Aspheric grinding surface accuracy optimization by integrating sensitive geometric error detection and in-situ compensation processing
In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the compensation grinding process, geometric errors can induce deviations in the grinding trajectory, thereby adversely affecting the corrective outc...
Saved in:
| Published in: | Precision engineering Vol. 95; pp. 566 - 577 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.08.2025
|
| Subjects: | |
| ISSN: | 0141-6359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the compensation grinding process, geometric errors can induce deviations in the grinding trajectory, thereby adversely affecting the corrective outcomes for surface accuracy. Consequently, this study introduces an optimization method for aspheric grinding surface accuracy that integrates sensitive geometric error identification with in-situ compensation processing techniques, aiming to mitigate the impacts of geometric errors on compensation processing performance. Initially, a volumetric error model of the grinding machine was established based on multibody system theory, and the evolution pattern of the peak-to-valley (PV) values under the influence of geometric errors for various types of optical components was simulated and analyzed. Subsequently, using actual inverse kinematics, analytical expressions for the computer numerical control (CNC) code for compensating geometric errors across various motion axes of the grinder were derived. Thereafter, a geometric error-surface accuracy model (GE-SAM) was constructed to elucidate the interrelationship between geometric errors and surface accuracy. Based on this model, a global sensitivity analysis was employed to identify critical geometric error terms affecting the surface accuracy of aspheric grinding, which further streamlined the analytical expressions for the compensation CNC code. Finally, the efficacy of the proposed method was substantiated through experimental validation. The experimental results demonstrated that the surface accuracy optimization strategy proposed in this paper is more effective than the traditional in-situ compensation processing method.
•GE-SAM is established to reveal the relationship between geometric error and PV.•Sensitivity analysis simplifies the expression of compensated motion commands.•Proposed surface accuracy optimization method integrates error identification with in-situ compensation processing.•Experimental validation shows proposed method over traditional method. |
|---|---|
| AbstractList | In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the compensation grinding process, geometric errors can induce deviations in the grinding trajectory, thereby adversely affecting the corrective outcomes for surface accuracy. Consequently, this study introduces an optimization method for aspheric grinding surface accuracy that integrates sensitive geometric error identification with in-situ compensation processing techniques, aiming to mitigate the impacts of geometric errors on compensation processing performance. Initially, a volumetric error model of the grinding machine was established based on multibody system theory, and the evolution pattern of the peak-to-valley (PV) values under the influence of geometric errors for various types of optical components was simulated and analyzed. Subsequently, using actual inverse kinematics, analytical expressions for the computer numerical control (CNC) code for compensating geometric errors across various motion axes of the grinder were derived. Thereafter, a geometric error-surface accuracy model (GE-SAM) was constructed to elucidate the interrelationship between geometric errors and surface accuracy. Based on this model, a global sensitivity analysis was employed to identify critical geometric error terms affecting the surface accuracy of aspheric grinding, which further streamlined the analytical expressions for the compensation CNC code. Finally, the efficacy of the proposed method was substantiated through experimental validation. The experimental results demonstrated that the surface accuracy optimization strategy proposed in this paper is more effective than the traditional in-situ compensation processing method.
•GE-SAM is established to reveal the relationship between geometric error and PV.•Sensitivity analysis simplifies the expression of compensated motion commands.•Proposed surface accuracy optimization method integrates error identification with in-situ compensation processing.•Experimental validation shows proposed method over traditional method. |
| Author | Li, Ruirui Peng, Yunfeng Feng, Huiming He, Xiangbo Zhang, Kai |
| Author_xml | – sequence: 1 givenname: Xiangbo surname: He fullname: He, Xiangbo – sequence: 2 givenname: Kai surname: Zhang fullname: Zhang, Kai – sequence: 3 givenname: Ruirui surname: Li fullname: Li, Ruirui – sequence: 4 givenname: Huiming surname: Feng fullname: Feng, Huiming – sequence: 5 givenname: Yunfeng surname: Peng fullname: Peng, Yunfeng email: pengyf@xmu.edu.cn |
| BookMark | eNqNkM9OwzAMh3MYEhvwDhH3jqRJ25XbNP5Kk7jAOUodt2SiaZVkk8YD8NykjANHJEuWLX-frN-CzNzgkJBrzpac8fJmtxw9gg02rV23zFleLFkqLmZkzrjkWSmK-pwsQtgxxqoVk3PytQ7jO3oLtPPWGes6Gva-1YBUA-y9hiMdxmh7-6ljMtPmSK2L2Pk0Tsfogo32gLTDocc4mdD7wVODEeEH0c4kJkt3ewpDPybk5Br9ABhC8lySs1Z_BLz67Rfk7eH-dfOUbV8enzfrbQZ5WcesNgakLEWNddtIU-Wy1GBEepebdtXolsuWN4BypU1Vs1JUuuKsMoURspASxQW5PXnBDyF4bNXoba_9UXGmphTVTv1NUU0pKpaKiwTfnWBMHx4sehXAogM0NiFRmcH-R_MNfTKMXw |
| Cites_doi | 10.1016/j.measurement.2022.111825 10.1016/j.procir.2013.06.078 10.1016/j.ijmachtools.2007.11.005 10.1016/j.precisioneng.2018.12.009 10.1016/j.jmapro.2023.12.067 10.1186/s10033-022-00782-5 10.1007/s12541-019-00191-0 10.1016/j.mechmachtheory.2021.104687 10.1007/s00170-020-06096-x 10.1007/s40436-023-00458-w 10.1016/j.jmatprotec.2022.117849 10.1007/s00170-018-2598-1 10.1016/j.ijmachtools.2023.104017 10.1016/j.precisioneng.2023.10.005 10.1016/j.ijmecsci.2019.105319 10.1007/s00170-023-11117-6 10.1177/0954405417731471 10.1007/s00170-012-4347-1 10.1016/S0378-4754(00)00270-6 10.1016/j.ijmecsci.2019.105351 10.1016/j.cja.2023.02.035 10.1007/s00170-017-0394-y 10.1016/j.cirp.2011.03.120 10.1016/j.jmapro.2024.03.075 10.1016/j.ijmachtools.2010.01.001 10.1016/j.cirp.2010.05.001 10.1016/j.precisioneng.2024.01.021 10.1016/j.ijmachtools.2007.10.004 10.1016/j.ijmachtools.2015.11.006 10.1016/j.ijmachtools.2016.10.001 10.1016/j.precisioneng.2024.04.023 10.1016/j.measurement.2024.114825 10.1016/j.measurement.2020.107809 10.1016/j.jmapro.2021.04.059 10.1007/s00170-023-12212-4 10.1016/j.jmapro.2020.09.020 10.1016/j.precisioneng.2024.01.026 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Inc. |
| Copyright_xml | – notice: 2025 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.precisioneng.2025.05.013 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 577 |
| ExternalDocumentID | 10_1016_j_precisioneng_2025_05_013 S0141635925001643 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- 9DU AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c269t-9ddc44639e9fb4d7246acd3fac1df8baf14f1bce48ad790637a7107d5d34544e3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502066800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-6359 |
| IngestDate | Sat Nov 29 07:50:58 EST 2025 Sat Jul 05 17:11:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | In-situ compensation processing Geometric error compensation In-situ measurement Critical geometric error tracing Surface accuracy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-9ddc44639e9fb4d7246acd3fac1df8baf14f1bce48ad790637a7107d5d34544e3 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2025_05_013 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2025_05_013 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Precision engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Yu, Yao, Xu, Wang, Li, Chu (bib6) 2023; 312 Cong, Zha, Chen (bib39) 2023; 126 Gao, Ibaraki, Donmez, Kono, Mayer, Chen (bib25) 2023; 187 Zou, Zhao, Li, Li, Sun (bib26) 2017; 92 Wang, Lin, Jiang, Yin, Zhao (bib30) 2018; 99 Wang, Wu, Liu, Chen, Cheng, Fang (bib5) 2019; 56 Xia, Wang, Ma, Wang, Xiao (bib27) 2020; 169 Cai, Yang, Wang, Wang, Zhu, Kang (bib16) 2024; 234 Zou, Zhao, Li, Li, Hu, Sun (bib9) 2017; 233 Zuo, Li, Yang, Jiang (bib23) 2013; 8 Zhong, Liu, Mao, Li (bib38) 2019; 20 Chen, Yin, Huang, Ohmori, Wang, Fan (bib11) 2010; 50 Tao, Li, Chen, Fan, Pan (bib14) 2024; 85 Sobol (bib34) 2001; 55 Sazedur Rahman, Saleh, Lim, Son, Rahman (bib10) 2008; 48 Guo, Yang, Qiao, Mei (bib35) 2022; 169 Wang, Zhao, Guo, Pan (bib32) 2020; 58 Brinksmeier, Mutlugunes, Klocke, Aurich, Shore, Ohmori (bib3) 2010; 59 Wu, Zheng, Li, Wang, Xiang, Meng (bib18) 2020; 161 Fan, Xue, Zhao, Jiang, Han, Zhang (bib20) 2023; 12 Nasr, Davoodi (bib7) 2024; 88 Lin, Tzeng (bib17) 2008; 48 Wang, Zhao (bib36) 2022; 202 Chen, Yang, Liao, Cheung, Jiang, Zhang (bib2) 2022; 30 Zhang, Jiang, Luo, Wu, Zhang, Tang (bib13) 2024; 37 Zhang, Xiang, Wu, Yang (bib29) 2024; 110 Fan, Tao, Pan, Chen (bib15) 2020; 111 Jiang, Guo, Li (bib33) 2012; 66 Li, Sun, Chen, Chen, Lin, Ding (bib1) 2022; 35 He, Yang, Zhang, Li, Peng (bib8) 2024; 119 Zheng, Wang, Qiao, Wang, Lao, Wu (bib22) 2024; 88 Ding, Huang, Yu, Wang (bib24) 2016; 111 Wang, Zhao, Pan, Guo (bib12) 2021; 67 Comley, Morantz, Shore, Tonnellier (bib4) 2011; 60 Chen, Bai, Zhang, Fang, Chen (bib28) 2024; 88 Xiang, Altintas (bib21) 2016; 101 Zhang, Liu, Zhou, Wang (bib19) 2023; 131 Pan, Zhao, Guo, Chen, Wang, Wu (bib31) 2020; 170 Zou (bib37) 2018 Chen (10.1016/j.precisioneng.2025.05.013_bib11) 2010; 50 Xiang (10.1016/j.precisioneng.2025.05.013_bib21) 2016; 101 He (10.1016/j.precisioneng.2025.05.013_bib8) 2024; 119 Wang (10.1016/j.precisioneng.2025.05.013_bib30) 2018; 99 Pan (10.1016/j.precisioneng.2025.05.013_bib31) 2020; 170 Fan (10.1016/j.precisioneng.2025.05.013_bib20) 2023; 12 Lin (10.1016/j.precisioneng.2025.05.013_bib17) 2008; 48 Wang (10.1016/j.precisioneng.2025.05.013_bib36) 2022; 202 Wang (10.1016/j.precisioneng.2025.05.013_bib12) 2021; 67 Tao (10.1016/j.precisioneng.2025.05.013_bib14) 2024; 85 Zheng (10.1016/j.precisioneng.2025.05.013_bib22) 2024; 88 Guo (10.1016/j.precisioneng.2025.05.013_bib35) 2022; 169 Nasr (10.1016/j.precisioneng.2025.05.013_bib7) 2024; 88 Chen (10.1016/j.precisioneng.2025.05.013_bib28) 2024; 88 Li (10.1016/j.precisioneng.2025.05.013_bib1) 2022; 35 Zhong (10.1016/j.precisioneng.2025.05.013_bib38) 2019; 20 Sazedur Rahman (10.1016/j.precisioneng.2025.05.013_bib10) 2008; 48 Cong (10.1016/j.precisioneng.2025.05.013_bib39) 2023; 126 Zuo (10.1016/j.precisioneng.2025.05.013_bib23) 2013; 8 Zhang (10.1016/j.precisioneng.2025.05.013_bib29) 2024; 110 Jiang (10.1016/j.precisioneng.2025.05.013_bib33) 2012; 66 Zou (10.1016/j.precisioneng.2025.05.013_bib9) 2017; 233 Zhang (10.1016/j.precisioneng.2025.05.013_bib19) 2023; 131 Comley (10.1016/j.precisioneng.2025.05.013_bib4) 2011; 60 Zhang (10.1016/j.precisioneng.2025.05.013_bib13) 2024; 37 Wang (10.1016/j.precisioneng.2025.05.013_bib5) 2019; 56 Zou (10.1016/j.precisioneng.2025.05.013_bib37) 2018 Cai (10.1016/j.precisioneng.2025.05.013_bib16) 2024; 234 Gao (10.1016/j.precisioneng.2025.05.013_bib25) 2023; 187 Brinksmeier (10.1016/j.precisioneng.2025.05.013_bib3) 2010; 59 Yu (10.1016/j.precisioneng.2025.05.013_bib6) 2023; 312 Zou (10.1016/j.precisioneng.2025.05.013_bib26) 2017; 92 Fan (10.1016/j.precisioneng.2025.05.013_bib15) 2020; 111 Ding (10.1016/j.precisioneng.2025.05.013_bib24) 2016; 111 Sobol (10.1016/j.precisioneng.2025.05.013_bib34) 2001; 55 Wu (10.1016/j.precisioneng.2025.05.013_bib18) 2020; 161 Chen (10.1016/j.precisioneng.2025.05.013_bib2) 2022; 30 Xia (10.1016/j.precisioneng.2025.05.013_bib27) 2020; 169 Wang (10.1016/j.precisioneng.2025.05.013_bib32) 2020; 58 |
| References_xml | – volume: 20 start-page: 1653 year: 2019 end-page: 1665 ident: bib38 article-title: An optimal method for improving volumetric error compensation in machine tools based on squareness error identification publication-title: Int J Precis Eng Manuf – volume: 48 start-page: 338 year: 2008 end-page: 349 ident: bib17 article-title: Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool publication-title: Int J Mach Tool Manufact – volume: 58 start-page: 1064 year: 2020 end-page: 1074 ident: bib32 article-title: Ultra-precision raster grinding of monocrystalline silicon biconical free-form optics using arc-shaped diamond grinding wheels publication-title: J Manuf Process – volume: 161 year: 2020 ident: bib18 article-title: A geometric accuracy analysis and tolerance robust design approach for a vertical machining center based on the reliability theory publication-title: Measurement – volume: 8 start-page: 135 year: 2013 end-page: 140 ident: bib23 article-title: Integrated geometric error compensation of machining processes on CNC machine tool publication-title: Proced CIRP – volume: 60 start-page: 379 year: 2011 end-page: 382 ident: bib4 article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope publication-title: CIRP Annal – volume: 233 start-page: 1608 year: 2017 end-page: 1613 ident: bib9 article-title: An on-machine error compensation method for an ultra-precision turning machine publication-title: Proc IME B J Eng Manufact – volume: 48 start-page: 887 year: 2008 end-page: 895 ident: bib10 article-title: Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation publication-title: Int J Mach Tool Manufact – volume: 55 start-page: 271 year: 2001 end-page: 280 ident: bib34 article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates publication-title: Math Comput Simulat – volume: 67 start-page: 128 year: 2021 end-page: 140 ident: bib12 article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition publication-title: J Manuf Process – volume: 110 start-page: 447 year: 2024 end-page: 461 ident: bib29 article-title: Optimal proportion compensation method of key geometric errors for five-axis machine tools considering multiple-direction coupling effects publication-title: J Manuf Process – volume: 312 year: 2023 ident: bib6 article-title: Profile error compensation in ultra-precision grinding of aspherical-cylindrical lens array based on the real-time profile of wheel and normal residual error publication-title: J Mater Process Technol – volume: 202 year: 2022 ident: bib36 article-title: Development of an on-machine measurement system with chromatic confocal probe for measuring the profile error of off-axis biconical free-form optics in ultra-precision grinding publication-title: Measurement – volume: 30 year: 2022 ident: bib2 article-title: Study of deterministic surface micro-texture generation in ultra-precision grinding considering wheel oscillation publication-title: Opt Express – volume: 169 year: 2020 ident: bib27 article-title: Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model publication-title: Int J Mech Sci – volume: 99 start-page: 1863 year: 2018 end-page: 1875 ident: bib30 article-title: Fewer-axis grinding methodology with simultaneously guaranteeing surface accuracy and grinding force for large optical SiC mirror publication-title: Int J Adv Manuf Technol – volume: 111 start-page: 13 year: 2020 end-page: 24 ident: bib15 article-title: Optimal tolerance allocation for five-axis machine tools in consideration of deformation caused by gravity publication-title: Int J Adv Manuf Technol – volume: 88 start-page: 986 year: 2024 end-page: 996 ident: bib22 article-title: Error compensation of five-axis roller machine tool for manufacturing Fresnel mold publication-title: Precis Eng – volume: 50 start-page: 480 year: 2010 end-page: 486 ident: bib11 article-title: Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement publication-title: Int J Mach Tool Manufact – volume: 66 start-page: 537 year: 2012 end-page: 545 ident: bib33 article-title: Parallel grinding error for a noncoaxial nonaxisymmetric aspheric lens using a fixture with adjustable gradient publication-title: Int J Adv Manuf Technol – volume: 85 start-page: 226 year: 2024 end-page: 240 ident: bib14 article-title: An approach for optimal tolerance allocation of five-axis machine tools by simultaneously considering volumetric error and processing simplicity index publication-title: Precis Eng – volume: 88 start-page: 65 year: 2024 end-page: 80 ident: bib7 article-title: Prediction of profile error in aspheric grinding of spherical fused silica by ensemble learning regression methods publication-title: Precis Eng – volume: 56 start-page: 293 year: 2019 end-page: 302 ident: bib5 article-title: Configuration design and accuracy analysis of special grinding machine for thin-walled small concave surfaces publication-title: Precis Eng – volume: 88 start-page: 1 year: 2024 end-page: 14 ident: bib28 article-title: Geometric error suppression of six-axis machine tool for blisk full-shape surface grinding via constrained error sensitivity analysis publication-title: Precis Eng – volume: 187 year: 2023 ident: bib25 article-title: Machine tool calibration: measurement, modeling, and compensation of machine tool errors publication-title: Int J Mach Tool Manufact – volume: 119 start-page: 193 year: 2024 end-page: 203 ident: bib8 publication-title: J Manuf Process – year: 2018 ident: bib37 article-title: Sensitivity analysis of geometric error and research of on-machine error compensation for three-axis ultra precision turning machine tool [dissertation] – volume: 131 start-page: 2691 year: 2023 end-page: 2705 ident: bib19 article-title: A support vector regression-based method for modeling geometric errors in CNC machine tools publication-title: Int J Adv Manuf Technol – volume: 37 start-page: 163 year: 2024 end-page: 198 ident: bib13 article-title: Geometric error measuring, modeling, and compensation for CNC machine tools: a review publication-title: Chin J Aeronaut – volume: 101 start-page: 65 year: 2016 end-page: 78 ident: bib21 article-title: Modeling and compensation of volumetric errors for five-axis machine tools publication-title: Int J Mach Tool Manufact – volume: 35 year: 2022 ident: bib1 article-title: Wheel setting error modeling and compensation for Arc envelope grinding of large-aperture aspherical optics publication-title: Chin J Mech Eng-En. – volume: 111 start-page: 55 year: 2016 end-page: 62 ident: bib24 article-title: Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools publication-title: Int J Mach Tool Manufact – volume: 92 start-page: 4429 year: 2017 end-page: 4443 ident: bib26 article-title: Sensitivity analysis using a variance-based method for a three-axis diamond turning machine publication-title: Int J Adv Manuf Technol – volume: 170 year: 2020 ident: bib31 article-title: An investigation of the surface waviness features of ground surface in parallel grinding process publication-title: Int J Mech Sci – volume: 234 year: 2024 ident: bib16 article-title: Model for surface topography prediction in the ultra-precision grinding of silicon wafers considering volumetric errors publication-title: Measurement – volume: 59 start-page: 652 year: 2010 end-page: 671 ident: bib3 article-title: Ultra-precision grinding publication-title: CIRP Annal – volume: 12 start-page: 108 year: 2023 end-page: 123 ident: bib20 article-title: Process planning and contour-based error compensation for precision grinding of miniature scalpels publication-title: Advan Manufact – volume: 126 start-page: 1109 year: 2023 end-page: 1119 ident: bib39 article-title: Efficient compensation method of 5-axis machine tools based on a novel representation of the volumetric error publication-title: Int J Adv Manuf Technol – volume: 169 year: 2022 ident: bib35 article-title: Assembly deviation modelling to predict and trace the geometric accuracy of the precision motion system of a CNC machine tool publication-title: Mech Mach Theor – volume: 202 year: 2022 ident: 10.1016/j.precisioneng.2025.05.013_bib36 article-title: Development of an on-machine measurement system with chromatic confocal probe for measuring the profile error of off-axis biconical free-form optics in ultra-precision grinding publication-title: Measurement doi: 10.1016/j.measurement.2022.111825 – volume: 8 start-page: 135 year: 2013 ident: 10.1016/j.precisioneng.2025.05.013_bib23 article-title: Integrated geometric error compensation of machining processes on CNC machine tool publication-title: Proced CIRP doi: 10.1016/j.procir.2013.06.078 – volume: 48 start-page: 887 year: 2008 ident: 10.1016/j.precisioneng.2025.05.013_bib10 article-title: Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2007.11.005 – volume: 56 start-page: 293 year: 2019 ident: 10.1016/j.precisioneng.2025.05.013_bib5 article-title: Configuration design and accuracy analysis of special grinding machine for thin-walled small concave surfaces publication-title: Precis Eng doi: 10.1016/j.precisioneng.2018.12.009 – volume: 110 start-page: 447 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib29 article-title: Optimal proportion compensation method of key geometric errors for five-axis machine tools considering multiple-direction coupling effects publication-title: J Manuf Process doi: 10.1016/j.jmapro.2023.12.067 – year: 2018 ident: 10.1016/j.precisioneng.2025.05.013_bib37 – volume: 35 year: 2022 ident: 10.1016/j.precisioneng.2025.05.013_bib1 article-title: Wheel setting error modeling and compensation for Arc envelope grinding of large-aperture aspherical optics publication-title: Chin J Mech Eng-En. doi: 10.1186/s10033-022-00782-5 – volume: 20 start-page: 1653 year: 2019 ident: 10.1016/j.precisioneng.2025.05.013_bib38 article-title: An optimal method for improving volumetric error compensation in machine tools based on squareness error identification publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-019-00191-0 – volume: 169 year: 2022 ident: 10.1016/j.precisioneng.2025.05.013_bib35 article-title: Assembly deviation modelling to predict and trace the geometric accuracy of the precision motion system of a CNC machine tool publication-title: Mech Mach Theor doi: 10.1016/j.mechmachtheory.2021.104687 – volume: 111 start-page: 13 year: 2020 ident: 10.1016/j.precisioneng.2025.05.013_bib15 article-title: Optimal tolerance allocation for five-axis machine tools in consideration of deformation caused by gravity publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-06096-x – volume: 12 start-page: 108 year: 2023 ident: 10.1016/j.precisioneng.2025.05.013_bib20 article-title: Process planning and contour-based error compensation for precision grinding of miniature scalpels publication-title: Advan Manufact doi: 10.1007/s40436-023-00458-w – volume: 312 year: 2023 ident: 10.1016/j.precisioneng.2025.05.013_bib6 article-title: Profile error compensation in ultra-precision grinding of aspherical-cylindrical lens array based on the real-time profile of wheel and normal residual error publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2022.117849 – volume: 99 start-page: 1863 year: 2018 ident: 10.1016/j.precisioneng.2025.05.013_bib30 article-title: Fewer-axis grinding methodology with simultaneously guaranteeing surface accuracy and grinding force for large optical SiC mirror publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2598-1 – volume: 187 year: 2023 ident: 10.1016/j.precisioneng.2025.05.013_bib25 article-title: Machine tool calibration: measurement, modeling, and compensation of machine tool errors publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2023.104017 – volume: 85 start-page: 226 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib14 article-title: An approach for optimal tolerance allocation of five-axis machine tools by simultaneously considering volumetric error and processing simplicity index publication-title: Precis Eng doi: 10.1016/j.precisioneng.2023.10.005 – volume: 169 year: 2020 ident: 10.1016/j.precisioneng.2025.05.013_bib27 article-title: Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.105319 – volume: 126 start-page: 1109 year: 2023 ident: 10.1016/j.precisioneng.2025.05.013_bib39 article-title: Efficient compensation method of 5-axis machine tools based on a novel representation of the volumetric error publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-023-11117-6 – volume: 233 start-page: 1608 year: 2017 ident: 10.1016/j.precisioneng.2025.05.013_bib9 article-title: An on-machine error compensation method for an ultra-precision turning machine publication-title: Proc IME B J Eng Manufact doi: 10.1177/0954405417731471 – volume: 66 start-page: 537 year: 2012 ident: 10.1016/j.precisioneng.2025.05.013_bib33 article-title: Parallel grinding error for a noncoaxial nonaxisymmetric aspheric lens using a fixture with adjustable gradient publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4347-1 – volume: 55 start-page: 271 year: 2001 ident: 10.1016/j.precisioneng.2025.05.013_bib34 article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates publication-title: Math Comput Simulat doi: 10.1016/S0378-4754(00)00270-6 – volume: 170 year: 2020 ident: 10.1016/j.precisioneng.2025.05.013_bib31 article-title: An investigation of the surface waviness features of ground surface in parallel grinding process publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.105351 – volume: 37 start-page: 163 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib13 article-title: Geometric error measuring, modeling, and compensation for CNC machine tools: a review publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2023.02.035 – volume: 92 start-page: 4429 year: 2017 ident: 10.1016/j.precisioneng.2025.05.013_bib26 article-title: Sensitivity analysis using a variance-based method for a three-axis diamond turning machine publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0394-y – volume: 60 start-page: 379 year: 2011 ident: 10.1016/j.precisioneng.2025.05.013_bib4 article-title: Grinding metre scale mirror segments for the E-ELT ground based telescope publication-title: CIRP Annal doi: 10.1016/j.cirp.2011.03.120 – volume: 119 start-page: 193 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib8 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2024.03.075 – volume: 50 start-page: 480 year: 2010 ident: 10.1016/j.precisioneng.2025.05.013_bib11 article-title: Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2010.01.001 – volume: 59 start-page: 652 year: 2010 ident: 10.1016/j.precisioneng.2025.05.013_bib3 article-title: Ultra-precision grinding publication-title: CIRP Annal doi: 10.1016/j.cirp.2010.05.001 – volume: 88 start-page: 1 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib28 article-title: Geometric error suppression of six-axis machine tool for blisk full-shape surface grinding via constrained error sensitivity analysis publication-title: Precis Eng doi: 10.1016/j.precisioneng.2024.01.021 – volume: 30 year: 2022 ident: 10.1016/j.precisioneng.2025.05.013_bib2 article-title: Study of deterministic surface micro-texture generation in ultra-precision grinding considering wheel oscillation publication-title: Opt Express – volume: 48 start-page: 338 year: 2008 ident: 10.1016/j.precisioneng.2025.05.013_bib17 article-title: Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2007.10.004 – volume: 101 start-page: 65 year: 2016 ident: 10.1016/j.precisioneng.2025.05.013_bib21 article-title: Modeling and compensation of volumetric errors for five-axis machine tools publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2015.11.006 – volume: 111 start-page: 55 year: 2016 ident: 10.1016/j.precisioneng.2025.05.013_bib24 article-title: Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2016.10.001 – volume: 88 start-page: 986 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib22 article-title: Error compensation of five-axis roller machine tool for manufacturing Fresnel mold publication-title: Precis Eng doi: 10.1016/j.precisioneng.2024.04.023 – volume: 234 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib16 article-title: Model for surface topography prediction in the ultra-precision grinding of silicon wafers considering volumetric errors publication-title: Measurement doi: 10.1016/j.measurement.2024.114825 – volume: 161 year: 2020 ident: 10.1016/j.precisioneng.2025.05.013_bib18 article-title: A geometric accuracy analysis and tolerance robust design approach for a vertical machining center based on the reliability theory publication-title: Measurement doi: 10.1016/j.measurement.2020.107809 – volume: 67 start-page: 128 year: 2021 ident: 10.1016/j.precisioneng.2025.05.013_bib12 article-title: Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.04.059 – volume: 131 start-page: 2691 year: 2023 ident: 10.1016/j.precisioneng.2025.05.013_bib19 article-title: A support vector regression-based method for modeling geometric errors in CNC machine tools publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-023-12212-4 – volume: 58 start-page: 1064 year: 2020 ident: 10.1016/j.precisioneng.2025.05.013_bib32 article-title: Ultra-precision raster grinding of monocrystalline silicon biconical free-form optics using arc-shaped diamond grinding wheels publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.09.020 – volume: 88 start-page: 65 year: 2024 ident: 10.1016/j.precisioneng.2025.05.013_bib7 article-title: Prediction of profile error in aspheric grinding of spherical fused silica by ensemble learning regression methods publication-title: Precis Eng doi: 10.1016/j.precisioneng.2024.01.026 |
| SSID | ssj0007804 |
| Score | 2.4200752 |
| Snippet | In-situ compensation processing represents an efficacious strategy for enhancing the surface accuracy of aspheric grinding operations. However, during the... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 566 |
| SubjectTerms | Critical geometric error tracing Geometric error compensation In-situ compensation processing In-situ measurement Surface accuracy |
| Title | Aspheric grinding surface accuracy optimization by integrating sensitive geometric error detection and in-situ compensation processing |
| URI | https://dx.doi.org/10.1016/j.precisioneng.2025.05.013 |
| Volume | 95 |
| WOSCitedRecordID | wos001502066800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0141-6359 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007804 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7jrA_6IF5xvZEH34bKtE2b5sGHQVZWhWWRFeatpLmULm5n6EyX9Q_4M_ytnjRJG1mFFRGGMoSkzeR8zfkmfOcchF6rWAEqljziWS4jongScUI1vHhUgvtQCVF6KDZBT06K9ZqdzmY_fCzM5VfatsXVFdv-V1NDGxjbhM7-hbnHm0IDfAejwxXMDtcbGX61M5kCGrGou8aGrOz6TnMTGCBE35ny7hvYJy5cAKbhnz5nxNDZKNoHPVGtNhem3pZYqK7bmELie-UKiw8ZmyLo1w-adBhi77W1YQfeHTrSe9q5Qj4LNWU_nA5hjZXXgNK62lw7xv7Em1EyNOgOPvdN149tsPBDt-PeFCerwyOMJBsFdO5czcfW_CL9NArUCOgQC_dqlgWbbZbngd_ObDmYay7Bnk6cg0PyRYva-o2Zhc3Ymk6OcJQnGsVbbB4N_NCkIEtvoYOEZqyYo4PVh6P1x9HXm_RNViRr5-rT2g4Kwj898fcUKKA1Z_fRPfd_BK8sjh6gmWofortBlspH6LtHFPaIwg5R2CMKh4jC1TccIAqPiMIjovCAKDwiCgOisEMUDhGFJ0Q9Rl_eH529O45c-Y5IJDnbR0xKQQgwYMV0RSRNSM6FTGF6sdRFxXVMdFwJRQouKQOqTDnQXSozmZKMEJU-QfMWFu8pwkwvqziWimWVIpKlXAtNOfzORBNoXR6i1K9oubVZWkovXzwvQzuUxg7lEj5xeoje-sUvHd-0PLIE7Nxg_LN_HP8c3Znehhdovu969RLdFpf7Zte9clD7CaNKuVM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aspheric+grinding+surface+accuracy+optimization+by+integrating+sensitive+geometric+error+detection+and+in-situ+compensation+processing&rft.jtitle=Precision+engineering&rft.au=He%2C+Xiangbo&rft.au=Zhang%2C+Kai&rft.au=Li%2C+Ruirui&rft.au=Feng%2C+Huiming&rft.date=2025-08-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.volume=95&rft.spage=566&rft.epage=577&rft_id=info:doi/10.1016%2Fj.precisioneng.2025.05.013&rft.externalDocID=S0141635925001643 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |