Portfolio optimization in district heating: Merit order or mixed integer linear programming?

Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational s...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 265; p. 126277
Main Authors: Gonzalez-Salazar, Miguel, Klossek, Julia, Dubucq, Pascal, Punde, Thomas
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.02.2023
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational speed. However, existing methods addressing this problem offer one or the other but not both at the same time. The state-of-the-art method for portfolio optimization is mixed integer linear programming (MILP), which is extensively used in industry and academia but can be computing and resource-intensive for large portfolio models. This limitation has motivated the development of various options to reduce the computation time while maintaining the accuracy to a large extent. An alternative method to MILP is the merit order (MO) method, which has been used especially for power generation applications due to its simplicity and faster computation but somewhat reduced accuracy. The aim of this paper is to investigate the potential advantages and disadvantages of MO models compared to MILP models in the context of optimizing the portfolio of assets supplying a district heating network. As a study case, we analyze a large portion of the district heating network in Berlin. Four MO model variants with different levels of complexity are proposed and compared to a reference MILP model. Results suggest that MO models variants including heat storage and describing CHP plants with significant detail have the potential to reduce calculation time by nearly three orders of magnitude compared to the reference MILP model, without significantly sacrificing accuracy. In fact, differences in heat generation and net present value (NPV) between the most accurate MO model and the reference MILP model account for ±4% and −6%, respectively. Moreover, results show that combining MO and MILP models is advantageous and offers high computational speed and at the same time high accuracy, especially when a large number of runs might be necessary. MO models could thus be used prior to MILP models to perform a pre-evaluation, an exploration of sensitivities, or for downsizing the initial optimization problem. Combining MO and MILP models could result in faster and more robust decision-making, which could otherwise not be attained with any of the two options individually. •Two methods are compared for portfolio optimization•MO & MILP methods are used to optimize a portion of the district heating in Berlin•Best MO model can reduce calculation time and maintain accuracy vs reference MILP•Combining MO and MILP models could result in faster and more robust decision-making
AbstractList Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational speed. However, existing methods addressing this problem offer one or the other but not both at the same time. The state-of-the-art method for portfolio optimization is mixed integer linear programming (MILP), which is extensively used in industry and academia but can be computing and resource-intensive for large portfolio models. This limitation has motivated the development of various options to reduce the computation time while maintaining the accuracy to a large extent. An alternative method to MILP is the merit order (MO) method, which has been used especially for power generation applications due to its simplicity and faster computation but somewhat reduced accuracy. The aim of this paper is to investigate the potential advantages and disadvantages of MO models compared to MILP models in the context of optimizing the portfolio of assets supplying a district heating network. As a study case, we analyze a large portion of the district heating network in Berlin. Four MO model variants with different levels of complexity are proposed and compared to a reference MILP model. Results suggest that MO models variants including heat storage and describing CHP plants with significant detail have the potential to reduce calculation time by nearly three orders of magnitude compared to the reference MILP model, without significantly sacrificing accuracy. In fact, differences in heat generation and net present value (NPV) between the most accurate MO model and the reference MILP model account for ±4% and −6%, respectively. Moreover, results show that combining MO and MILP models is advantageous and offers high computational speed and at the same time high accuracy, especially when a large number of runs might be necessary. MO models could thus be used prior to MILP models to perform a pre-evaluation, an exploration of sensitivities, or for downsizing the initial optimization problem. Combining MO and MILP models could result in faster and more robust decision-making, which could otherwise not be attained with any of the two options individually.
Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational speed. However, existing methods addressing this problem offer one or the other but not both at the same time. The state-of-the-art method for portfolio optimization is mixed integer linear programming (MILP), which is extensively used in industry and academia but can be computing and resource-intensive for large portfolio models. This limitation has motivated the development of various options to reduce the computation time while maintaining the accuracy to a large extent. An alternative method to MILP is the merit order (MO) method, which has been used especially for power generation applications due to its simplicity and faster computation but somewhat reduced accuracy. The aim of this paper is to investigate the potential advantages and disadvantages of MO models compared to MILP models in the context of optimizing the portfolio of assets supplying a district heating network. As a study case, we analyze a large portion of the district heating network in Berlin. Four MO model variants with different levels of complexity are proposed and compared to a reference MILP model. Results suggest that MO models variants including heat storage and describing CHP plants with significant detail have the potential to reduce calculation time by nearly three orders of magnitude compared to the reference MILP model, without significantly sacrificing accuracy. In fact, differences in heat generation and net present value (NPV) between the most accurate MO model and the reference MILP model account for ±4% and −6%, respectively. Moreover, results show that combining MO and MILP models is advantageous and offers high computational speed and at the same time high accuracy, especially when a large number of runs might be necessary. MO models could thus be used prior to MILP models to perform a pre-evaluation, an exploration of sensitivities, or for downsizing the initial optimization problem. Combining MO and MILP models could result in faster and more robust decision-making, which could otherwise not be attained with any of the two options individually. •Two methods are compared for portfolio optimization•MO & MILP methods are used to optimize a portion of the district heating in Berlin•Best MO model can reduce calculation time and maintain accuracy vs reference MILP•Combining MO and MILP models could result in faster and more robust decision-making
ArticleNumber 126277
Author Dubucq, Pascal
Punde, Thomas
Gonzalez-Salazar, Miguel
Klossek, Julia
Author_xml – sequence: 1
  givenname: Miguel
  orcidid: 0000-0002-8319-4044
  surname: Gonzalez-Salazar
  fullname: Gonzalez-Salazar, Miguel
  email: miguelangel.gonzalez@vattenfall.de, gnzmln@unife.it
– sequence: 2
  givenname: Julia
  surname: Klossek
  fullname: Klossek, Julia
– sequence: 3
  givenname: Pascal
  surname: Dubucq
  fullname: Dubucq, Pascal
– sequence: 4
  givenname: Thomas
  surname: Punde
  fullname: Punde, Thomas
BookMark eNqFkLtOxDAQRV0sEs8_oEhJk-A4zosChBAvCQQFdEiWY0_CrBJ7sQ1i-XoMoaKAxiOP7pnRnG2yMNYAIfs5zXKaV4fLDAy4YZ0xyliWs4rV9YJs0aKiack52yTb3i8ppWXTtlvk6d660NsRbWJXASf8kAGtSdAkGn1wqELyDLFnhqPkFhyGxDoNLr7JhO-gYzLAEBsjGpAuWTk7ODlNETjZJRu9HD3s_dQd8nhx_nB2ld7cXV6fnd6kilVtSOumblQvtVaqaDte9IxDG_-sqkvd805LWVCQneqg6Xgbr8h5xcu2BFpA37BihxzMc-Pyl1fwQUzoFYyjNGBfvWBNwVnO2rKMUT5HlbPeO-jFyuEk3VrkVHwJFEsxCxRfAsUsMGJHvzCF4dtUcBLH_-DjGYbo4A3BCa8QjAKNDlQQ2uLfAz4BVLyVMQ
CitedBy_id crossref_primary_10_1016_j_scs_2023_104955
crossref_primary_10_3390_en18051259
crossref_primary_10_1016_j_rser_2025_115602
crossref_primary_10_1016_j_energy_2023_129583
crossref_primary_10_1016_j_energy_2023_129056
crossref_primary_10_1016_j_energy_2024_132457
crossref_primary_10_1016_j_energy_2025_134522
crossref_primary_10_1109_ACCESS_2023_3328327
crossref_primary_10_1016_j_energy_2025_136664
crossref_primary_10_3390_app13084864
crossref_primary_10_1016_j_rser_2025_116037
crossref_primary_10_62051_sdqv4p21
crossref_primary_10_1016_j_energy_2024_133537
crossref_primary_10_1016_j_apenergy_2025_126594
crossref_primary_10_1016_j_energy_2025_136639
crossref_primary_10_1016_j_applthermaleng_2024_122631
Cites_doi 10.1016/j.energy.2012.01.066
10.1016/j.enpol.2019.01.077
10.3390/en14123395
10.1016/j.energy.2019.116367
10.1016/j.energy.2019.07.044
10.1016/j.energy.2018.04.028
10.3390/en13236394
10.1016/j.apenergy.2021.117877
10.1016/j.energy.2008.10.019
10.1016/j.orl.2009.09.005
10.1016/j.energy.2014.12.018
10.1016/j.enbuild.2015.10.050
10.1007/BF03371553
10.1016/j.enconman.2014.03.050
10.1016/j.rser.2017.05.278
10.1016/j.rser.2017.04.045
10.1016/j.ejor.2019.01.055
10.1016/S0306-2619(03)00120-X
10.1016/j.rser.2017.10.089
10.1016/j.energy.2017.06.105
10.1016/j.rser.2014.10.003
10.1016/j.egypro.2018.08.021
10.1016/j.rser.2017.02.082
10.1016/j.compchemeng.2014.03.005
10.1016/j.enbuild.2011.07.024
10.1016/j.renene.2016.12.043
10.1016/j.eneco.2011.12.004
10.1016/j.energy.2014.04.097
10.1016/j.energy.2012.12.003
10.2307/2230169
10.1016/j.energy.2017.01.014
10.1016/j.energy.2017.08.066
10.1016/B978-0-444-59506-5.50029-8
10.1007/978-94-009-0129-2_1
10.1016/j.energy.2018.09.141
10.1016/j.applthermaleng.2011.12.016
10.1016/j.energy.2018.10.170
10.1016/j.ejor.2021.06.024
10.1016/j.energy.2013.04.004
10.1016/j.energy.2017.08.019
10.1016/j.ijepes.2020.106428
10.1016/j.energy.2014.06.007
10.1016/j.energy.2016.09.139
10.1016/j.energy.2020.117579
10.1016/j.energy.2021.121323
10.1016/j.energy.2021.120839
10.1016/j.apenergy.2020.115630
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.126277
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_126277
S0360544222031632
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c269t-7878cfaddcc39b43f24e9fad2675df4bdaa30eabcbe8b495441464595e03ef823
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904915200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 09:40:16 EDT 2025
Tue Nov 18 22:51:13 EST 2025
Sat Nov 29 07:19:56 EST 2025
Sat Apr 13 16:39:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Portfolio optimization
Marginal costs
Mixed integer linear programming
District heating
Merit order
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-7878cfaddcc39b43f24e9fad2675df4bdaa30eabcbe8b495441464595e03ef823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8319-4044
PQID 2834212955
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834212955
crossref_primary_10_1016_j_energy_2022_126277
crossref_citationtrail_10_1016_j_energy_2022_126277
elsevier_sciencedirect_doi_10_1016_j_energy_2022_126277
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bracco, Dentici, Siri (bib36) 2013; 55
Zhou, Liu, Li, Pistikopoulos, Georgiadis (bib38) 2012; 31
Loulou, Goldstein, Kanudia, Lettila, Remme (bib45) 2016
Li, Conejo, Liu, Omell, Siirola, Grossmann (bib15) 2022; 297
Elsido, Bischi, Silva, Martelli (bib61) 2017; 121
Gonzalez-Salazar, Padilla-Rodríguez (bib18) 2003
Ward, Green, Staffell (bib43) 2019; 129
Hofmeister, Mosbach, Hammacher, Blum, Röhrig, Dörr, Flegel, Bhave, Kraft (bib51) 2022; 305
vol. 5, pp. 3-23.
Moser, Puschnigg, Rodin (bib50) 2020; 200
Cebulla, Fichter (bib11) 2016; 105
Morvaj, Evins, Carmeliet (bib33) 2016; 116
de Llano-Paz, Calvo-Silvosa, Iglesias Antelo, Soares (bib10) 2017; 77
(bib2) 2016
Shin, Kim, Kwag, Kim (bib42) 2021; 14
Maier, Pflug, Polak (bib12) 2020; 285
Casisi, Pinamonti, Reini (bib32) 2009; 34
Dvorak, Havel (bib39) 2012; 43
Gonzalez-Salazar, Padilla-Rodríguez, Willinger (bib17) 2004
Liu, Klip, Zappa, Jelles, Kramer, van den Broek (bib49) 2019; 189
Guilardi, Castelli, Moretti, Morini, Martelli (bib24) 2021; 302
Buoro, Casisi, De Nardi, Pinamonti, Reini (bib31) 2013; 58
volue (bib58) 2022
Lamaison, Collete, Vallée, Bavière (bib26) 2019; 186
Pavicevic, Novosel, Puksec, Duic (bib35) 2017; 137
Ameri, Besharati (bib23) 2016; 110
Fraunhofer (bib5) 2021
(bib1) 2016
vol. 278, 2020.
vol. 234, 2021.
Lesko, Bujalski, Futyma (bib19) 2018; 165
Rieder, Christidis, Tsatsaronis (bib30) 2014; 74
Delangle, Lambert, Shah, Acha, Markides (bib34) 2017; 140
Li, Sun, Zhang, Wallin (bib54) 2015; 42
Domínguez-Muñoz, Cejudo-López, Carrillo-Andrés, Gallardo-Salazar (bib37) 2011; 43
Arcuri, Beraldi, Florio, Fragiacomo (bib62) 2015; 80
P. Benalcazar, "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: a case study," Energy
Kouhia, Laukkanen, Holmberg, Ahtila (bib25) 2019; 167
Pantaleo, Giarola, Bauen, Shah (bib21) 2014; 83
Gonzalez-Salazar, Langrock, Koch, Spieß, Noack, Witt, Ritzau, Michels (bib4) 2020; 13
Pérez Odeh, Watts, Flores (bib8) 2018; 82
(bib46) 2021
Dominkovic, Wahlroos, Syri, Pedersen (bib52) 2018; 153
Fazlollahi, Bungener, Mandel, Becker, Maréchal (bib20) 2014; 65
Sjödin, Henning (bib48) 2004; 78
J. Beiron, R. Montañés, F. Normann and F. Johnsson, "Flexible operation of a combined cycle cogeneration plant - a techno-economic assessment," Appl Energy
Gurobi (bib59) 2022
D'Ambrosio, Lodi, Martello (bib40) 2010; 38
Ioannou, Angus, Brennan (bib7) 2017; 74
de Veillemeur, Pineau (bib44) 2012; 34
Gonzalez-Salazar, Kirsten, Prchlik (bib55) 2018; 82
Rech, Toffolo, Lazzaretto (bib29) 2012; 45
A. Josefsson, J. Johnsson and C. Wene, "Community-based regional energy-environmental planning," Operations Research and Environmental Management
Clarner, Tawfik, Koch, Zittel (bib60) 2022
Rikkas, Lahdelma (bib27) 2021; 231
Willeke (bib6) 1998; 50
Capuder, Mancarella (bib22) 2014; 71
Scholz (bib56) 2020
Urbanucci (bib14) 2018; 148
Delmastro, Martinsson, Dulac, Corgnati (bib53) 2017; 138
(bib3) 2017
Wang, Zhang, You, Zong, Traeholt, Dong (bib13) 2021; 125
Schellong (bib16) 2016
Bagemihl (bib9) 2002
Turvey (bib41) 1969; 79
Urbanucci (10.1016/j.energy.2022.126277_bib14) 2018; 148
Delmastro (10.1016/j.energy.2022.126277_bib53) 2017; 138
Delangle (10.1016/j.energy.2022.126277_bib34) 2017; 140
Schellong (10.1016/j.energy.2022.126277_bib16) 2016
Rikkas (10.1016/j.energy.2022.126277_bib27) 2021; 231
Rech (10.1016/j.energy.2022.126277_bib29) 2012; 45
Li (10.1016/j.energy.2022.126277_bib15) 2022; 297
10.1016/j.energy.2022.126277_bib57
Rieder (10.1016/j.energy.2022.126277_bib30) 2014; 74
D'Ambrosio (10.1016/j.energy.2022.126277_bib40) 2010; 38
Sjödin (10.1016/j.energy.2022.126277_bib48) 2004; 78
Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib17) 2004
Lesko (10.1016/j.energy.2022.126277_bib19) 2018; 165
Turvey (10.1016/j.energy.2022.126277_bib41) 1969; 79
Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib4) 2020; 13
Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib55) 2018; 82
Kouhia (10.1016/j.energy.2022.126277_bib25) 2019; 167
Moser (10.1016/j.energy.2022.126277_bib50) 2020; 200
Morvaj (10.1016/j.energy.2022.126277_bib33) 2016; 116
10.1016/j.energy.2022.126277_bib28
Clarner (10.1016/j.energy.2022.126277_bib60) 2022
(10.1016/j.energy.2022.126277_bib2) 2016
Fraunhofer (10.1016/j.energy.2022.126277_bib5) 2021
Bracco (10.1016/j.energy.2022.126277_bib36) 2013; 55
Capuder (10.1016/j.energy.2022.126277_bib22) 2014; 71
Ioannou (10.1016/j.energy.2022.126277_bib7) 2017; 74
Cebulla (10.1016/j.energy.2022.126277_bib11) 2016; 105
Loulou (10.1016/j.energy.2022.126277_bib45) 2016
Elsido (10.1016/j.energy.2022.126277_bib61) 2017; 121
de Llano-Paz (10.1016/j.energy.2022.126277_bib10) 2017; 77
de Veillemeur (10.1016/j.energy.2022.126277_bib44) 2012; 34
Zhou (10.1016/j.energy.2022.126277_bib38) 2012; 31
Scholz (10.1016/j.energy.2022.126277_bib56) 2020
Guilardi (10.1016/j.energy.2022.126277_bib24) 2021; 302
Liu (10.1016/j.energy.2022.126277_bib49) 2019; 189
Ward (10.1016/j.energy.2022.126277_bib43) 2019; 129
(10.1016/j.energy.2022.126277_bib3) 2017
Fazlollahi (10.1016/j.energy.2022.126277_bib20) 2014; 65
Willeke (10.1016/j.energy.2022.126277_bib6) 1998; 50
Ameri (10.1016/j.energy.2022.126277_bib23) 2016; 110
(10.1016/j.energy.2022.126277_bib46) 2021
Dvorak (10.1016/j.energy.2022.126277_bib39) 2012; 43
Arcuri (10.1016/j.energy.2022.126277_bib62) 2015; 80
Pérez Odeh (10.1016/j.energy.2022.126277_bib8) 2018; 82
Wang (10.1016/j.energy.2022.126277_bib13) 2021; 125
Lamaison (10.1016/j.energy.2022.126277_bib26) 2019; 186
Shin (10.1016/j.energy.2022.126277_bib42) 2021; 14
Casisi (10.1016/j.energy.2022.126277_bib32) 2009; 34
Hofmeister (10.1016/j.energy.2022.126277_bib51) 2022; 305
volue (10.1016/j.energy.2022.126277_bib58) 2022
Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib18) 2003
Maier (10.1016/j.energy.2022.126277_bib12) 2020; 285
Buoro (10.1016/j.energy.2022.126277_bib31) 2013; 58
10.1016/j.energy.2022.126277_bib47
Domínguez-Muñoz (10.1016/j.energy.2022.126277_bib37) 2011; 43
Bagemihl (10.1016/j.energy.2022.126277_bib9) 2002
Gurobi (10.1016/j.energy.2022.126277_bib59) 2022
Pantaleo (10.1016/j.energy.2022.126277_bib21) 2014; 83
Li (10.1016/j.energy.2022.126277_bib54) 2015; 42
Pavicevic (10.1016/j.energy.2022.126277_bib35) 2017; 137
Dominkovic (10.1016/j.energy.2022.126277_bib52) 2018; 153
(10.1016/j.energy.2022.126277_bib1) 2016
References_xml – volume: 148
  start-page: 1199
  year: 2018
  end-page: 1205
  ident: bib14
  article-title: Limits and potentials of Mixed Integer Linear Programming methods for optimization of polygeneration energy systems
  publication-title: Energy Proc
– volume: 71
  start-page: 516
  year: 2014
  end-page: 533
  ident: bib22
  article-title: Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options
  publication-title: Energy
– volume: 77
  start-page: 636
  year: 2017
  end-page: 651
  ident: bib10
  article-title: Energy planning and modern portfolio theory: a review
  publication-title: Renew Sustain Energy Rev
– year: 2003
  ident: bib18
  article-title: Combined heat and power technologies: applied studies of options including micro turbines
– volume: 43
  start-page: 3036
  year: 2011
  end-page: 3043
  ident: bib37
  article-title: Selection of typical demand days for CHP optimization
  publication-title: Energy Build
– year: 2021
  ident: bib46
  article-title: World energy model (WEM) documentation
– year: 2002
  ident: bib9
  article-title: Optimierung eines Portfolios mit hydro-thermischem Kraftwerkspark im börslichen Strom- und Gasterminmarkt
– volume: 167
  start-page: 369
  year: 2019
  end-page: 378
  ident: bib25
  article-title: Evaluation of design objectives in district heating system design
  publication-title: Energy
– volume: 82
  start-page: 3808
  year: 2018
  end-page: 3823
  ident: bib8
  article-title: Planning in a changing environment: applications of portfolio optimisation to deal with risk in the electricity sector
  publication-title: Renew Sustain Energy Rev
– volume: 189
  year: 2019
  ident: bib49
  article-title: The marginal-cost pricing for a competitive wholesale district heating market: a case study in The Netherlands
  publication-title: Energy
– year: 2022
  ident: bib59
  article-title: Gurobi optimization
– reference: A. Josefsson, J. Johnsson and C. Wene, "Community-based regional energy-environmental planning," Operations Research and Environmental Management
– volume: 38
  start-page: 39
  year: 2010
  end-page: 46
  ident: bib40
  article-title: Piecewise linear approximation of functions of two variables in MILP models
  publication-title: Oper Res Lett
– volume: 302
  year: 2021
  ident: bib24
  article-title: Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings
  publication-title: Appl Energy
– year: 2016
  ident: bib2
  publication-title: EWG Berlin
– volume: 105
  start-page: 117
  year: 2016
  end-page: 132
  ident: bib11
  article-title: Merit order or unit-commitment dispatch? How does thermal power plant modeling affect storage demand in energy system models?
  publication-title: Renew Energy
– reference: vol. 5, pp. 3-23.
– volume: 153
  start-page: 136
  year: 2018
  end-page: 148
  ident: bib52
  article-title: Influence of different technologies on dynamic pricing in district heating ystems: comparative case studies
  publication-title: Energy
– volume: 129
  start-page: 1190
  year: 2019
  end-page: 1206
  ident: bib43
  article-title: Getting prices right in structural electricity market models
  publication-title: Energy Pol
– volume: 121
  start-page: 403
  year: 2017
  end-page: 426
  ident: bib61
  article-title: Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units
  publication-title: Energy
– volume: 140
  start-page: 209
  year: 2017
  end-page: 223
  ident: bib34
  article-title: Modelling and optimising the marginal expansion of an existing district heating network
  publication-title: Energy
– year: 2016
  ident: bib16
  article-title: Analyse und Optimierung von Energieverbundsystemen
– year: 2021
  ident: bib5
  article-title: Potenzialstudie klimaneutrale Wärmeversorgung Berlin 2035
– volume: 138
  start-page: 1209
  year: 2017
  end-page: 1220
  ident: bib53
  article-title: Sustainable urban heat strategies: perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm
  publication-title: Energy
– reference: vol. 278, 2020.
– volume: 74
  start-page: 230
  year: 2014
  end-page: 239
  ident: bib30
  article-title: Multi criteria dynamic design optimization of a small scale distributed energy system
  publication-title: Energy
– volume: 45
  start-page: 366
  year: 2012
  end-page: 374
  ident: bib29
  article-title: TSO-STO: a two-step approach to the optimal operation of heat storage systems with variable temperature tanks
  publication-title: Energy
– volume: 65
  start-page: 54
  year: 2014
  end-page: 66
  ident: bib20
  article-title: Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating periods
  publication-title: Comput Chem Eng
– volume: 43
  start-page: 163
  year: 2012
  end-page: 173
  ident: bib39
  article-title: Combined heat and power production planning under liberalized market conditions
  publication-title: Appl Therm Eng
– volume: 31
  start-page: 990
  year: 2012
  end-page: 994
  ident: bib38
  article-title: Impacts of equipment off-design characteristics on the optimal design and operation of combined cooling, heating and power systems
  publication-title: Computer Aided Chemical Engineering
– volume: 137
  start-page: 1264
  year: 2017
  end-page: 1276
  ident: bib35
  article-title: Hourly optimization and sizing of district heating systems considering building refurbishment - case study for the city of Zagreb
  publication-title: Energy
– year: 2022
  ident: bib60
  article-title: Network-induced Unit Commitment - a model class for investment and production portfolio planning for multi-energy systems
– year: 2016
  ident: bib45
  article-title: Documentation for the TIMES model
– volume: 83
  start-page: 347
  year: 2014
  end-page: 361
  ident: bib21
  article-title: Integration of biomass into urban energy systems for heat and power. Part I: an MILP based spatial optimization methodology
  publication-title: Energy Convers Manag
– volume: 55
  start-page: 1014
  year: 2013
  end-page: 1024
  ident: bib36
  article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area
  publication-title: Energy
– volume: 116
  start-page: 619
  year: 2016
  end-page: 636
  ident: bib33
  article-title: Optimising urban energy systems: simultaneous system sizing, operation and district heating network layout
  publication-title: Energy
– volume: 79
  start-page: 282
  year: 1969
  end-page: 299
  ident: bib41
  article-title: Marginal cost
  publication-title: Econ J
– volume: 78
  start-page: 1
  year: 2004
  end-page: 18
  ident: bib48
  article-title: Calculating the marginal costs of a district-heating utility
  publication-title: Appl Energy
– volume: 50
  start-page: 1146
  year: 1998
  end-page: 1164
  ident: bib6
  article-title: Risikoanalyse in der Energiewirtschaft
  publication-title: Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung
– volume: 125
  year: 2021
  ident: bib13
  article-title: Multi-timescale coordinated operation of a CHP plant-wind farm portfolio considering multiple uncertainties
  publication-title: Int J Electr Power Energy Syst
– volume: 82
  start-page: 1497
  year: 2018
  end-page: 1513
  ident: bib55
  article-title: Review of the opeartional flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables
  publication-title: Renew Sustain Energy Rev
– volume: 34
  start-page: 529
  year: 2012
  end-page: 535
  ident: bib44
  article-title: Regulation and electricity market integration: when trade introduces inefficiencies
  publication-title: Energy Econ
– volume: 110
  start-page: 135
  year: 2016
  end-page: 148
  ident: bib23
  article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex
  publication-title: Energy Build
– volume: 34
  start-page: 2175
  year: 2009
  end-page: 2183
  ident: bib32
  article-title: Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems
  publication-title: Energy
– year: 2022
  ident: bib58
  article-title: BoFiT optimization,"
– volume: 231
  year: 2021
  ident: bib27
  article-title: Energy supply and storage optimization for mixed-type buildings
  publication-title: Energy
– year: 2017
  ident: bib3
  article-title: Energie- und CO2-Bilanz in Berlin 2017
– reference: J. Beiron, R. Montañés, F. Normann and F. Johnsson, "Flexible operation of a combined cycle cogeneration plant - a techno-economic assessment," Appl Energy
– reference: vol. 234, 2021.
– volume: 200
  year: 2020
  ident: bib50
  article-title: Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems
  publication-title: Energy
– year: 2004
  ident: bib17
  article-title: Combined heat and power technologies: application studies of options including micro gas turbines
  publication-title: Turbo expo: power for land, sea, and air
– volume: 165
  start-page: 902
  year: 2018
  end-page: 915
  ident: bib19
  article-title: Operational optimization in district heating systems with the use of thermal energy storage
  publication-title: Energy
– volume: 305
  year: 2022
  ident: bib51
  article-title: Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation
  publication-title: Appl Energy
– volume: 42
  start-page: 56
  year: 2015
  end-page: 65
  ident: bib54
  article-title: A review of the pricing mechanisms for district heating systems
  publication-title: Renew Sustain Energy Rev
– volume: 13
  year: 2020
  ident: bib4
  article-title: Evaluation of energy transition pathways to phase out coal for district heating in Berlin
  publication-title: Energies
– volume: 58
  start-page: 128
  year: 2013
  end-page: 137
  ident: bib31
  article-title: Multicriteria optimization of a distributed energy supply system for an industrial area
  publication-title: Energy
– volume: 80
  start-page: 628
  year: 2015
  end-page: 641
  ident: bib62
  article-title: Optimal design of a small size trigeneration plant in civil users: a MINLP (Mixed Integer Non Linear Programming Model)
  publication-title: Energy
– volume: 285
  start-page: 133
  year: 2020
  end-page: 147
  ident: bib12
  article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties
  publication-title: Eur J Oper Res
– volume: 297
  start-page: 1071
  year: 2022
  end-page: 1082
  ident: bib15
  article-title: Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems
  publication-title: Eur J Oper Res
– reference: P. Benalcazar, "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: a case study," Energy
– year: 2020
  ident: bib56
  article-title: Speeding up energy system models - a best practice guide
– volume: 186
  year: 2019
  ident: bib26
  article-title: Storage influence in a combined biomass and power-to-heat district heating production plant
  publication-title: Energy
– volume: 74
  start-page: 602
  year: 2017
  end-page: 615
  ident: bib7
  article-title: Risk-based methods for sustainable energy system planning: a review
  publication-title: Renew Sustain Energy Rev
– year: 2016
  ident: bib1
  publication-title: Klimaschutzplan 2050 - Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung
– volume: 14
  year: 2021
  ident: bib42
  article-title: A comparative study of pricing mechanisms to reduce side-payments in the electricity market: a case study for South Korea
  publication-title: Energies
– volume: 45
  start-page: 366
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2022.126277_bib29
  article-title: TSO-STO: a two-step approach to the optimal operation of heat storage systems with variable temperature tanks
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.066
– volume: 129
  start-page: 1190
  year: 2019
  ident: 10.1016/j.energy.2022.126277_bib43
  article-title: Getting prices right in structural electricity market models
  publication-title: Energy Pol
  doi: 10.1016/j.enpol.2019.01.077
– year: 2016
  ident: 10.1016/j.energy.2022.126277_bib45
– year: 2016
  ident: 10.1016/j.energy.2022.126277_bib16
– volume: 14
  issue: 12
  year: 2021
  ident: 10.1016/j.energy.2022.126277_bib42
  article-title: A comparative study of pricing mechanisms to reduce side-payments in the electricity market: a case study for South Korea
  publication-title: Energies
  doi: 10.3390/en14123395
– volume: 189
  year: 2019
  ident: 10.1016/j.energy.2022.126277_bib49
  article-title: The marginal-cost pricing for a competitive wholesale district heating market: a case study in The Netherlands
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116367
– volume: 186
  year: 2019
  ident: 10.1016/j.energy.2022.126277_bib26
  article-title: Storage influence in a combined biomass and power-to-heat district heating production plant
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.044
– volume: 153
  start-page: 136
  year: 2018
  ident: 10.1016/j.energy.2022.126277_bib52
  article-title: Influence of different technologies on dynamic pricing in district heating ystems: comparative case studies
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.028
– volume: 13
  issue: 23
  year: 2020
  ident: 10.1016/j.energy.2022.126277_bib4
  article-title: Evaluation of energy transition pathways to phase out coal for district heating in Berlin
  publication-title: Energies
  doi: 10.3390/en13236394
– volume: 305
  year: 2022
  ident: 10.1016/j.energy.2022.126277_bib51
  article-title: Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117877
– year: 2022
  ident: 10.1016/j.energy.2022.126277_bib58
– volume: 34
  start-page: 2175
  issue: 12
  year: 2009
  ident: 10.1016/j.energy.2022.126277_bib32
  article-title: Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems
  publication-title: Energy
  doi: 10.1016/j.energy.2008.10.019
– volume: 38
  start-page: 39
  year: 2010
  ident: 10.1016/j.energy.2022.126277_bib40
  article-title: Piecewise linear approximation of functions of two variables in MILP models
  publication-title: Oper Res Lett
  doi: 10.1016/j.orl.2009.09.005
– year: 2020
  ident: 10.1016/j.energy.2022.126277_bib56
– year: 2022
  ident: 10.1016/j.energy.2022.126277_bib59
– volume: 80
  start-page: 628
  year: 2015
  ident: 10.1016/j.energy.2022.126277_bib62
  article-title: Optimal design of a small size trigeneration plant in civil users: a MINLP (Mixed Integer Non Linear Programming Model)
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.018
– volume: 110
  start-page: 135
  year: 2016
  ident: 10.1016/j.energy.2022.126277_bib23
  article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.10.050
– volume: 50
  start-page: 1146
  issue: 12
  year: 1998
  ident: 10.1016/j.energy.2022.126277_bib6
  article-title: Risikoanalyse in der Energiewirtschaft
  publication-title: Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung
  doi: 10.1007/BF03371553
– year: 2002
  ident: 10.1016/j.energy.2022.126277_bib9
– volume: 83
  start-page: 347
  year: 2014
  ident: 10.1016/j.energy.2022.126277_bib21
  article-title: Integration of biomass into urban energy systems for heat and power. Part I: an MILP based spatial optimization methodology
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.03.050
– volume: 82
  start-page: 1497
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2022.126277_bib55
  article-title: Review of the opeartional flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.278
– volume: 77
  start-page: 636
  year: 2017
  ident: 10.1016/j.energy.2022.126277_bib10
  article-title: Energy planning and modern portfolio theory: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.045
– volume: 285
  start-page: 133
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2022.126277_bib12
  article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2019.01.055
– volume: 78
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.energy.2022.126277_bib48
  article-title: Calculating the marginal costs of a district-heating utility
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(03)00120-X
– year: 2016
  ident: 10.1016/j.energy.2022.126277_bib2
– volume: 82
  start-page: 3808
  year: 2018
  ident: 10.1016/j.energy.2022.126277_bib8
  article-title: Planning in a changing environment: applications of portfolio optimisation to deal with risk in the electricity sector
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.10.089
– volume: 137
  start-page: 1264
  year: 2017
  ident: 10.1016/j.energy.2022.126277_bib35
  article-title: Hourly optimization and sizing of district heating systems considering building refurbishment - case study for the city of Zagreb
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.105
– volume: 42
  start-page: 56
  year: 2015
  ident: 10.1016/j.energy.2022.126277_bib54
  article-title: A review of the pricing mechanisms for district heating systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.10.003
– volume: 148
  start-page: 1199
  year: 2018
  ident: 10.1016/j.energy.2022.126277_bib14
  article-title: Limits and potentials of Mixed Integer Linear Programming methods for optimization of polygeneration energy systems
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2018.08.021
– volume: 74
  start-page: 602
  year: 2017
  ident: 10.1016/j.energy.2022.126277_bib7
  article-title: Risk-based methods for sustainable energy system planning: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.02.082
– volume: 65
  start-page: 54
  year: 2014
  ident: 10.1016/j.energy.2022.126277_bib20
  article-title: Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating periods
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2014.03.005
– volume: 43
  start-page: 3036
  year: 2011
  ident: 10.1016/j.energy.2022.126277_bib37
  article-title: Selection of typical demand days for CHP optimization
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.07.024
– volume: 105
  start-page: 117
  year: 2016
  ident: 10.1016/j.energy.2022.126277_bib11
  article-title: Merit order or unit-commitment dispatch? How does thermal power plant modeling affect storage demand in energy system models?
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.12.043
– year: 2004
  ident: 10.1016/j.energy.2022.126277_bib17
  article-title: Combined heat and power technologies: application studies of options including micro gas turbines
– year: 2017
  ident: 10.1016/j.energy.2022.126277_bib3
– volume: 34
  start-page: 529
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2022.126277_bib44
  article-title: Regulation and electricity market integration: when trade introduces inefficiencies
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2011.12.004
– year: 2016
  ident: 10.1016/j.energy.2022.126277_bib1
– volume: 71
  start-page: 516
  year: 2014
  ident: 10.1016/j.energy.2022.126277_bib22
  article-title: Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.097
– volume: 58
  start-page: 128
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2022.126277_bib31
  article-title: Multicriteria optimization of a distributed energy supply system for an industrial area
  publication-title: Energy
  doi: 10.1016/j.energy.2012.12.003
– volume: 79
  start-page: 282
  issue: 314
  year: 1969
  ident: 10.1016/j.energy.2022.126277_bib41
  article-title: Marginal cost
  publication-title: Econ J
  doi: 10.2307/2230169
– volume: 121
  start-page: 403
  year: 2017
  ident: 10.1016/j.energy.2022.126277_bib61
  article-title: Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.014
– volume: 140
  start-page: 209
  year: 2017
  ident: 10.1016/j.energy.2022.126277_bib34
  article-title: Modelling and optimising the marginal expansion of an existing district heating network
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.066
– volume: 31
  start-page: 990
  year: 2012
  ident: 10.1016/j.energy.2022.126277_bib38
  article-title: Impacts of equipment off-design characteristics on the optimal design and operation of combined cooling, heating and power systems
  publication-title: Computer Aided Chemical Engineering
  doi: 10.1016/B978-0-444-59506-5.50029-8
– ident: 10.1016/j.energy.2022.126277_bib47
  doi: 10.1007/978-94-009-0129-2_1
– year: 2021
  ident: 10.1016/j.energy.2022.126277_bib5
– volume: 165
  start-page: 902
  year: 2018
  ident: 10.1016/j.energy.2022.126277_bib19
  article-title: Operational optimization in district heating systems with the use of thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.141
– volume: 43
  start-page: 163
  year: 2012
  ident: 10.1016/j.energy.2022.126277_bib39
  article-title: Combined heat and power production planning under liberalized market conditions
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.12.016
– volume: 167
  start-page: 369
  year: 2019
  ident: 10.1016/j.energy.2022.126277_bib25
  article-title: Evaluation of design objectives in district heating system design
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.170
– volume: 297
  start-page: 1071
  year: 2022
  ident: 10.1016/j.energy.2022.126277_bib15
  article-title: Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.06.024
– volume: 55
  start-page: 1014
  year: 2013
  ident: 10.1016/j.energy.2022.126277_bib36
  article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.004
– volume: 138
  start-page: 1209
  year: 2017
  ident: 10.1016/j.energy.2022.126277_bib53
  article-title: Sustainable urban heat strategies: perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.019
– volume: 125
  year: 2021
  ident: 10.1016/j.energy.2022.126277_bib13
  article-title: Multi-timescale coordinated operation of a CHP plant-wind farm portfolio considering multiple uncertainties
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106428
– volume: 74
  start-page: 230
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2022.126277_bib30
  article-title: Multi criteria dynamic design optimization of a small scale distributed energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.007
– year: 2022
  ident: 10.1016/j.energy.2022.126277_bib60
– volume: 116
  start-page: 619
  year: 2016
  ident: 10.1016/j.energy.2022.126277_bib33
  article-title: Optimising urban energy systems: simultaneous system sizing, operation and district heating network layout
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.139
– volume: 200
  year: 2020
  ident: 10.1016/j.energy.2022.126277_bib50
  article-title: Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117579
– ident: 10.1016/j.energy.2022.126277_bib28
  doi: 10.1016/j.energy.2021.121323
– volume: 231
  year: 2021
  ident: 10.1016/j.energy.2022.126277_bib27
  article-title: Energy supply and storage optimization for mixed-type buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120839
– year: 2003
  ident: 10.1016/j.energy.2022.126277_bib18
– year: 2021
  ident: 10.1016/j.energy.2022.126277_bib46
– volume: 302
  year: 2021
  ident: 10.1016/j.energy.2022.126277_bib24
  article-title: Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings
  publication-title: Appl Energy
– ident: 10.1016/j.energy.2022.126277_bib57
  doi: 10.1016/j.apenergy.2020.115630
SSID ssj0005899
Score 2.491105
Snippet Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126277
SubjectTerms cost effectiveness
decision making
District heating
energy
heat
industry
Marginal costs
Merit order
Mixed integer linear programming
Portfolio optimization
power generation
system optimization
Title Portfolio optimization in district heating: Merit order or mixed integer linear programming?
URI https://dx.doi.org/10.1016/j.energy.2022.126277
https://www.proquest.com/docview/2834212955
Volume 265
WOSCitedRecordID wos000904915200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA_SCvoiWi3WqkTwraRcs1-JL1L0_G4ptMI9CEs2m8jWu922uyvH_fVOvvZ6LVIVfAl3IcntZX47M0l-M0HoJQMfnkcjRTTTKYlFkhEBqpgUTKmCRSzR0qbM_5IdHrLJhB95SlBrrxPI6prN5_zsv4oa6kDYJnT2L8Q9DAoV8BmEDiWIHco_ErzhhupmWjU7DaiDmY-ztKxXkyS3kp3xDkOg8wE8UrdjE3AaavqsmqvS5ZCACuOCmlTYjsM1s11WeYAuctCkLJ07lvywr_C-qRdgfBbkWEzFwtG4D6rvvRooHZ-nYKDVjxClPdiHt33Ry3Pn3rZSDO2PTLzbFVKT36-g5pSYuIhNt4kWAmmWrCUXvDUiSRyvKGbqbpG4puTdfsPprrL_Edb4lO7u0ZT6-2BW02cfm6HNyJSC_kojMNfrNEs4aMD1_Y_jyaclIYjZ20aHRwmBlpYNeP23fufIXDHp1k85uY_u-QUG3nfAeIBuqXoD3Qnx5-0G2hwvYxuhoVfu7UP0bUAOvowcXNU4IAd75LzCFjfY4gZKbHGDPW6www2-hJvXj9DXd-OTNx-Iv3yDSJryjoAiZ1KD9ZMy4kUcaRorDt8prDBLHRelEPCKi0IWihWwyga32hyS80SNIqUZjTbRWt3U6jHCTJRZykuVmsRELCn4SKci3ivjERdJGestFIWZzKXPTG8uSJnmgYJ4mrv5z838527-txAZep25zCw3tM-CkHLvXTqvMQdc3dDzRZBpDsrXnKiJWjV9m4NvbhgVPEme_PPo2-ju8jV5ita6i149Q7flz65qL557kP4CpwaxNg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portfolio+optimization+in+district+heating%3A+Merit+order+or+mixed+integer+linear+programming%3F&rft.jtitle=Energy+%28Oxford%29&rft.au=Gonzalez-Salazar%2C+Miguel&rft.au=Klossek%2C+Julia&rft.au=Dubucq%2C+Pascal&rft.au=Punde%2C+Thomas&rft.date=2023-02-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=265&rft_id=info:doi/10.1016%2Fj.energy.2022.126277&rft.externalDocID=S0360544222031632
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon