to-valley (PV) values under the influence of geometric errors for various types of optical components was simulated and analyzed. Subsequently, using actual inverse kinematics, analytical expressions for the computer numerical control (CNC) code for compensating geometric errors across various motion axes of the grinder were derived. Thereafter, a geometric error-surface accuracy model (GE-SAM) was constructed to elucidate the interrelationship between geometric errors and surface accuracy. Based on this model, a global sensitivity analysis was employed to identify critical geometric error terms affecting the surface accuracy of aspheric grinding, which further streamlined the analytical expressions for the compensation CNC code. Finally, the efficacy of the proposed method was substantiated through experimental validation. The experimental results demonstrated that the surface accuracy optimization strategy proposed in this paper is more effective than the traditional in-situ compensation processing method. •GE-SAM is established to reveal the relationship between geometric error and PV.•Sensitivity analysis simplifies the expression of compensated motion commands.•Proposed surface accuracy optimization method integrates error identification with in-situ compensation processing.•Experimental validation shows proposed method over traditional method.
AbstractList In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the compensation grinding process, geometric errors can induce deviations in the grinding trajectory, thereby adversely affecting the corrective outcomes for surface accuracy. Consequently, this study introduces an optimization method for aspheric grinding surface accuracy that integrates sensitive geometric error identification with in-situ compensation processing techniques, aiming to mitigate the impacts of geometric errors on compensation processing performance. Initially, a volumetric error model of the grinding machine was established based on multibody system theory, and the evolution pattern of the peak-to-valley (PV) values under the influence of geometric errors for various types of optical components was simulated and analyzed. Subsequently, using actual inverse kinematics, analytical expressions for the computer numerical control (CNC) code for compensating geometric errors across various motion axes of the grinder were derived. Thereafter, a geometric error-surface accuracy model (GE-SAM) was constructed to elucidate the interrelationship between geometric errors and surface accuracy. Based on this model, a global sensitivity analysis was employed to identify critical geometric error terms affecting the surface accuracy of aspheric grinding, which further streamlined the analytical expressions for the compensation CNC code. Finally, the efficacy of the proposed method was substantiated through experimental validation. The experimental results demonstrated that the surface accuracy optimization strategy proposed in this paper is more effective than the traditional in-situ compensation processing method. •GE-SAM is established to reveal the relationship between geometric error and PV.•Sensitivity analysis simplifies the expression of compensated motion commands.•Proposed surface accuracy optimization method integrates error identification with in-situ compensation processing.•Experimental validation shows proposed method over traditional method.
Author Li, Ruirui
Peng, Yunfeng
Feng, Huiming
He, Xiangbo
Zhang, Kai
Author_xml – sequence: 1
  givenname: Xiangbo
  surname: He
  fullname: He, Xiangbo
– sequence: 2
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 3
  givenname: Ruirui
  surname: Li
  fullname: Li, Ruirui
– sequence: 4
  givenname: Huiming
  surname: Feng
  fullname: Feng, Huiming
– sequence: 5
  givenname: Yunfeng
  surname: Peng
  fullname: Peng, Yunfeng
  email: pengyf@xmu.edu.cn
BookMark eNqNkM9OwzAMh3MYEhvwDhH3jqRJ25XbNP5Kk7jAOUodt2SiaZVkk8YD8NykjANHJEuWLX-frN-CzNzgkJBrzpac8fJmtxw9gg02rV23zFleLFkqLmZkzrjkWSmK-pwsQtgxxqoVk3PytQ7jO3oLtPPWGes6Gva-1YBUA-y9hiMdxmh7-6ljMtPmSK2L2Pk0Tsfogo32gLTDocc4mdD7wVODEeEH0c4kJkt3ewpDPybk5Br9ABhC8lySs1Z_BLz67Rfk7eH-dfOUbV8enzfrbQZ5WcesNgakLEWNddtIU-Wy1GBEepebdtXolsuWN4BypU1Vs1JUuuKsMoURspASxQW5PXnBDyF4bNXoba_9UXGmphTVTv1NUU0pKpaKiwTfnWBMHx4sehXAogM0NiFRmcH-R_MNfTKMXw
Cites_doi 10.1016/j.measurement.2022.111825
10.1016/j.procir.2013.06.078
10.1016/j.ijmachtools.2007.11.005
10.1016/j.precisioneng.2018.12.009
10.1016/j.jmapro.2023.12.067
10.1186/s10033-022-00782-5
10.1007/s12541-019-00191-0
10.1016/j.mechmachtheory.2021.104687
10.1007/s00170-020-06096-x
10.1007/s40436-023-00458-w
10.1016/j.jmatprotec.2022.117849
10.1007/s00170-018-2598-1
10.1016/j.ijmachtools.2023.104017
10.1016/j.precisioneng.2023.10.005
10.1016/j.ijmecsci.2019.105319
10.1007/s00170-023-11117-6
10.1177/0954405417731471
10.1007/s00170-012-4347-1
10.1016/S0378-4754(00)00270-6
10.1016/j.ijmecsci.2019.105351
10.1016/j.cja.2023.02.035
10.1007/s00170-017-0394-y
10.1016/j.cirp.2011.03.120
10.1016/j.jmapro.2024.03.075
10.1016/j.ijmachtools.2010.01.001
10.1016/j.cirp.2010.05.001
10.1016/j.precisioneng.2024.01.021
10.1016/j.ijmachtools.2007.10.004
10.1016/j.ijmachtools.2015.11.006
10.1016/j.ijmachtools.2016.10.001
10.1016/j.precisioneng.2024.04.023
10.1016/j.measurement.2024.114825
10.1016/j.measurement.2020.107809
10.1016/j.jmapro.2021.04.059
10.1007/s00170-023-12212-4
10.1016/j.jmapro.2020.09.020
10.1016/j.precisioneng.2024.01.026
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.precisioneng.2025.05.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 577
ExternalDocumentID 10_1016_j_precisioneng_2025_05_013
S0141635925001643
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c269t-9ddc44639e9fb4d7246acd3fac1df8baf14f1bce48ad790637a7107d5d34544e3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502066800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-6359
IngestDate Sat Nov 29 07:50:58 EST 2025
Sat Jul 05 17:11:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords In-situ compensation processing
Geometric error compensation
In-situ measurement
Critical geometric error tracing
Surface accuracy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-9ddc44639e9fb4d7246acd3fac1df8baf14f1bce48ad790637a7107d5d34544e3
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_precisioneng_2025_05_013
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2025_05_013
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yu, Yao, Xu, Wang, Li, Chu (bib6) 2023; 312
Cong, Zha, Chen (bib39) 2023; 126
Gao, Ibaraki, Donmez, Kono, Mayer, Chen (bib25) 2023; 187
Zou, Zhao, Li, Li, Sun (bib26) 2017; 92
Wang, Lin, Jiang, Yin, Zhao (bib30) 2018; 99
Wang, Wu, Liu, Chen, Cheng, Fang (bib5) 2019; 56
Xia, Wang, Ma, Wang, Xiao (bib27) 2020; 169
Cai, Yang, Wang, Wang, Zhu, Kang (bib16) 2024; 234
Zou, Zhao, Li, Li, Hu, Sun (bib9) 2017; 233
Zuo, Li, Yang, Jiang (bib23) 2013; 8
Zhong, Liu, Mao, Li (bib38) 2019; 20
Chen, Yin, Huang, Ohmori, Wang, Fan (bib11) 2010; 50
Tao, Li, Chen, Fan, Pan (bib14) 2024; 85
Sobol (bib34) 2001; 55
Sazedur Rahman, Saleh, Lim, Son, Rahman (bib10) 2008; 48
Guo, Yang, Qiao, Mei (bib35) 2022; 169
Wang, Zhao, Guo, Pan (bib32) 2020; 58
Brinksmeier, Mutlugunes, Klocke, Aurich, Shore, Ohmori (bib3) 2010; 59
Wu, Zheng, Li, Wang, Xiang, Meng (bib18) 2020; 161
Fan, Xue, Zhao, Jiang, Han, Zhang (bib20) 2023; 12
Nasr, Davoodi (bib7) 2024; 88
Lin, Tzeng (bib17) 2008; 48
Wang, Zhao (bib36) 2022; 202
Chen, Yang, Liao, Cheung, Jiang, Zhang (bib2) 2022; 30
Zhang, Jiang, Luo, Wu, Zhang, Tang (bib13) 2024; 37
Zhang, Xiang, Wu, Yang (bib29) 2024; 110
Fan, Tao, Pan, Chen (bib15) 2020; 111
Jiang, Guo, Li (bib33) 2012; 66
Li, Sun, Chen, Chen, Lin, Ding (bib1) 2022; 35
He, Yang, Zhang, Li, Peng (bib8) 2024; 119
Zheng, Wang, Qiao, Wang, Lao, Wu (bib22) 2024; 88
Ding, Huang, Yu, Wang (bib24) 2016; 111
Wang, Zhao, Pan, Guo (bib12) 2021; 67
Comley, Morantz, Shore, Tonnellier (bib4) 2011; 60
Chen, Bai, Zhang, Fang, Chen (bib28) 2024; 88
Xiang, Altintas (bib21) 2016; 101
Zhang, Liu, Zhou, Wang (bib19) 2023; 131
Pan, Zhao, Guo, Chen, Wang, Wu (bib31) 2020; 170
Zou (bib37) 2018
Chen (10.1016/j.precisioneng.2025.05.013_bib11) 2010; 50
Xiang (10.1016/j.precisioneng.2025.05.013_bib21) 2016; 101
He (10.1016/j.precisioneng.2025.05.013_bib8) 2024; 119
Wang (10.1016/j.precisioneng.2025.05.013_bib30) 2018; 99
Pan (10.1016/j.precisioneng.2025.05.013_bib31) 2020; 170
Fan (10.1016/j.precisioneng.2025.05.013_bib20) 2023; 12
Lin (10.1016/j.precisioneng.2025.05.013_bib17) 2008; 48
Wang (10.1016/j.precisioneng.2025.05.013_bib36) 2022; 202
Wang (10.1016/j.precisioneng.2025.05.013_bib12) 2021; 67
Tao (10.1016/j.precisioneng.2025.05.013_bib14) 2024; 85
Zheng (10.1016/j.precisioneng.2025.05.013_bib22) 2024; 88
Guo (10.1016/j.precisioneng.2025.05.013_bib35) 2022; 169
Nasr (10.1016/j.precisioneng.2025.05.013_bib7) 2024; 88
Chen (10.1016/j.precisioneng.2025.05.013_bib28) 2024; 88
Li (10.1016/j.precisioneng.2025.05.013_bib1) 2022; 35
Zhong (10.1016/j.precisioneng.2025.05.013_bib38) 2019; 20
Sazedur Rahman (10.1016/j.precisioneng.2025.05.013_bib10) 2008; 48
Cong (10.1016/j.precisioneng.2025.05.013_bib39) 2023; 126
Zuo (10.1016/j.precisioneng.2025.05.013_bib23) 2013; 8
Zhang (10.1016/j.precisioneng.2025.05.013_bib29) 2024; 110
Jiang (10.1016/j.precisioneng.2025.05.013_bib33) 2012; 66
Zou (10.1016/j.precisioneng.2025.05.013_bib9) 2017; 233
Zhang (10.1016/j.precisioneng.2025.05.013_bib19) 2023; 131
Comley (10.1016/j.precisioneng.2025.05.013_bib4) 2011; 60
Zhang (10.1016/j.precisioneng.2025.05.013_bib13) 2024; 37
Wang (10.1016/j.precisioneng.2025.05.013_bib5) 2019; 56
Zou (10.1016/j.precisioneng.2025.05.013_bib37) 2018
Cai (10.1016/j.precisioneng.2025.05.013_bib16) 2024; 234
Gao (10.1016/j.precisioneng.2025.05.013_bib25) 2023; 187
Brinksmeier (10.1016/j.precisioneng.2025.05.013_bib3) 2010; 59
Yu (10.1016/j.precisioneng.2025.05.013_bib6) 2023; 312
Zou (10.1016/j.precisioneng.2025.05.013_bib26) 2017; 92
Fan (10.1016/j.precisioneng.2025.05.013_bib15) 2020; 111
Ding (10.1016/j.precisioneng.2025.05.013_bib24) 2016; 111
Sobol (10.1016/j.precisioneng.2025.05.013_bib34) 2001; 55
Wu (10.1016/j.precisioneng.2025.05.013_bib18) 2020; 161
Chen (10.1016/j.precisioneng.2025.05.013_bib2) 2022; 30
Xia (10.1016/j.precisioneng.2025.05.013_bib27) 2020; 169
Wang (10.1016/j.precisioneng.2025.05.013_bib32) 2020; 58
References_xml – volume: 20
  start-page: 1653
  year: 2019
  end-page: 1665
  ident: bib38
  article-title: An optimal method for improving volumetric error compensation in machine tools based on squareness error identification
  publication-title: Int J Precis Eng Manuf
– volume: 48
  start-page: 338
  year: 2008
  end-page: 349
  ident: bib17
  article-title: Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool
  publication-title: Int J Mach Tool Manufact
– volume: 58
  start-page: 1064
  year: 2020
  end-page: 1074
  ident: bib32
  article-title: Ultra-precision raster grinding of monocrystalline silicon biconical free-form optics using arc-shaped diamond grinding wheels
  publication-title: J Manuf Process
– volume: 161
  year: 2020
  ident: bib18
  article-title: A geometric accuracy analysis and tolerance robust design approach for a vertical machining center based on the reliability theory
  publication-title: Measurement
– volume: 8
  start-page: 135
  year: 2013
  end-page: 140
  ident: bib23
  article-title: Integrated geometric error compensation of machining processes on CNC machine tool
  publication-title: Proced CIRP
– volume: 60
  start-page: 379
  year: 2011
  end-page: 382
  ident: bib4
  article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope
  publication-title: CIRP Annal
– volume: 233
  start-page: 1608
  year: 2017
  end-page: 1613
  ident: bib9
  article-title: An on-machine error compensation method for an ultra-precision turning machine
  publication-title: Proc IME B J Eng Manufact
– volume: 48
  start-page: 887
  year: 2008
  end-page: 895
  ident: bib10
  article-title: Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation
  publication-title: Int J Mach Tool Manufact
– volume: 55
  start-page: 271
  year: 2001
  end-page: 280
  ident: bib34
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Math Comput Simulat
– volume: 67
  start-page: 128
  year: 2021
  end-page: 140
  ident: bib12
  article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition
  publication-title: J Manuf Process
– volume: 110
  start-page: 447
  year: 2024
  end-page: 461
  ident: bib29
  article-title: Optimal proportion compensation method of key geometric errors for five-axis machine tools considering multiple-direction coupling effects
  publication-title: J Manuf Process
– volume: 312
  year: 2023
  ident: bib6
  article-title: Profile error compensation in ultra-precision grinding of aspherical-cylindrical lens array based on the real-time profile of wheel and normal residual error
  publication-title: J Mater Process Technol
– volume: 202
  year: 2022
  ident: bib36
  article-title: Development of an on-machine measurement system with chromatic confocal probe for measuring the profile error of off-axis biconical free-form optics in ultra-precision grinding
  publication-title: Measurement
– volume: 30
  year: 2022
  ident: bib2
  article-title: Study of deterministic surface micro-texture generation in ultra-precision grinding considering wheel oscillation
  publication-title: Opt Express
– volume: 169
  year: 2020
  ident: bib27
  article-title: Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model
  publication-title: Int J Mech Sci
– volume: 99
  start-page: 1863
  year: 2018
  end-page: 1875
  ident: bib30
  article-title: Fewer-axis grinding methodology with simultaneously guaranteeing surface accuracy and grinding force for large optical SiC mirror
  publication-title: Int J Adv Manuf Technol
– volume: 111
  start-page: 13
  year: 2020
  end-page: 24
  ident: bib15
  article-title: Optimal tolerance allocation for five-axis machine tools in consideration of deformation caused by gravity
  publication-title: Int J Adv Manuf Technol
– volume: 88
  start-page: 986
  year: 2024
  end-page: 996
  ident: bib22
  article-title: Error compensation of five-axis roller machine tool for manufacturing Fresnel mold
  publication-title: Precis Eng
– volume: 50
  start-page: 480
  year: 2010
  end-page: 486
  ident: bib11
  article-title: Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement
  publication-title: Int J Mach Tool Manufact
– volume: 66
  start-page: 537
  year: 2012
  end-page: 545
  ident: bib33
  article-title: Parallel grinding error for a noncoaxial nonaxisymmetric aspheric lens using a fixture with adjustable gradient
  publication-title: Int J Adv Manuf Technol
– volume: 85
  start-page: 226
  year: 2024
  end-page: 240
  ident: bib14
  article-title: An approach for optimal tolerance allocation of five-axis machine tools by simultaneously considering volumetric error and processing simplicity index
  publication-title: Precis Eng
– volume: 88
  start-page: 65
  year: 2024
  end-page: 80
  ident: bib7
  article-title: Prediction of profile error in aspheric grinding of spherical fused silica by ensemble learning regression methods
  publication-title: Precis Eng
– volume: 56
  start-page: 293
  year: 2019
  end-page: 302
  ident: bib5
  article-title: Configuration design and accuracy analysis of special grinding machine for thin-walled small concave surfaces
  publication-title: Precis Eng
– volume: 88
  start-page: 1
  year: 2024
  end-page: 14
  ident: bib28
  article-title: Geometric error suppression of six-axis machine tool for blisk full-shape surface grinding via constrained error sensitivity analysis
  publication-title: Precis Eng
– volume: 187
  year: 2023
  ident: bib25
  article-title: Machine tool calibration: measurement, modeling, and compensation of machine tool errors
  publication-title: Int J Mach Tool Manufact
– volume: 119
  start-page: 193
  year: 2024
  end-page: 203
  ident: bib8
  publication-title: J Manuf Process
– year: 2018
  ident: bib37
  article-title: Sensitivity analysis of geometric error and research of on-machine error compensation for three-axis ultra precision turning machine tool [dissertation]
– volume: 131
  start-page: 2691
  year: 2023
  end-page: 2705
  ident: bib19
  article-title: A support vector regression-based method for modeling geometric errors in CNC machine tools
  publication-title: Int J Adv Manuf Technol
– volume: 37
  start-page: 163
  year: 2024
  end-page: 198
  ident: bib13
  article-title: Geometric error measuring, modeling, and compensation for CNC machine tools: a review
  publication-title: Chin J Aeronaut
– volume: 101
  start-page: 65
  year: 2016
  end-page: 78
  ident: bib21
  article-title: Modeling and compensation of volumetric errors for five-axis machine tools
  publication-title: Int J Mach Tool Manufact
– volume: 35
  year: 2022
  ident: bib1
  article-title: Wheel setting error modeling and compensation for Arc envelope grinding of large-aperture aspherical optics
  publication-title: Chin J Mech Eng-En.
– volume: 111
  start-page: 55
  year: 2016
  end-page: 62
  ident: bib24
  article-title: Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools
  publication-title: Int J Mach Tool Manufact
– volume: 92
  start-page: 4429
  year: 2017
  end-page: 4443
  ident: bib26
  article-title: Sensitivity analysis using a variance-based method for a three-axis diamond turning machine
  publication-title: Int J Adv Manuf Technol
– volume: 170
  year: 2020
  ident: bib31
  article-title: An investigation of the surface waviness features of ground surface in parallel grinding process
  publication-title: Int J Mech Sci
– volume: 234
  year: 2024
  ident: bib16
  article-title: Model for surface topography prediction in the ultra-precision grinding of silicon wafers considering volumetric errors
  publication-title: Measurement
– volume: 59
  start-page: 652
  year: 2010
  end-page: 671
  ident: bib3
  article-title: Ultra-precision grinding
  publication-title: CIRP Annal
– volume: 12
  start-page: 108
  year: 2023
  end-page: 123
  ident: bib20
  article-title: Process planning and contour-based error compensation for precision grinding of miniature scalpels
  publication-title: Advan Manufact
– volume: 126
  start-page: 1109
  year: 2023
  end-page: 1119
  ident: bib39
  article-title: Efficient compensation method of 5-axis machine tools based on a novel representation of the volumetric error
  publication-title: Int J Adv Manuf Technol
– volume: 169
  year: 2022
  ident: bib35
  article-title: Assembly deviation modelling to predict and trace the geometric accuracy of the precision motion system of a CNC machine tool
  publication-title: Mech Mach Theor
– volume: 202
  year: 2022
  ident: 10.1016/j.precisioneng.2025.05.013_bib36
  article-title: Development of an on-machine measurement system with chromatic confocal probe for measuring the profile error of off-axis biconical free-form optics in ultra-precision grinding
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111825
– volume: 8
  start-page: 135
  year: 2013
  ident: 10.1016/j.precisioneng.2025.05.013_bib23
  article-title: Integrated geometric error compensation of machining processes on CNC machine tool
  publication-title: Proced CIRP
  doi: 10.1016/j.procir.2013.06.078
– volume: 48
  start-page: 887
  year: 2008
  ident: 10.1016/j.precisioneng.2025.05.013_bib10
  article-title: Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2007.11.005
– volume: 56
  start-page: 293
  year: 2019
  ident: 10.1016/j.precisioneng.2025.05.013_bib5
  article-title: Configuration design and accuracy analysis of special grinding machine for thin-walled small concave surfaces
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2018.12.009
– volume: 110
  start-page: 447
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib29
  article-title: Optimal proportion compensation method of key geometric errors for five-axis machine tools considering multiple-direction coupling effects
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2023.12.067
– year: 2018
  ident: 10.1016/j.precisioneng.2025.05.013_bib37
– volume: 35
  year: 2022
  ident: 10.1016/j.precisioneng.2025.05.013_bib1
  article-title: Wheel setting error modeling and compensation for Arc envelope grinding of large-aperture aspherical optics
  publication-title: Chin J Mech Eng-En.
  doi: 10.1186/s10033-022-00782-5
– volume: 20
  start-page: 1653
  year: 2019
  ident: 10.1016/j.precisioneng.2025.05.013_bib38
  article-title: An optimal method for improving volumetric error compensation in machine tools based on squareness error identification
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-019-00191-0
– volume: 169
  year: 2022
  ident: 10.1016/j.precisioneng.2025.05.013_bib35
  article-title: Assembly deviation modelling to predict and trace the geometric accuracy of the precision motion system of a CNC machine tool
  publication-title: Mech Mach Theor
  doi: 10.1016/j.mechmachtheory.2021.104687
– volume: 111
  start-page: 13
  year: 2020
  ident: 10.1016/j.precisioneng.2025.05.013_bib15
  article-title: Optimal tolerance allocation for five-axis machine tools in consideration of deformation caused by gravity
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-06096-x
– volume: 12
  start-page: 108
  year: 2023
  ident: 10.1016/j.precisioneng.2025.05.013_bib20
  article-title: Process planning and contour-based error compensation for precision grinding of miniature scalpels
  publication-title: Advan Manufact
  doi: 10.1007/s40436-023-00458-w
– volume: 312
  year: 2023
  ident: 10.1016/j.precisioneng.2025.05.013_bib6
  article-title: Profile error compensation in ultra-precision grinding of aspherical-cylindrical lens array based on the real-time profile of wheel and normal residual error
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2022.117849
– volume: 99
  start-page: 1863
  year: 2018
  ident: 10.1016/j.precisioneng.2025.05.013_bib30
  article-title: Fewer-axis grinding methodology with simultaneously guaranteeing surface accuracy and grinding force for large optical SiC mirror
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2598-1
– volume: 187
  year: 2023
  ident: 10.1016/j.precisioneng.2025.05.013_bib25
  article-title: Machine tool calibration: measurement, modeling, and compensation of machine tool errors
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2023.104017
– volume: 85
  start-page: 226
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib14
  article-title: An approach for optimal tolerance allocation of five-axis machine tools by simultaneously considering volumetric error and processing simplicity index
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2023.10.005
– volume: 169
  year: 2020
  ident: 10.1016/j.precisioneng.2025.05.013_bib27
  article-title: Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.105319
– volume: 126
  start-page: 1109
  year: 2023
  ident: 10.1016/j.precisioneng.2025.05.013_bib39
  article-title: Efficient compensation method of 5-axis machine tools based on a novel representation of the volumetric error
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-023-11117-6
– volume: 233
  start-page: 1608
  year: 2017
  ident: 10.1016/j.precisioneng.2025.05.013_bib9
  article-title: An on-machine error compensation method for an ultra-precision turning machine
  publication-title: Proc IME B J Eng Manufact
  doi: 10.1177/0954405417731471
– volume: 66
  start-page: 537
  year: 2012
  ident: 10.1016/j.precisioneng.2025.05.013_bib33
  article-title: Parallel grinding error for a noncoaxial nonaxisymmetric aspheric lens using a fixture with adjustable gradient
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4347-1
– volume: 55
  start-page: 271
  year: 2001
  ident: 10.1016/j.precisioneng.2025.05.013_bib34
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Math Comput Simulat
  doi: 10.1016/S0378-4754(00)00270-6
– volume: 170
  year: 2020
  ident: 10.1016/j.precisioneng.2025.05.013_bib31
  article-title: An investigation of the surface waviness features of ground surface in parallel grinding process
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.105351
– volume: 37
  start-page: 163
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib13
  article-title: Geometric error measuring, modeling, and compensation for CNC machine tools: a review
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2023.02.035
– volume: 92
  start-page: 4429
  year: 2017
  ident: 10.1016/j.precisioneng.2025.05.013_bib26
  article-title: Sensitivity analysis using a variance-based method for a three-axis diamond turning machine
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-0394-y
– volume: 60
  start-page: 379
  year: 2011
  ident: 10.1016/j.precisioneng.2025.05.013_bib4
  article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope
  publication-title: CIRP Annal
  doi: 10.1016/j.cirp.2011.03.120
– volume: 119
  start-page: 193
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib8
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2024.03.075
– volume: 50
  start-page: 480
  year: 2010
  ident: 10.1016/j.precisioneng.2025.05.013_bib11
  article-title: Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2010.01.001
– volume: 59
  start-page: 652
  year: 2010
  ident: 10.1016/j.precisioneng.2025.05.013_bib3
  article-title: Ultra-precision grinding
  publication-title: CIRP Annal
  doi: 10.1016/j.cirp.2010.05.001
– volume: 88
  start-page: 1
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib28
  article-title: Geometric error suppression of six-axis machine tool for blisk full-shape surface grinding via constrained error sensitivity analysis
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2024.01.021
– volume: 30
  year: 2022
  ident: 10.1016/j.precisioneng.2025.05.013_bib2
  article-title: Study of deterministic surface micro-texture generation in ultra-precision grinding considering wheel oscillation
  publication-title: Opt Express
– volume: 48
  start-page: 338
  year: 2008
  ident: 10.1016/j.precisioneng.2025.05.013_bib17
  article-title: Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2007.10.004
– volume: 101
  start-page: 65
  year: 2016
  ident: 10.1016/j.precisioneng.2025.05.013_bib21
  article-title: Modeling and compensation of volumetric errors for five-axis machine tools
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2015.11.006
– volume: 111
  start-page: 55
  year: 2016
  ident: 10.1016/j.precisioneng.2025.05.013_bib24
  article-title: Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2016.10.001
– volume: 88
  start-page: 986
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib22
  article-title: Error compensation of five-axis roller machine tool for manufacturing Fresnel mold
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2024.04.023
– volume: 234
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib16
  article-title: Model for surface topography prediction in the ultra-precision grinding of silicon wafers considering volumetric errors
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114825
– volume: 161
  year: 2020
  ident: 10.1016/j.precisioneng.2025.05.013_bib18
  article-title: A geometric accuracy analysis and tolerance robust design approach for a vertical machining center based on the reliability theory
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107809
– volume: 67
  start-page: 128
  year: 2021
  ident: 10.1016/j.precisioneng.2025.05.013_bib12
  article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2021.04.059
– volume: 131
  start-page: 2691
  year: 2023
  ident: 10.1016/j.precisioneng.2025.05.013_bib19
  article-title: A support vector regression-based method for modeling geometric errors in CNC machine tools
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-023-12212-4
– volume: 58
  start-page: 1064
  year: 2020
  ident: 10.1016/j.precisioneng.2025.05.013_bib32
  article-title: Ultra-precision raster grinding of monocrystalline silicon biconical free-form optics using arc-shaped diamond grinding wheels
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2020.09.020
– volume: 88
  start-page: 65
  year: 2024
  ident: 10.1016/j.precisioneng.2025.05.013_bib7
  article-title: Prediction of profile error in aspheric grinding of spherical fused silica by ensemble learning regression methods
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2024.01.026
SSID ssj0007804
Score 2.4200752
Snippet In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 566
SubjectTerms Critical geometric error tracing
Geometric error compensation
In-situ compensation processing
In-situ measurement
Surface accuracy
Title Aspheric grinding surface accuracy optimization by integrating sensitive geometric error detection and in-situ compensation processing
URI https://dx.doi.org/10.1016/j.precisioneng.2025.05.013
Volume 95
WOSCitedRecordID wos001502066800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0141-6359
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007804
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7jrA_6IF5xvZEH34bKtE2b5sGHQVZWhWWRFeatpLmULm5n6EyX9Q_4M_ytnjRJG1mFFRGGMoSkzeR8zfkmfOcchF6rWAEqljziWS4jongScUI1vHhUgvtQCVF6KDZBT06K9ZqdzmY_fCzM5VfatsXVFdv-V1NDGxjbhM7-hbnHm0IDfAejwxXMDtcbGX61M5kCGrGou8aGrOz6TnMTGCBE35ny7hvYJy5cAKbhnz5nxNDZKNoHPVGtNhem3pZYqK7bmELie-UKiw8ZmyLo1w-adBhi77W1YQfeHTrSe9q5Qj4LNWU_nA5hjZXXgNK62lw7xv7Em1EyNOgOPvdN149tsPBDt-PeFCerwyOMJBsFdO5czcfW_CL9NArUCOgQC_dqlgWbbZbngd_ObDmYay7Bnk6cg0PyRYva-o2Zhc3Ymk6OcJQnGsVbbB4N_NCkIEtvoYOEZqyYo4PVh6P1x9HXm_RNViRr5-rT2g4Kwj898fcUKKA1Z_fRPfd_BK8sjh6gmWofortBlspH6LtHFPaIwg5R2CMKh4jC1TccIAqPiMIjovCAKDwiCgOisEMUDhGFJ0Q9Rl_eH529O45c-Y5IJDnbR0xKQQgwYMV0RSRNSM6FTGF6sdRFxXVMdFwJRQouKQOqTDnQXSozmZKMEJU-QfMWFu8pwkwvqziWimWVIpKlXAtNOfzORBNoXR6i1K9oubVZWkovXzwvQzuUxg7lEj5xeoje-sUvHd-0PLIE7Nxg_LN_HP8c3Znehhdovu969RLdFpf7Zte9clD7CaNKuVM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aspheric+grinding+surface+accuracy+optimization+by+integrating+sensitive+geometric+error+detection+and+in-situ+compensation+processing&rft.jtitle=Precision+engineering&rft.au=He%2C+Xiangbo&rft.au=Zhang%2C+Kai&rft.au=Li%2C+Ruirui&rft.au=Feng%2C+Huiming&rft.date=2025-08-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.volume=95&rft.spage=566&rft.epage=577&rft_id=info:doi/10.1016%2Fj.precisioneng.2025.05.013&rft.externalDocID=S0141635925001643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon