Portfolio optimization in district heating: Merit order or mixed integer linear programming?
Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational s...
Saved in:
| Published in: | Energy (Oxford) Vol. 265; p. 126277 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.02.2023
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational speed. However, existing methods addressing this problem offer one or the other but not both at the same time. The state-of-the-art method for portfolio optimization is mixed integer linear programming (MILP), which is extensively used in industry and academia but can be computing and resource-intensive for large portfolio models. This limitation has motivated the development of various options to reduce the computation time while maintaining the accuracy to a large extent. An alternative method to MILP is the merit order (MO) method, which has been used especially for power generation applications due to its simplicity and faster computation but somewhat reduced accuracy. The aim of this paper is to investigate the potential advantages and disadvantages of MO models compared to MILP models in the context of optimizing the portfolio of assets supplying a district heating network. As a study case, we analyze a large portion of the district heating network in Berlin. Four MO model variants with different levels of complexity are proposed and compared to a reference MILP model. Results suggest that MO models variants including heat storage and describing CHP plants with significant detail have the potential to reduce calculation time by nearly three orders of magnitude compared to the reference MILP model, without significantly sacrificing accuracy. In fact, differences in heat generation and net present value (NPV) between the most accurate MO model and the reference MILP model account for ±4% and −6%, respectively. Moreover, results show that combining MO and MILP models is advantageous and offers high computational speed and at the same time high accuracy, especially when a large number of runs might be necessary. MO models could thus be used prior to MILP models to perform a pre-evaluation, an exploration of sensitivities, or for downsizing the initial optimization problem. Combining MO and MILP models could result in faster and more robust decision-making, which could otherwise not be attained with any of the two options individually.
•Two methods are compared for portfolio optimization•MO & MILP methods are used to optimize a portion of the district heating in Berlin•Best MO model can reduce calculation time and maintain accuracy vs reference MILP•Combining MO and MILP models could result in faster and more robust decision-making |
|---|---|
| AbstractList | Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational speed. However, existing methods addressing this problem offer one or the other but not both at the same time. The state-of-the-art method for portfolio optimization is mixed integer linear programming (MILP), which is extensively used in industry and academia but can be computing and resource-intensive for large portfolio models. This limitation has motivated the development of various options to reduce the computation time while maintaining the accuracy to a large extent. An alternative method to MILP is the merit order (MO) method, which has been used especially for power generation applications due to its simplicity and faster computation but somewhat reduced accuracy. The aim of this paper is to investigate the potential advantages and disadvantages of MO models compared to MILP models in the context of optimizing the portfolio of assets supplying a district heating network. As a study case, we analyze a large portion of the district heating network in Berlin. Four MO model variants with different levels of complexity are proposed and compared to a reference MILP model. Results suggest that MO models variants including heat storage and describing CHP plants with significant detail have the potential to reduce calculation time by nearly three orders of magnitude compared to the reference MILP model, without significantly sacrificing accuracy. In fact, differences in heat generation and net present value (NPV) between the most accurate MO model and the reference MILP model account for ±4% and −6%, respectively. Moreover, results show that combining MO and MILP models is advantageous and offers high computational speed and at the same time high accuracy, especially when a large number of runs might be necessary. MO models could thus be used prior to MILP models to perform a pre-evaluation, an exploration of sensitivities, or for downsizing the initial optimization problem. Combining MO and MILP models could result in faster and more robust decision-making, which could otherwise not be attained with any of the two options individually. Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical, financial, and environmental restrictions. Optimizing a district heating system is not trivial and demands high accuracy and high computational speed. However, existing methods addressing this problem offer one or the other but not both at the same time. The state-of-the-art method for portfolio optimization is mixed integer linear programming (MILP), which is extensively used in industry and academia but can be computing and resource-intensive for large portfolio models. This limitation has motivated the development of various options to reduce the computation time while maintaining the accuracy to a large extent. An alternative method to MILP is the merit order (MO) method, which has been used especially for power generation applications due to its simplicity and faster computation but somewhat reduced accuracy. The aim of this paper is to investigate the potential advantages and disadvantages of MO models compared to MILP models in the context of optimizing the portfolio of assets supplying a district heating network. As a study case, we analyze a large portion of the district heating network in Berlin. Four MO model variants with different levels of complexity are proposed and compared to a reference MILP model. Results suggest that MO models variants including heat storage and describing CHP plants with significant detail have the potential to reduce calculation time by nearly three orders of magnitude compared to the reference MILP model, without significantly sacrificing accuracy. In fact, differences in heat generation and net present value (NPV) between the most accurate MO model and the reference MILP model account for ±4% and −6%, respectively. Moreover, results show that combining MO and MILP models is advantageous and offers high computational speed and at the same time high accuracy, especially when a large number of runs might be necessary. MO models could thus be used prior to MILP models to perform a pre-evaluation, an exploration of sensitivities, or for downsizing the initial optimization problem. Combining MO and MILP models could result in faster and more robust decision-making, which could otherwise not be attained with any of the two options individually. •Two methods are compared for portfolio optimization•MO & MILP methods are used to optimize a portion of the district heating in Berlin•Best MO model can reduce calculation time and maintain accuracy vs reference MILP•Combining MO and MILP models could result in faster and more robust decision-making |
| ArticleNumber | 126277 |
| Author | Dubucq, Pascal Punde, Thomas Gonzalez-Salazar, Miguel Klossek, Julia |
| Author_xml | – sequence: 1 givenname: Miguel orcidid: 0000-0002-8319-4044 surname: Gonzalez-Salazar fullname: Gonzalez-Salazar, Miguel email: miguelangel.gonzalez@vattenfall.de, gnzmln@unife.it – sequence: 2 givenname: Julia surname: Klossek fullname: Klossek, Julia – sequence: 3 givenname: Pascal surname: Dubucq fullname: Dubucq, Pascal – sequence: 4 givenname: Thomas surname: Punde fullname: Punde, Thomas |
| BookMark | eNqFkLtOxDAQRV0sEs8_oEhJk-A4zosChBAvCQQFdEiWY0_CrBJ7sQ1i-XoMoaKAxiOP7pnRnG2yMNYAIfs5zXKaV4fLDAy4YZ0xyliWs4rV9YJs0aKiack52yTb3i8ppWXTtlvk6d660NsRbWJXASf8kAGtSdAkGn1wqELyDLFnhqPkFhyGxDoNLr7JhO-gYzLAEBsjGpAuWTk7ODlNETjZJRu9HD3s_dQd8nhx_nB2ld7cXV6fnd6kilVtSOumblQvtVaqaDte9IxDG_-sqkvd805LWVCQneqg6Xgbr8h5xcu2BFpA37BihxzMc-Pyl1fwQUzoFYyjNGBfvWBNwVnO2rKMUT5HlbPeO-jFyuEk3VrkVHwJFEsxCxRfAsUsMGJHvzCF4dtUcBLH_-DjGYbo4A3BCa8QjAKNDlQQ2uLfAz4BVLyVMQ |
| CitedBy_id | crossref_primary_10_1016_j_scs_2023_104955 crossref_primary_10_3390_en18051259 crossref_primary_10_1016_j_rser_2025_115602 crossref_primary_10_1016_j_energy_2023_129583 crossref_primary_10_1016_j_energy_2023_129056 crossref_primary_10_1016_j_energy_2024_132457 crossref_primary_10_1016_j_energy_2025_134522 crossref_primary_10_1109_ACCESS_2023_3328327 crossref_primary_10_1016_j_energy_2025_136664 crossref_primary_10_3390_app13084864 crossref_primary_10_1016_j_rser_2025_116037 crossref_primary_10_62051_sdqv4p21 crossref_primary_10_1016_j_energy_2024_133537 crossref_primary_10_1016_j_apenergy_2025_126594 crossref_primary_10_1016_j_energy_2025_136639 crossref_primary_10_1016_j_applthermaleng_2024_122631 |
| Cites_doi | 10.1016/j.energy.2012.01.066 10.1016/j.enpol.2019.01.077 10.3390/en14123395 10.1016/j.energy.2019.116367 10.1016/j.energy.2019.07.044 10.1016/j.energy.2018.04.028 10.3390/en13236394 10.1016/j.apenergy.2021.117877 10.1016/j.energy.2008.10.019 10.1016/j.orl.2009.09.005 10.1016/j.energy.2014.12.018 10.1016/j.enbuild.2015.10.050 10.1007/BF03371553 10.1016/j.enconman.2014.03.050 10.1016/j.rser.2017.05.278 10.1016/j.rser.2017.04.045 10.1016/j.ejor.2019.01.055 10.1016/S0306-2619(03)00120-X 10.1016/j.rser.2017.10.089 10.1016/j.energy.2017.06.105 10.1016/j.rser.2014.10.003 10.1016/j.egypro.2018.08.021 10.1016/j.rser.2017.02.082 10.1016/j.compchemeng.2014.03.005 10.1016/j.enbuild.2011.07.024 10.1016/j.renene.2016.12.043 10.1016/j.eneco.2011.12.004 10.1016/j.energy.2014.04.097 10.1016/j.energy.2012.12.003 10.2307/2230169 10.1016/j.energy.2017.01.014 10.1016/j.energy.2017.08.066 10.1016/B978-0-444-59506-5.50029-8 10.1007/978-94-009-0129-2_1 10.1016/j.energy.2018.09.141 10.1016/j.applthermaleng.2011.12.016 10.1016/j.energy.2018.10.170 10.1016/j.ejor.2021.06.024 10.1016/j.energy.2013.04.004 10.1016/j.energy.2017.08.019 10.1016/j.ijepes.2020.106428 10.1016/j.energy.2014.06.007 10.1016/j.energy.2016.09.139 10.1016/j.energy.2020.117579 10.1016/j.energy.2021.121323 10.1016/j.energy.2021.120839 10.1016/j.apenergy.2020.115630 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.126277 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2022_126277 S0360544222031632 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c269t-7878cfaddcc39b43f24e9fad2675df4bdaa30eabcbe8b495441464595e03ef823 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904915200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 09:40:16 EDT 2025 Tue Nov 18 22:51:13 EST 2025 Sat Nov 29 07:19:56 EST 2025 Sat Apr 13 16:39:23 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Portfolio optimization Marginal costs Mixed integer linear programming District heating Merit order |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-7878cfaddcc39b43f24e9fad2675df4bdaa30eabcbe8b495441464595e03ef823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8319-4044 |
| PQID | 2834212955 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834212955 crossref_primary_10_1016_j_energy_2022_126277 crossref_citationtrail_10_1016_j_energy_2022_126277 elsevier_sciencedirect_doi_10_1016_j_energy_2022_126277 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-15 |
| PublicationDateYYYYMMDD | 2023-02-15 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bracco, Dentici, Siri (bib36) 2013; 55 Zhou, Liu, Li, Pistikopoulos, Georgiadis (bib38) 2012; 31 Loulou, Goldstein, Kanudia, Lettila, Remme (bib45) 2016 Li, Conejo, Liu, Omell, Siirola, Grossmann (bib15) 2022; 297 Elsido, Bischi, Silva, Martelli (bib61) 2017; 121 Gonzalez-Salazar, Padilla-Rodríguez (bib18) 2003 Ward, Green, Staffell (bib43) 2019; 129 Hofmeister, Mosbach, Hammacher, Blum, Röhrig, Dörr, Flegel, Bhave, Kraft (bib51) 2022; 305 vol. 5, pp. 3-23. Moser, Puschnigg, Rodin (bib50) 2020; 200 Cebulla, Fichter (bib11) 2016; 105 Morvaj, Evins, Carmeliet (bib33) 2016; 116 de Llano-Paz, Calvo-Silvosa, Iglesias Antelo, Soares (bib10) 2017; 77 (bib2) 2016 Shin, Kim, Kwag, Kim (bib42) 2021; 14 Maier, Pflug, Polak (bib12) 2020; 285 Casisi, Pinamonti, Reini (bib32) 2009; 34 Dvorak, Havel (bib39) 2012; 43 Gonzalez-Salazar, Padilla-Rodríguez, Willinger (bib17) 2004 Liu, Klip, Zappa, Jelles, Kramer, van den Broek (bib49) 2019; 189 Guilardi, Castelli, Moretti, Morini, Martelli (bib24) 2021; 302 Buoro, Casisi, De Nardi, Pinamonti, Reini (bib31) 2013; 58 volue (bib58) 2022 Lamaison, Collete, Vallée, Bavière (bib26) 2019; 186 Pavicevic, Novosel, Puksec, Duic (bib35) 2017; 137 Ameri, Besharati (bib23) 2016; 110 Fraunhofer (bib5) 2021 (bib1) 2016 vol. 278, 2020. vol. 234, 2021. Lesko, Bujalski, Futyma (bib19) 2018; 165 Rieder, Christidis, Tsatsaronis (bib30) 2014; 74 Delangle, Lambert, Shah, Acha, Markides (bib34) 2017; 140 Li, Sun, Zhang, Wallin (bib54) 2015; 42 Domínguez-Muñoz, Cejudo-López, Carrillo-Andrés, Gallardo-Salazar (bib37) 2011; 43 Arcuri, Beraldi, Florio, Fragiacomo (bib62) 2015; 80 P. Benalcazar, "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: a case study," Energy Kouhia, Laukkanen, Holmberg, Ahtila (bib25) 2019; 167 Pantaleo, Giarola, Bauen, Shah (bib21) 2014; 83 Gonzalez-Salazar, Langrock, Koch, Spieß, Noack, Witt, Ritzau, Michels (bib4) 2020; 13 Pérez Odeh, Watts, Flores (bib8) 2018; 82 (bib46) 2021 Dominkovic, Wahlroos, Syri, Pedersen (bib52) 2018; 153 Fazlollahi, Bungener, Mandel, Becker, Maréchal (bib20) 2014; 65 Sjödin, Henning (bib48) 2004; 78 J. Beiron, R. Montañés, F. Normann and F. Johnsson, "Flexible operation of a combined cycle cogeneration plant - a techno-economic assessment," Appl Energy Gurobi (bib59) 2022 D'Ambrosio, Lodi, Martello (bib40) 2010; 38 Ioannou, Angus, Brennan (bib7) 2017; 74 de Veillemeur, Pineau (bib44) 2012; 34 Gonzalez-Salazar, Kirsten, Prchlik (bib55) 2018; 82 Rech, Toffolo, Lazzaretto (bib29) 2012; 45 A. Josefsson, J. Johnsson and C. Wene, "Community-based regional energy-environmental planning," Operations Research and Environmental Management Clarner, Tawfik, Koch, Zittel (bib60) 2022 Rikkas, Lahdelma (bib27) 2021; 231 Willeke (bib6) 1998; 50 Capuder, Mancarella (bib22) 2014; 71 Scholz (bib56) 2020 Urbanucci (bib14) 2018; 148 Delmastro, Martinsson, Dulac, Corgnati (bib53) 2017; 138 (bib3) 2017 Wang, Zhang, You, Zong, Traeholt, Dong (bib13) 2021; 125 Schellong (bib16) 2016 Bagemihl (bib9) 2002 Turvey (bib41) 1969; 79 Urbanucci (10.1016/j.energy.2022.126277_bib14) 2018; 148 Delmastro (10.1016/j.energy.2022.126277_bib53) 2017; 138 Delangle (10.1016/j.energy.2022.126277_bib34) 2017; 140 Schellong (10.1016/j.energy.2022.126277_bib16) 2016 Rikkas (10.1016/j.energy.2022.126277_bib27) 2021; 231 Rech (10.1016/j.energy.2022.126277_bib29) 2012; 45 Li (10.1016/j.energy.2022.126277_bib15) 2022; 297 10.1016/j.energy.2022.126277_bib57 Rieder (10.1016/j.energy.2022.126277_bib30) 2014; 74 D'Ambrosio (10.1016/j.energy.2022.126277_bib40) 2010; 38 Sjödin (10.1016/j.energy.2022.126277_bib48) 2004; 78 Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib17) 2004 Lesko (10.1016/j.energy.2022.126277_bib19) 2018; 165 Turvey (10.1016/j.energy.2022.126277_bib41) 1969; 79 Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib4) 2020; 13 Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib55) 2018; 82 Kouhia (10.1016/j.energy.2022.126277_bib25) 2019; 167 Moser (10.1016/j.energy.2022.126277_bib50) 2020; 200 Morvaj (10.1016/j.energy.2022.126277_bib33) 2016; 116 10.1016/j.energy.2022.126277_bib28 Clarner (10.1016/j.energy.2022.126277_bib60) 2022 (10.1016/j.energy.2022.126277_bib2) 2016 Fraunhofer (10.1016/j.energy.2022.126277_bib5) 2021 Bracco (10.1016/j.energy.2022.126277_bib36) 2013; 55 Capuder (10.1016/j.energy.2022.126277_bib22) 2014; 71 Ioannou (10.1016/j.energy.2022.126277_bib7) 2017; 74 Cebulla (10.1016/j.energy.2022.126277_bib11) 2016; 105 Loulou (10.1016/j.energy.2022.126277_bib45) 2016 Elsido (10.1016/j.energy.2022.126277_bib61) 2017; 121 de Llano-Paz (10.1016/j.energy.2022.126277_bib10) 2017; 77 de Veillemeur (10.1016/j.energy.2022.126277_bib44) 2012; 34 Zhou (10.1016/j.energy.2022.126277_bib38) 2012; 31 Scholz (10.1016/j.energy.2022.126277_bib56) 2020 Guilardi (10.1016/j.energy.2022.126277_bib24) 2021; 302 Liu (10.1016/j.energy.2022.126277_bib49) 2019; 189 Ward (10.1016/j.energy.2022.126277_bib43) 2019; 129 (10.1016/j.energy.2022.126277_bib3) 2017 Fazlollahi (10.1016/j.energy.2022.126277_bib20) 2014; 65 Willeke (10.1016/j.energy.2022.126277_bib6) 1998; 50 Ameri (10.1016/j.energy.2022.126277_bib23) 2016; 110 (10.1016/j.energy.2022.126277_bib46) 2021 Dvorak (10.1016/j.energy.2022.126277_bib39) 2012; 43 Arcuri (10.1016/j.energy.2022.126277_bib62) 2015; 80 Pérez Odeh (10.1016/j.energy.2022.126277_bib8) 2018; 82 Wang (10.1016/j.energy.2022.126277_bib13) 2021; 125 Lamaison (10.1016/j.energy.2022.126277_bib26) 2019; 186 Shin (10.1016/j.energy.2022.126277_bib42) 2021; 14 Casisi (10.1016/j.energy.2022.126277_bib32) 2009; 34 Hofmeister (10.1016/j.energy.2022.126277_bib51) 2022; 305 volue (10.1016/j.energy.2022.126277_bib58) 2022 Gonzalez-Salazar (10.1016/j.energy.2022.126277_bib18) 2003 Maier (10.1016/j.energy.2022.126277_bib12) 2020; 285 Buoro (10.1016/j.energy.2022.126277_bib31) 2013; 58 10.1016/j.energy.2022.126277_bib47 Domínguez-Muñoz (10.1016/j.energy.2022.126277_bib37) 2011; 43 Bagemihl (10.1016/j.energy.2022.126277_bib9) 2002 Gurobi (10.1016/j.energy.2022.126277_bib59) 2022 Pantaleo (10.1016/j.energy.2022.126277_bib21) 2014; 83 Li (10.1016/j.energy.2022.126277_bib54) 2015; 42 Pavicevic (10.1016/j.energy.2022.126277_bib35) 2017; 137 Dominkovic (10.1016/j.energy.2022.126277_bib52) 2018; 153 (10.1016/j.energy.2022.126277_bib1) 2016 |
| References_xml | – volume: 148 start-page: 1199 year: 2018 end-page: 1205 ident: bib14 article-title: Limits and potentials of Mixed Integer Linear Programming methods for optimization of polygeneration energy systems publication-title: Energy Proc – volume: 71 start-page: 516 year: 2014 end-page: 533 ident: bib22 article-title: Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options publication-title: Energy – volume: 77 start-page: 636 year: 2017 end-page: 651 ident: bib10 article-title: Energy planning and modern portfolio theory: a review publication-title: Renew Sustain Energy Rev – year: 2003 ident: bib18 article-title: Combined heat and power technologies: applied studies of options including micro turbines – volume: 43 start-page: 3036 year: 2011 end-page: 3043 ident: bib37 article-title: Selection of typical demand days for CHP optimization publication-title: Energy Build – year: 2021 ident: bib46 article-title: World energy model (WEM) documentation – year: 2002 ident: bib9 article-title: Optimierung eines Portfolios mit hydro-thermischem Kraftwerkspark im börslichen Strom- und Gasterminmarkt – volume: 167 start-page: 369 year: 2019 end-page: 378 ident: bib25 article-title: Evaluation of design objectives in district heating system design publication-title: Energy – volume: 82 start-page: 3808 year: 2018 end-page: 3823 ident: bib8 article-title: Planning in a changing environment: applications of portfolio optimisation to deal with risk in the electricity sector publication-title: Renew Sustain Energy Rev – volume: 189 year: 2019 ident: bib49 article-title: The marginal-cost pricing for a competitive wholesale district heating market: a case study in The Netherlands publication-title: Energy – year: 2022 ident: bib59 article-title: Gurobi optimization – reference: A. Josefsson, J. Johnsson and C. Wene, "Community-based regional energy-environmental planning," Operations Research and Environmental Management – volume: 38 start-page: 39 year: 2010 end-page: 46 ident: bib40 article-title: Piecewise linear approximation of functions of two variables in MILP models publication-title: Oper Res Lett – volume: 302 year: 2021 ident: bib24 article-title: Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings publication-title: Appl Energy – year: 2016 ident: bib2 publication-title: EWG Berlin – volume: 105 start-page: 117 year: 2016 end-page: 132 ident: bib11 article-title: Merit order or unit-commitment dispatch? How does thermal power plant modeling affect storage demand in energy system models? publication-title: Renew Energy – reference: vol. 5, pp. 3-23. – volume: 153 start-page: 136 year: 2018 end-page: 148 ident: bib52 article-title: Influence of different technologies on dynamic pricing in district heating ystems: comparative case studies publication-title: Energy – volume: 129 start-page: 1190 year: 2019 end-page: 1206 ident: bib43 article-title: Getting prices right in structural electricity market models publication-title: Energy Pol – volume: 121 start-page: 403 year: 2017 end-page: 426 ident: bib61 article-title: Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units publication-title: Energy – volume: 140 start-page: 209 year: 2017 end-page: 223 ident: bib34 article-title: Modelling and optimising the marginal expansion of an existing district heating network publication-title: Energy – year: 2016 ident: bib16 article-title: Analyse und Optimierung von Energieverbundsystemen – year: 2021 ident: bib5 article-title: Potenzialstudie klimaneutrale Wärmeversorgung Berlin 2035 – volume: 138 start-page: 1209 year: 2017 end-page: 1220 ident: bib53 article-title: Sustainable urban heat strategies: perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm publication-title: Energy – reference: vol. 278, 2020. – volume: 74 start-page: 230 year: 2014 end-page: 239 ident: bib30 article-title: Multi criteria dynamic design optimization of a small scale distributed energy system publication-title: Energy – volume: 45 start-page: 366 year: 2012 end-page: 374 ident: bib29 article-title: TSO-STO: a two-step approach to the optimal operation of heat storage systems with variable temperature tanks publication-title: Energy – volume: 65 start-page: 54 year: 2014 end-page: 66 ident: bib20 article-title: Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating periods publication-title: Comput Chem Eng – volume: 43 start-page: 163 year: 2012 end-page: 173 ident: bib39 article-title: Combined heat and power production planning under liberalized market conditions publication-title: Appl Therm Eng – volume: 31 start-page: 990 year: 2012 end-page: 994 ident: bib38 article-title: Impacts of equipment off-design characteristics on the optimal design and operation of combined cooling, heating and power systems publication-title: Computer Aided Chemical Engineering – volume: 137 start-page: 1264 year: 2017 end-page: 1276 ident: bib35 article-title: Hourly optimization and sizing of district heating systems considering building refurbishment - case study for the city of Zagreb publication-title: Energy – year: 2022 ident: bib60 article-title: Network-induced Unit Commitment - a model class for investment and production portfolio planning for multi-energy systems – year: 2016 ident: bib45 article-title: Documentation for the TIMES model – volume: 83 start-page: 347 year: 2014 end-page: 361 ident: bib21 article-title: Integration of biomass into urban energy systems for heat and power. Part I: an MILP based spatial optimization methodology publication-title: Energy Convers Manag – volume: 55 start-page: 1014 year: 2013 end-page: 1024 ident: bib36 article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area publication-title: Energy – volume: 116 start-page: 619 year: 2016 end-page: 636 ident: bib33 article-title: Optimising urban energy systems: simultaneous system sizing, operation and district heating network layout publication-title: Energy – volume: 79 start-page: 282 year: 1969 end-page: 299 ident: bib41 article-title: Marginal cost publication-title: Econ J – volume: 78 start-page: 1 year: 2004 end-page: 18 ident: bib48 article-title: Calculating the marginal costs of a district-heating utility publication-title: Appl Energy – volume: 50 start-page: 1146 year: 1998 end-page: 1164 ident: bib6 article-title: Risikoanalyse in der Energiewirtschaft publication-title: Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung – volume: 125 year: 2021 ident: bib13 article-title: Multi-timescale coordinated operation of a CHP plant-wind farm portfolio considering multiple uncertainties publication-title: Int J Electr Power Energy Syst – volume: 82 start-page: 1497 year: 2018 end-page: 1513 ident: bib55 article-title: Review of the opeartional flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables publication-title: Renew Sustain Energy Rev – volume: 34 start-page: 529 year: 2012 end-page: 535 ident: bib44 article-title: Regulation and electricity market integration: when trade introduces inefficiencies publication-title: Energy Econ – volume: 110 start-page: 135 year: 2016 end-page: 148 ident: bib23 article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex publication-title: Energy Build – volume: 34 start-page: 2175 year: 2009 end-page: 2183 ident: bib32 article-title: Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems publication-title: Energy – year: 2022 ident: bib58 article-title: BoFiT optimization," – volume: 231 year: 2021 ident: bib27 article-title: Energy supply and storage optimization for mixed-type buildings publication-title: Energy – year: 2017 ident: bib3 article-title: Energie- und CO2-Bilanz in Berlin 2017 – reference: J. Beiron, R. Montañés, F. Normann and F. Johnsson, "Flexible operation of a combined cycle cogeneration plant - a techno-economic assessment," Appl Energy – reference: vol. 234, 2021. – volume: 200 year: 2020 ident: bib50 article-title: Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems publication-title: Energy – year: 2004 ident: bib17 article-title: Combined heat and power technologies: application studies of options including micro gas turbines publication-title: Turbo expo: power for land, sea, and air – volume: 165 start-page: 902 year: 2018 end-page: 915 ident: bib19 article-title: Operational optimization in district heating systems with the use of thermal energy storage publication-title: Energy – volume: 305 year: 2022 ident: bib51 article-title: Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation publication-title: Appl Energy – volume: 42 start-page: 56 year: 2015 end-page: 65 ident: bib54 article-title: A review of the pricing mechanisms for district heating systems publication-title: Renew Sustain Energy Rev – volume: 13 year: 2020 ident: bib4 article-title: Evaluation of energy transition pathways to phase out coal for district heating in Berlin publication-title: Energies – volume: 58 start-page: 128 year: 2013 end-page: 137 ident: bib31 article-title: Multicriteria optimization of a distributed energy supply system for an industrial area publication-title: Energy – volume: 80 start-page: 628 year: 2015 end-page: 641 ident: bib62 article-title: Optimal design of a small size trigeneration plant in civil users: a MINLP (Mixed Integer Non Linear Programming Model) publication-title: Energy – volume: 285 start-page: 133 year: 2020 end-page: 147 ident: bib12 article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties publication-title: Eur J Oper Res – volume: 297 start-page: 1071 year: 2022 end-page: 1082 ident: bib15 article-title: Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems publication-title: Eur J Oper Res – reference: P. Benalcazar, "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: a case study," Energy – year: 2020 ident: bib56 article-title: Speeding up energy system models - a best practice guide – volume: 186 year: 2019 ident: bib26 article-title: Storage influence in a combined biomass and power-to-heat district heating production plant publication-title: Energy – volume: 74 start-page: 602 year: 2017 end-page: 615 ident: bib7 article-title: Risk-based methods for sustainable energy system planning: a review publication-title: Renew Sustain Energy Rev – year: 2016 ident: bib1 publication-title: Klimaschutzplan 2050 - Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung – volume: 14 year: 2021 ident: bib42 article-title: A comparative study of pricing mechanisms to reduce side-payments in the electricity market: a case study for South Korea publication-title: Energies – volume: 45 start-page: 366 issue: 1 year: 2012 ident: 10.1016/j.energy.2022.126277_bib29 article-title: TSO-STO: a two-step approach to the optimal operation of heat storage systems with variable temperature tanks publication-title: Energy doi: 10.1016/j.energy.2012.01.066 – volume: 129 start-page: 1190 year: 2019 ident: 10.1016/j.energy.2022.126277_bib43 article-title: Getting prices right in structural electricity market models publication-title: Energy Pol doi: 10.1016/j.enpol.2019.01.077 – year: 2016 ident: 10.1016/j.energy.2022.126277_bib45 – year: 2016 ident: 10.1016/j.energy.2022.126277_bib16 – volume: 14 issue: 12 year: 2021 ident: 10.1016/j.energy.2022.126277_bib42 article-title: A comparative study of pricing mechanisms to reduce side-payments in the electricity market: a case study for South Korea publication-title: Energies doi: 10.3390/en14123395 – volume: 189 year: 2019 ident: 10.1016/j.energy.2022.126277_bib49 article-title: The marginal-cost pricing for a competitive wholesale district heating market: a case study in The Netherlands publication-title: Energy doi: 10.1016/j.energy.2019.116367 – volume: 186 year: 2019 ident: 10.1016/j.energy.2022.126277_bib26 article-title: Storage influence in a combined biomass and power-to-heat district heating production plant publication-title: Energy doi: 10.1016/j.energy.2019.07.044 – volume: 153 start-page: 136 year: 2018 ident: 10.1016/j.energy.2022.126277_bib52 article-title: Influence of different technologies on dynamic pricing in district heating ystems: comparative case studies publication-title: Energy doi: 10.1016/j.energy.2018.04.028 – volume: 13 issue: 23 year: 2020 ident: 10.1016/j.energy.2022.126277_bib4 article-title: Evaluation of energy transition pathways to phase out coal for district heating in Berlin publication-title: Energies doi: 10.3390/en13236394 – volume: 305 year: 2022 ident: 10.1016/j.energy.2022.126277_bib51 article-title: Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117877 – year: 2022 ident: 10.1016/j.energy.2022.126277_bib58 – volume: 34 start-page: 2175 issue: 12 year: 2009 ident: 10.1016/j.energy.2022.126277_bib32 article-title: Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems publication-title: Energy doi: 10.1016/j.energy.2008.10.019 – volume: 38 start-page: 39 year: 2010 ident: 10.1016/j.energy.2022.126277_bib40 article-title: Piecewise linear approximation of functions of two variables in MILP models publication-title: Oper Res Lett doi: 10.1016/j.orl.2009.09.005 – year: 2020 ident: 10.1016/j.energy.2022.126277_bib56 – year: 2022 ident: 10.1016/j.energy.2022.126277_bib59 – volume: 80 start-page: 628 year: 2015 ident: 10.1016/j.energy.2022.126277_bib62 article-title: Optimal design of a small size trigeneration plant in civil users: a MINLP (Mixed Integer Non Linear Programming Model) publication-title: Energy doi: 10.1016/j.energy.2014.12.018 – volume: 110 start-page: 135 year: 2016 ident: 10.1016/j.energy.2022.126277_bib23 article-title: Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex publication-title: Energy Build doi: 10.1016/j.enbuild.2015.10.050 – volume: 50 start-page: 1146 issue: 12 year: 1998 ident: 10.1016/j.energy.2022.126277_bib6 article-title: Risikoanalyse in der Energiewirtschaft publication-title: Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung doi: 10.1007/BF03371553 – year: 2002 ident: 10.1016/j.energy.2022.126277_bib9 – volume: 83 start-page: 347 year: 2014 ident: 10.1016/j.energy.2022.126277_bib21 article-title: Integration of biomass into urban energy systems for heat and power. Part I: an MILP based spatial optimization methodology publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.03.050 – volume: 82 start-page: 1497 issue: 1 year: 2018 ident: 10.1016/j.energy.2022.126277_bib55 article-title: Review of the opeartional flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.278 – volume: 77 start-page: 636 year: 2017 ident: 10.1016/j.energy.2022.126277_bib10 article-title: Energy planning and modern portfolio theory: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.045 – volume: 285 start-page: 133 issue: 1 year: 2020 ident: 10.1016/j.energy.2022.126277_bib12 article-title: Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2019.01.055 – volume: 78 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.energy.2022.126277_bib48 article-title: Calculating the marginal costs of a district-heating utility publication-title: Appl Energy doi: 10.1016/S0306-2619(03)00120-X – year: 2016 ident: 10.1016/j.energy.2022.126277_bib2 – volume: 82 start-page: 3808 year: 2018 ident: 10.1016/j.energy.2022.126277_bib8 article-title: Planning in a changing environment: applications of portfolio optimisation to deal with risk in the electricity sector publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.10.089 – volume: 137 start-page: 1264 year: 2017 ident: 10.1016/j.energy.2022.126277_bib35 article-title: Hourly optimization and sizing of district heating systems considering building refurbishment - case study for the city of Zagreb publication-title: Energy doi: 10.1016/j.energy.2017.06.105 – volume: 42 start-page: 56 year: 2015 ident: 10.1016/j.energy.2022.126277_bib54 article-title: A review of the pricing mechanisms for district heating systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.003 – volume: 148 start-page: 1199 year: 2018 ident: 10.1016/j.energy.2022.126277_bib14 article-title: Limits and potentials of Mixed Integer Linear Programming methods for optimization of polygeneration energy systems publication-title: Energy Proc doi: 10.1016/j.egypro.2018.08.021 – volume: 74 start-page: 602 year: 2017 ident: 10.1016/j.energy.2022.126277_bib7 article-title: Risk-based methods for sustainable energy system planning: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.02.082 – volume: 65 start-page: 54 year: 2014 ident: 10.1016/j.energy.2022.126277_bib20 article-title: Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating periods publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2014.03.005 – volume: 43 start-page: 3036 year: 2011 ident: 10.1016/j.energy.2022.126277_bib37 article-title: Selection of typical demand days for CHP optimization publication-title: Energy Build doi: 10.1016/j.enbuild.2011.07.024 – volume: 105 start-page: 117 year: 2016 ident: 10.1016/j.energy.2022.126277_bib11 article-title: Merit order or unit-commitment dispatch? How does thermal power plant modeling affect storage demand in energy system models? publication-title: Renew Energy doi: 10.1016/j.renene.2016.12.043 – year: 2004 ident: 10.1016/j.energy.2022.126277_bib17 article-title: Combined heat and power technologies: application studies of options including micro gas turbines – year: 2017 ident: 10.1016/j.energy.2022.126277_bib3 – volume: 34 start-page: 529 issue: 2 year: 2012 ident: 10.1016/j.energy.2022.126277_bib44 article-title: Regulation and electricity market integration: when trade introduces inefficiencies publication-title: Energy Econ doi: 10.1016/j.eneco.2011.12.004 – year: 2016 ident: 10.1016/j.energy.2022.126277_bib1 – volume: 71 start-page: 516 year: 2014 ident: 10.1016/j.energy.2022.126277_bib22 article-title: Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options publication-title: Energy doi: 10.1016/j.energy.2014.04.097 – volume: 58 start-page: 128 issue: 1 year: 2013 ident: 10.1016/j.energy.2022.126277_bib31 article-title: Multicriteria optimization of a distributed energy supply system for an industrial area publication-title: Energy doi: 10.1016/j.energy.2012.12.003 – volume: 79 start-page: 282 issue: 314 year: 1969 ident: 10.1016/j.energy.2022.126277_bib41 article-title: Marginal cost publication-title: Econ J doi: 10.2307/2230169 – volume: 121 start-page: 403 year: 2017 ident: 10.1016/j.energy.2022.126277_bib61 article-title: Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units publication-title: Energy doi: 10.1016/j.energy.2017.01.014 – volume: 140 start-page: 209 year: 2017 ident: 10.1016/j.energy.2022.126277_bib34 article-title: Modelling and optimising the marginal expansion of an existing district heating network publication-title: Energy doi: 10.1016/j.energy.2017.08.066 – volume: 31 start-page: 990 year: 2012 ident: 10.1016/j.energy.2022.126277_bib38 article-title: Impacts of equipment off-design characteristics on the optimal design and operation of combined cooling, heating and power systems publication-title: Computer Aided Chemical Engineering doi: 10.1016/B978-0-444-59506-5.50029-8 – ident: 10.1016/j.energy.2022.126277_bib47 doi: 10.1007/978-94-009-0129-2_1 – year: 2021 ident: 10.1016/j.energy.2022.126277_bib5 – volume: 165 start-page: 902 year: 2018 ident: 10.1016/j.energy.2022.126277_bib19 article-title: Operational optimization in district heating systems with the use of thermal energy storage publication-title: Energy doi: 10.1016/j.energy.2018.09.141 – volume: 43 start-page: 163 year: 2012 ident: 10.1016/j.energy.2022.126277_bib39 article-title: Combined heat and power production planning under liberalized market conditions publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.12.016 – volume: 167 start-page: 369 year: 2019 ident: 10.1016/j.energy.2022.126277_bib25 article-title: Evaluation of design objectives in district heating system design publication-title: Energy doi: 10.1016/j.energy.2018.10.170 – volume: 297 start-page: 1071 year: 2022 ident: 10.1016/j.energy.2022.126277_bib15 article-title: Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2021.06.024 – volume: 55 start-page: 1014 year: 2013 ident: 10.1016/j.energy.2022.126277_bib36 article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area publication-title: Energy doi: 10.1016/j.energy.2013.04.004 – volume: 138 start-page: 1209 year: 2017 ident: 10.1016/j.energy.2022.126277_bib53 article-title: Sustainable urban heat strategies: perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm publication-title: Energy doi: 10.1016/j.energy.2017.08.019 – volume: 125 year: 2021 ident: 10.1016/j.energy.2022.126277_bib13 article-title: Multi-timescale coordinated operation of a CHP plant-wind farm portfolio considering multiple uncertainties publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106428 – volume: 74 start-page: 230 issue: 1 year: 2014 ident: 10.1016/j.energy.2022.126277_bib30 article-title: Multi criteria dynamic design optimization of a small scale distributed energy system publication-title: Energy doi: 10.1016/j.energy.2014.06.007 – year: 2022 ident: 10.1016/j.energy.2022.126277_bib60 – volume: 116 start-page: 619 year: 2016 ident: 10.1016/j.energy.2022.126277_bib33 article-title: Optimising urban energy systems: simultaneous system sizing, operation and district heating network layout publication-title: Energy doi: 10.1016/j.energy.2016.09.139 – volume: 200 year: 2020 ident: 10.1016/j.energy.2022.126277_bib50 article-title: Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems publication-title: Energy doi: 10.1016/j.energy.2020.117579 – ident: 10.1016/j.energy.2022.126277_bib28 doi: 10.1016/j.energy.2021.121323 – volume: 231 year: 2021 ident: 10.1016/j.energy.2022.126277_bib27 article-title: Energy supply and storage optimization for mixed-type buildings publication-title: Energy doi: 10.1016/j.energy.2021.120839 – year: 2003 ident: 10.1016/j.energy.2022.126277_bib18 – year: 2021 ident: 10.1016/j.energy.2022.126277_bib46 – volume: 302 year: 2021 ident: 10.1016/j.energy.2022.126277_bib24 article-title: Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings publication-title: Appl Energy – ident: 10.1016/j.energy.2022.126277_bib57 doi: 10.1016/j.apenergy.2020.115630 |
| SSID | ssj0005899 |
| Score | 2.491105 |
| Snippet | Long-term portfolio optimization is commonly used to find the most cost-effective design and operation of a district heating system, subject to technical,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 126277 |
| SubjectTerms | cost effectiveness decision making District heating energy heat industry Marginal costs Merit order Mixed integer linear programming Portfolio optimization power generation system optimization |
| Title | Portfolio optimization in district heating: Merit order or mixed integer linear programming? |
| URI | https://dx.doi.org/10.1016/j.energy.2022.126277 https://www.proquest.com/docview/2834212955 |
| Volume | 265 |
| WOSCitedRecordID | wos000904915200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA_SCvoiWi3WqkTwraRcs1-JL1L0_G4ptMI9CEs2m8jWu922uyvH_fVOvvZ6LVIVfAl3IcntZX47M0l-M0HoJQMfnkcjRTTTKYlFkhEBqpgUTKmCRSzR0qbM_5IdHrLJhB95SlBrrxPI6prN5_zsv4oa6kDYJnT2L8Q9DAoV8BmEDiWIHco_ErzhhupmWjU7DaiDmY-ztKxXkyS3kp3xDkOg8wE8UrdjE3AaavqsmqvS5ZCACuOCmlTYjsM1s11WeYAuctCkLJ07lvywr_C-qRdgfBbkWEzFwtG4D6rvvRooHZ-nYKDVjxClPdiHt33Ry3Pn3rZSDO2PTLzbFVKT36-g5pSYuIhNt4kWAmmWrCUXvDUiSRyvKGbqbpG4puTdfsPprrL_Edb4lO7u0ZT6-2BW02cfm6HNyJSC_kojMNfrNEs4aMD1_Y_jyaclIYjZ20aHRwmBlpYNeP23fufIXDHp1k85uY_u-QUG3nfAeIBuqXoD3Qnx5-0G2hwvYxuhoVfu7UP0bUAOvowcXNU4IAd75LzCFjfY4gZKbHGDPW6www2-hJvXj9DXd-OTNx-Iv3yDSJryjoAiZ1KD9ZMy4kUcaRorDt8prDBLHRelEPCKi0IWihWwyga32hyS80SNIqUZjTbRWt3U6jHCTJRZykuVmsRELCn4SKci3ivjERdJGestFIWZzKXPTG8uSJnmgYJ4mrv5z838527-txAZep25zCw3tM-CkHLvXTqvMQdc3dDzRZBpDsrXnKiJWjV9m4NvbhgVPEme_PPo2-ju8jV5ita6i149Q7flz65qL557kP4CpwaxNg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portfolio+optimization+in+district+heating%3A+Merit+order+or+mixed+integer+linear+programming%3F&rft.jtitle=Energy+%28Oxford%29&rft.au=Gonzalez-Salazar%2C+Miguel&rft.au=Klossek%2C+Julia&rft.au=Dubucq%2C+Pascal&rft.au=Punde%2C+Thomas&rft.date=2023-02-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=265&rft_id=info:doi/10.1016%2Fj.energy.2022.126277&rft.externalDocID=S0360544222031632 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |