THE NOTION OF PROOF IN THE CONTEXT OF ELEMENTARY SCHOOL MATHEMATICS

Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation...

Full description

Saved in:
Bibliographic Details
Published in:Educational studies in mathematics Vol. 65; no. 1; pp. 1 - 20
Main Author: STYLIANIDES, ANDREAS J.
Format: Journal Article
Language:English
Published: Springer 01.05.2007
Subjects:
ISSN:0013-1954, 1573-0816
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation, by examining the characteristics of four major features of any given argument – foundation, formulation, representation, and social dimension – so that the argument could count as proof at the elementary school level. My examination is situated in an episode from a third-grade class, which presents a student's argument that could potentially count as proof. In order to examine the extent to which this argument could count as proof (given its four major elements), I develop and use a theoretical frame-work that is comprised of two principles for conceptualizing the notion of proof in school mathematics: (1) The intellectual-honesty principle, which states that the notion of proof in school mathematics should be conceptualized so that it is, at once, honest to mathematics as a discipline and honoring of students as mathematical learners; and (2) The continuum principle, which states that there should be continuity in how the notion of proof is conceptualized in different grade levels so that students' experiences with proof in school have coherence. The two principles offer the basis for certain judgments about whether the particular argument in the episode could count as proof. Also, they support more broadly ideas for a possible conceptualization of the notion of proof in the elementary grades.
AbstractList Despite increased appreciation of the role of "proof" in students' mathematical experiences across "all" grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation, by examining the characteristics of four major features of any given argument--foundation, formulation, representation, and social dimension--so that the argument could count as proof at the elementary school level. My examination is situated in an episode from a third-grade class, which presents a student's argument that could potentially count as proof. In order to examine the extent to which this argument could count as proof (given its four major elements), I develop and use a theoretical framework that is comprised of two principles for conceptualizing the notion of proof in school mathematics: (1) The "intellectual-honesty principle," which states that the notion of proof in school mathematics should be conceptualized so that it is, at once, honest to mathematics as a discipline and honoring of students as mathematical learners; and (2) The "continuum principle," which states that there should be continuity in how the notion of proof is conceptualized in different grade levels so that students' experiences with proof in school have coherence. The two principles offer the basis for certain judgments about whether the particular argument in the episode could count as proof. Also, they support more broadly ideas for a possible conceptualization of the notion of proof in the elementary grades.
Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation, by examining the characteristics of four major features of any given argument – foundation, formulation, representation, and social dimension – so that the argument could count as proof at the elementary school level. My examination is situated in an episode from a third-grade class, which presents a student's argument that could potentially count as proof. In order to examine the extent to which this argument could count as proof (given its four major elements), I develop and use a theoretical frame-work that is comprised of two principles for conceptualizing the notion of proof in school mathematics: (1) The intellectual-honesty principle, which states that the notion of proof in school mathematics should be conceptualized so that it is, at once, honest to mathematics as a discipline and honoring of students as mathematical learners; and (2) The continuum principle, which states that there should be continuity in how the notion of proof is conceptualized in different grade levels so that students' experiences with proof in school have coherence. The two principles offer the basis for certain judgments about whether the particular argument in the episode could count as proof. Also, they support more broadly ideas for a possible conceptualization of the notion of proof in the elementary grades.
Audience Elementary Education
Author STYLIANIDES, ANDREAS J.
Author_xml – sequence: 1
  givenname: ANDREAS J.
  surname: STYLIANIDES
  fullname: STYLIANIDES, ANDREAS J.
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ757768$$DView record in ERIC
BookMark eNp9kE9Lw0AQxRepYFv9AIJCvsDqzG6yuzmWkLaRNCttBD0t-QsptZEkF7-9G6IePHh5A-_NbxjegszO7bki5BbhAQHkY48gXJ8CCOoDVxQuyBw9ySkoFDMyB0BO0ffcK7Lo-yMAKIvNSZBuQyfRaaQTR6-d5722GiXOaAc6ScPXdPTDONyFSbravzmHYKt17OxWdsVKFByuyWWdnfrq5nsuycs6TIMtjfUmClYxLZjwB8prv0ZWyiLzPYaYV1JKjwnEuuQVE26eK-CAspaeVCUKr2JeoVxfZiwHXiJfkrvpbtU1hfnomves-zThk92XQtlYTnHRtX3fVbUpmiEbmvY8dFlzMghmrMpMVRlblRmrMmBJ_EP-HP-PuZ-YYz-03S_ApGJM2G--AN-abmA
CitedBy_id crossref_primary_10_1007_s10763_015_9664_z
crossref_primary_10_1080_10986065_2019_1570833
crossref_primary_10_1007_s10763_014_9603_4
crossref_primary_10_1007_s13394_019_00306_w
crossref_primary_10_1080_0020739X_2020_1762938
crossref_primary_10_29221_jce_2022_25_1_143
crossref_primary_10_1016_j_tate_2009_03_022
crossref_primary_10_1016_j_jmathb_2023_101052
crossref_primary_10_30935_scimath_16597
crossref_primary_10_1016_j_ijer_2013_06_005
crossref_primary_10_1080_14926156_2013_784829
crossref_primary_10_1007_s13394_016_0182_2
crossref_primary_10_9779_pauefd_782832
crossref_primary_10_1007_s13138_025_00256_w
crossref_primary_10_1016_j_jmathb_2010_01_003
crossref_primary_10_1007_s10649_016_9684_9
crossref_primary_10_1080_0020739X_2021_1941365
crossref_primary_10_29333_ejmste_108450
crossref_primary_10_1080_14794802_2023_2261435
crossref_primary_10_1007_s13394_021_00395_6
crossref_primary_10_17478_jegys_654460
crossref_primary_10_1007_s10649_014_9544_4
crossref_primary_10_1007_s10857_008_9077_9
crossref_primary_10_1016_j_jmathb_2018_06_005
crossref_primary_10_1016_j_tate_2007_11_015
crossref_primary_10_1080_0020739X_2020_1782493
crossref_primary_10_1080_0020739X_2020_1782494
crossref_primary_10_1080_14926156_2013_758326
crossref_primary_10_1080_10986065_2022_2053775
crossref_primary_10_1093_teamat_hrab036
crossref_primary_10_1080_19477503_2020_1740382
crossref_primary_10_1080_10986060903253954
crossref_primary_10_1007_s10649_013_9466_6
crossref_primary_10_1007_s10763_007_9074_y
crossref_primary_10_1080_10986065_2018_1509420
crossref_primary_10_1016_j_jmathb_2019_100755
crossref_primary_10_1016_j_jmathb_2022_100957
crossref_primary_10_1088_1742_6596_1387_1_012065
crossref_primary_10_1080_14926156_2014_993048
crossref_primary_10_1088_1757_899X_335_1_012130
crossref_primary_10_1111_ssm_12379
crossref_primary_10_1016_j_sbspro_2011_03_274
crossref_primary_10_1016_j_sbspro_2010_03_370
crossref_primary_10_1007_s10857_023_09602_6
Cites_doi 10.1086/461730
10.1016/0885-2014(89)90004-X
10.5951/MT.91.8.0670
10.4159/9780674028999
10.1016/S0732-3123(96)90036-X
10.3102/00028312033001155
10.2307/749524
10.2307/749877
10.1017/CBO9781139171472
10.2307/749651
10.3102/00028312027001029
10.1023/A:1012733122556
10.1037/0012-1649.33.1.70
10.2307/749600
10.1016/0732-3123(94)90035-3
10.1007/BF01273372
10.1007/BF01273731
ContentType Journal Article
Copyright 2006 Springer
Copyright_xml – notice: 2006 Springer
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
DOI 10.1007/s10649-006-9038-0
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
DatabaseTitle CrossRef
ERIC
DatabaseTitleList ERIC

DeliveryMethod fulltext_linktorsrc
Discipline Education
Mathematics
EISSN 1573-0816
ERIC EJ757768
EndPage 20
ExternalDocumentID EJ757768
10_1007_s10649_006_9038_0
27822668
GroupedDBID -DZ
-W8
-XX
-Y2
-~C
-~X
.86
.GO
06D
0R~
0VY
199
1N0
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAZS
AABHQ
AACDK
AAGAY
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWIL
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABAWQ
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFAN
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLWH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ABXSQ
ABYWD
ACAOD
ACBXY
ACDTI
ACGFS
ACHJO
ACHQT
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACMTB
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACTMH
ACUHS
ACZOJ
ADEPB
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADNFJ
ADODI
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFQWF
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DQDLB
DSRWC
EAD
EAP
EAS
EBLON
EBS
ECEWR
EDJ
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GENNL
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQ6
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEA
IHE
IJ-
IKXTQ
INH
INR
IPSME
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JAV
JBMMH
JBSCW
JBZCM
JCJTX
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OAM
OVD
P19
P9Q
PF-
PT4
PT5
QF4
QM7
QN7
QOK
QOS
R-Y
R89
R9I
RHV
RNS
ROL
RPD
RPX
RSV
S16
S27
S3B
SA0
SAP
SDA
SDH
SDM
SHS
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZY4
~8M
~A9
~EX
AAYXX
ABRTQ
ABUFD
CITATION
1SB
2.D
28-
2P1
5QI
7SW
AANTL
ACYUM
AEFIE
AFEXP
AFOHR
AGGDS
AHKAY
AI.
BBWZM
BJH
BNH
BNI
BNJ
BNO
ERI
H13
HGD
IER
ITC
KOW
MVM
NDZJH
NHB
O-J
P0-
PET
R4E
REK
RNI
RZC
RZD
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VH1
WK6
WWN
ZWUKE
ID FETCH-LOGICAL-c269t-3f9f12d7ca95211be77752611fd3e264bb803017f7578d165e25c8497a2b03d13
IEDL.DBID RSV
ISSN 0013-1954
IngestDate Tue Dec 02 16:26:25 EST 2025
Tue Nov 18 22:01:37 EST 2025
Sat Nov 29 05:24:53 EST 2025
Thu Jun 19 20:08:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c269t-3f9f12d7ca95211be77752611fd3e264bb803017f7578d165e25c8497a2b03d13
PageCount 20
ParticipantIDs eric_primary_EJ757768
crossref_citationtrail_10_1007_s10649_006_9038_0
crossref_primary_10_1007_s10649_006_9038_0
jstor_primary_27822668
PublicationCentury 2000
PublicationDate 2007-05-00
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-00
PublicationDecade 2000
PublicationTitle Educational studies in mathematics
PublicationYear 2007
Publisher Springer
Publisher_xml – name: Springer
References M. Lampert (9038_CR23) 1990; 27
R. Millo De (9038_CR12) 1979/1998
National Council of Teachers of Mathematics (9038_CR29) 2000
C.A. Maher (9038_CR26) 1996; 27
E. Fischbein (9038_CR15) 1982; 3
P. Light (9038_CR25) 1989; 4
P. Kitcher (9038_CR21) 1984
E. Yackel (9038_CR36) 1996; 27
P. Ernest (9038_CR14) 1998
M.A. Simon (9038_CR32) 1996; 15
G. Brousseau (9038_CR8) 1981; 2
D.L. Ball (9038_CR5) 2003
D.L. Ball (9038_CR7) 1996; 33
P. Ernest (9038_CR13) 1991
E. Yackel (9038_CR37) 2003
L. Sowder (9038_CR33) 1998; 91
G. Polya (9038_CR30) 1981
N. Balacheff (9038_CR3) 1991
R. Coe (9038_CR11) 1994; 24
R.C. Moore (9038_CR28) 1994; 27
Z. Usiskin (9038_CR35) 1987
N. Balacheff (9038_CR2) 1990; 21
T.P. Carpenter (9038_CR10) 2003
L. Healy (9038_CR19) 2000; 31
9038_CR22
A.H. Schoenfeld (9038_CR31) 1994; 13
M.A. Mariotti (9038_CR27) 2000; 44
D.L. Ball (9038_CR6) 2002
G. Hanna (9038_CR18) 1996
G. Hanna (9038_CR17) 1983
J. Bruner (9038_CR9) 1960
(9038_CR34) 1986/1998
D.L. Ball (9038_CR4) 1993; 93
K.M. Galotti (9038_CR16) 1997; 33
R. Hersh (9038_CR20) 1993; 24
N. Balacheff (9038_CR1) 1988
M. Lampert (9038_CR24) 1992
References_xml – volume: 3
  start-page: 9
  issue: 2
  year: 1982
  ident: 9038_CR15
  publication-title: For the Learning of Mathematics
– volume-title: Social Constructivism as a Philosophy of Mathematics
  year: 1998
  ident: 9038_CR14
– start-page: 175
  volume-title: Mathematical Knowledge: Its Growth through Teaching
  year: 1991
  ident: 9038_CR3
– volume: 93
  start-page: 373
  issue: 4
  year: 1993
  ident: 9038_CR4
  publication-title: The Elementary School Journal
  doi: 10.1086/461730
– start-page: 27
  volume-title: A Research Companion to Principles and Standards for School Mathematics
  year: 2003
  ident: 9038_CR5
– volume: 2
  start-page: 37
  year: 1981
  ident: 9038_CR8
  publication-title: Recherches en Didactique des Mathématiques
– volume: 4
  start-page: 49
  year: 1989
  ident: 9038_CR25
  publication-title: Cognitive Development
  doi: 10.1016/0885-2014(89)90004-X
– volume: 91
  start-page: 670
  issue: 8
  year: 1998
  ident: 9038_CR33
  publication-title: The Mathematics Teacher
  doi: 10.5951/MT.91.8.0670
– volume-title: Principles and Standards for School Mathematics
  year: 2000
  ident: 9038_CR29
– start-page: 216
  volume-title: Mathematics, Teachers and Children
  year: 1988
  ident: 9038_CR1
– volume-title: The Process of Education
  year: 1960
  ident: 9038_CR9
  doi: 10.4159/9780674028999
– volume-title: New Directions in the Philosophy of Mathematics
  year: 1986/1998
  ident: 9038_CR34
– volume: 15
  start-page: 3
  issue: 1
  year: 1996
  ident: 9038_CR32
  publication-title: Journal of Mathematical Behavior
  doi: 10.1016/S0732-3123(96)90036-X
– volume: 33
  start-page: 155
  year: 1996
  ident: 9038_CR7
  publication-title: American Educational Research Journal
  doi: 10.3102/00028312033001155
– volume-title: Rigorous Proof in Mathematics Education
  year: 1983
  ident: 9038_CR17
– start-page: 877
  volume-title: International Handbook of Mathematics Education
  year: 1996
  ident: 9038_CR18
– volume: 21
  start-page: 258
  issue: 4
  year: 1990
  ident: 9038_CR2
  publication-title: Journal for Research in Mathematics Education
  doi: 10.2307/749524
– volume-title: Mathematical Discovery: On Understanding, Learning, and Teaching Problem Solving
  year: 1981
  ident: 9038_CR30
– volume: 27
  start-page: 458
  year: 1996
  ident: 9038_CR36
  publication-title: Journal for Research in Mathematics Education
  doi: 10.2307/749877
– volume-title: Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School
  year: 2003
  ident: 9038_CR10
– volume-title: The philOsophy of Mathematics Education
  year: 1991
  ident: 9038_CR13
– ident: 9038_CR22
  doi: 10.1017/CBO9781139171472
– start-page: 295
  volume-title: Effective and Responsible Teaching: The Newnat Synthesis
  year: 1992
  ident: 9038_CR24
– volume: 31
  start-page: 396
  issue: 4
  year: 2000
  ident: 9038_CR19
  publication-title: Journal for Research in Mathematics Education
  doi: 10.2307/749651
– start-page: 907
  volume-title: Proceedings of the International Congress of Mathematicians, Vol. III
  year: 2002
  ident: 9038_CR6
– volume: 24
  start-page: 333
  issue: 4
  year: 1994
  ident: 9038_CR11
  publication-title: British Educational Research Journal
– volume: 27
  start-page: 29
  year: 1990
  ident: 9038_CR23
  publication-title: American Educational Research Journal
  doi: 10.3102/00028312027001029
– volume: 44
  start-page: 25
  year: 2000
  ident: 9038_CR27
  publication-title: Educational Studies in Mathematics
  doi: 10.1023/A:1012733122556
– start-page: 227
  volume-title: A Research Companion to Principles and Standards for School Mathematics
  year: 2003
  ident: 9038_CR37
– volume: 33
  start-page: 70
  issue: 1
  year: 1997
  ident: 9038_CR16
  publication-title: Developmental Psychology
  doi: 10.1037/0012-1649.33.1.70
– volume: 27
  start-page: 194
  year: 1996
  ident: 9038_CR26
  publication-title: Journal for Research in Mathematics Education
  doi: 10.2307/749600
– volume-title: The Nature of Mathematical Knowledge
  year: 1984
  ident: 9038_CR21
– volume: 13
  start-page: 55
  year: 1994
  ident: 9038_CR31
  publication-title: Journal of Mathematical Behavior
  doi: 10.1016/0732-3123(94)90035-3
– volume: 24
  start-page: 389
  year: 1993
  ident: 9038_CR20
  publication-title: Educational Studies in Mathematics
  doi: 10.1007/BF01273372
– start-page: 17
  volume-title: Learning and Teaching Geometry, K-12
  year: 1987
  ident: 9038_CR35
– start-page: 267
  volume-title: New Directions in the Philosophy of Mathematics
  year: 1979/1998
  ident: 9038_CR12
– volume: 27
  start-page: 249
  year: 1994
  ident: 9038_CR28
  publication-title: Educational Studies in Mathematics
  doi: 10.1007/BF01273731
SSID ssj0008007
Score 1.9542346
SecondaryResourceType review_article
Snippet Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of...
Despite increased appreciation of the role of "proof" in students' mathematical experiences across "all" grades, little research has focused on the issue of...
SourceID eric
crossref
jstor
SourceType Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Case Studies
Communities
Concept Formation
Conceptualization
Elementary School Mathematics
Elementary schools
Even numbers
Grade 3
Hypothesis Testing
Logical Thinking
Mathematical knowledge
Mathematical Logic
Mathematics Education
Mathematics teachers
Odd numbers
Persuasive Discourse
Scientific Methodology
Scientific Principles
Teachers
Validity
Title THE NOTION OF PROOF IN THE CONTEXT OF ELEMENTARY SCHOOL MATHEMATICS
URI https://www.jstor.org/stable/27822668
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ757768
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0816
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008007
  issn: 0013-1954
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6keNCDj9pifbEHT8JCNtns4yilRURLwQe9hexmFwqSSpuK_nt3kjStKEKvyWRYZiaZb7Kz3yB0rUUWOW0lyShLCTOMEh2amEgtPLjlwjBdTi15EKORnEzUeM2z_XsHHw65caYIVL4q8G8n1OeUV2e1nl6br64HPmI1rQBYzFY7mH9p-JGD6jbnzW7EMrcMD7da1RE6qCEkvq18fox2bN6G6ct1p0Yb7T82XKyLE9T3kYBH5bAePHN47KGyw9McexFcclN9FnB9UPeRz79wxcyJN7R00Mtw8Ny_I_XoBGJCrgoSOeVomAmTKp-fqbZCiNgXS9RlkfUYSGsJtZBwQGefUR7bMDaSKZGGOogyGnVRK5_l9hRhX594WKh9opeORWEgdcQyZizjmqtU8x4KVsZMTM0rDuMt3pI1IzLYKoEOOrBVEvTQTfPIe0Wq8Z9wBzzUCA7u_Zp9HPVQt3RZcyMEsMO5PNtG-znaq_7WQgvjBWoV86W9RLvmo5gu5ldliH0D0znCaA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Notion+of+Proof+in+the+Context+of+Elementary+School+Mathematics&rft.jtitle=Educational+studies+in+mathematics&rft.au=stylianides%2C+andreas+j.&rft.date=2007-05-01&rft.issn=0013-1954&rft.eissn=1573-0816&rft.volume=65&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1007%2Fs10649-006-9038-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10649_006_9038_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-1954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-1954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-1954&client=summon