THE NOTION OF PROOF IN THE CONTEXT OF ELEMENTARY SCHOOL MATHEMATICS
Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation...
Saved in:
| Published in: | Educational studies in mathematics Vol. 65; no. 1; pp. 1 - 20 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Springer
01.05.2007
|
| Subjects: | |
| ISSN: | 0013-1954, 1573-0816 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation, by examining the characteristics of four major features of any given argument – foundation, formulation, representation, and social dimension – so that the argument could count as proof at the elementary school level. My examination is situated in an episode from a third-grade class, which presents a student's argument that could potentially count as proof. In order to examine the extent to which this argument could count as proof (given its four major elements), I develop and use a theoretical frame-work that is comprised of two principles for conceptualizing the notion of proof in school mathematics: (1) The intellectual-honesty principle, which states that the notion of proof in school mathematics should be conceptualized so that it is, at once, honest to mathematics as a discipline and honoring of students as mathematical learners; and (2) The continuum principle, which states that there should be continuity in how the notion of proof is conceptualized in different grade levels so that students' experiences with proof in school have coherence. The two principles offer the basis for certain judgments about whether the particular argument in the episode could count as proof. Also, they support more broadly ideas for a possible conceptualization of the notion of proof in the elementary grades. |
|---|---|
| AbstractList | Despite increased appreciation of the role of "proof" in students' mathematical experiences across "all" grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation, by examining the characteristics of four major features of any given argument--foundation, formulation, representation, and social dimension--so that the argument could count as proof at the elementary school level. My examination is situated in an episode from a third-grade class, which presents a student's argument that could potentially count as proof. In order to examine the extent to which this argument could count as proof (given its four major elements), I develop and use a theoretical framework that is comprised of two principles for conceptualizing the notion of proof in school mathematics: (1) The "intellectual-honesty principle," which states that the notion of proof in school mathematics should be conceptualized so that it is, at once, honest to mathematics as a discipline and honoring of students as mathematical learners; and (2) The "continuum principle," which states that there should be continuity in how the notion of proof is conceptualized in different grade levels so that students' experiences with proof in school have coherence. The two principles offer the basis for certain judgments about whether the particular argument in the episode could count as proof. Also, they support more broadly ideas for a possible conceptualization of the notion of proof in the elementary grades. Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of understanding and characterizing the notion of proof at the elementary school level. This paper takes a step toward addressing this limitation, by examining the characteristics of four major features of any given argument – foundation, formulation, representation, and social dimension – so that the argument could count as proof at the elementary school level. My examination is situated in an episode from a third-grade class, which presents a student's argument that could potentially count as proof. In order to examine the extent to which this argument could count as proof (given its four major elements), I develop and use a theoretical frame-work that is comprised of two principles for conceptualizing the notion of proof in school mathematics: (1) The intellectual-honesty principle, which states that the notion of proof in school mathematics should be conceptualized so that it is, at once, honest to mathematics as a discipline and honoring of students as mathematical learners; and (2) The continuum principle, which states that there should be continuity in how the notion of proof is conceptualized in different grade levels so that students' experiences with proof in school have coherence. The two principles offer the basis for certain judgments about whether the particular argument in the episode could count as proof. Also, they support more broadly ideas for a possible conceptualization of the notion of proof in the elementary grades. |
| Audience | Elementary Education |
| Author | STYLIANIDES, ANDREAS J. |
| Author_xml | – sequence: 1 givenname: ANDREAS J. surname: STYLIANIDES fullname: STYLIANIDES, ANDREAS J. |
| BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ757768$$DView record in ERIC |
| BookMark | eNp9kE9Lw0AQxRepYFv9AIJCvsDqzG6yuzmWkLaRNCttBD0t-QsptZEkF7-9G6IePHh5A-_NbxjegszO7bki5BbhAQHkY48gXJ8CCOoDVxQuyBw9ySkoFDMyB0BO0ffcK7Lo-yMAKIvNSZBuQyfRaaQTR6-d5722GiXOaAc6ScPXdPTDONyFSbravzmHYKt17OxWdsVKFByuyWWdnfrq5nsuycs6TIMtjfUmClYxLZjwB8prv0ZWyiLzPYaYV1JKjwnEuuQVE26eK-CAspaeVCUKr2JeoVxfZiwHXiJfkrvpbtU1hfnomves-zThk92XQtlYTnHRtX3fVbUpmiEbmvY8dFlzMghmrMpMVRlblRmrMmBJ_EP-HP-PuZ-YYz-03S_ApGJM2G--AN-abmA |
| CitedBy_id | crossref_primary_10_1007_s10763_015_9664_z crossref_primary_10_1080_10986065_2019_1570833 crossref_primary_10_1007_s10763_014_9603_4 crossref_primary_10_1007_s13394_019_00306_w crossref_primary_10_1080_0020739X_2020_1762938 crossref_primary_10_29221_jce_2022_25_1_143 crossref_primary_10_1016_j_tate_2009_03_022 crossref_primary_10_1016_j_jmathb_2023_101052 crossref_primary_10_30935_scimath_16597 crossref_primary_10_1016_j_ijer_2013_06_005 crossref_primary_10_1080_14926156_2013_784829 crossref_primary_10_1007_s13394_016_0182_2 crossref_primary_10_9779_pauefd_782832 crossref_primary_10_1007_s13138_025_00256_w crossref_primary_10_1016_j_jmathb_2010_01_003 crossref_primary_10_1007_s10649_016_9684_9 crossref_primary_10_1080_0020739X_2021_1941365 crossref_primary_10_29333_ejmste_108450 crossref_primary_10_1080_14794802_2023_2261435 crossref_primary_10_1007_s13394_021_00395_6 crossref_primary_10_17478_jegys_654460 crossref_primary_10_1007_s10649_014_9544_4 crossref_primary_10_1007_s10857_008_9077_9 crossref_primary_10_1016_j_jmathb_2018_06_005 crossref_primary_10_1016_j_tate_2007_11_015 crossref_primary_10_1080_0020739X_2020_1782493 crossref_primary_10_1080_0020739X_2020_1782494 crossref_primary_10_1080_14926156_2013_758326 crossref_primary_10_1080_10986065_2022_2053775 crossref_primary_10_1093_teamat_hrab036 crossref_primary_10_1080_19477503_2020_1740382 crossref_primary_10_1080_10986060903253954 crossref_primary_10_1007_s10649_013_9466_6 crossref_primary_10_1007_s10763_007_9074_y crossref_primary_10_1080_10986065_2018_1509420 crossref_primary_10_1016_j_jmathb_2019_100755 crossref_primary_10_1016_j_jmathb_2022_100957 crossref_primary_10_1088_1742_6596_1387_1_012065 crossref_primary_10_1080_14926156_2014_993048 crossref_primary_10_1088_1757_899X_335_1_012130 crossref_primary_10_1111_ssm_12379 crossref_primary_10_1016_j_sbspro_2011_03_274 crossref_primary_10_1016_j_sbspro_2010_03_370 crossref_primary_10_1007_s10857_023_09602_6 |
| Cites_doi | 10.1086/461730 10.1016/0885-2014(89)90004-X 10.5951/MT.91.8.0670 10.4159/9780674028999 10.1016/S0732-3123(96)90036-X 10.3102/00028312033001155 10.2307/749524 10.2307/749877 10.1017/CBO9781139171472 10.2307/749651 10.3102/00028312027001029 10.1023/A:1012733122556 10.1037/0012-1649.33.1.70 10.2307/749600 10.1016/0732-3123(94)90035-3 10.1007/BF01273372 10.1007/BF01273731 |
| ContentType | Journal Article |
| Copyright | 2006 Springer |
| Copyright_xml | – notice: 2006 Springer |
| DBID | AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN |
| DOI | 10.1007/s10649-006-9038-0 |
| DatabaseName | CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC |
| DatabaseTitle | CrossRef ERIC |
| DatabaseTitleList | ERIC |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Education Mathematics |
| EISSN | 1573-0816 |
| ERIC | EJ757768 |
| EndPage | 20 |
| ExternalDocumentID | EJ757768 10_1007_s10649_006_9038_0 27822668 |
| GroupedDBID | -DZ -W8 -XX -Y2 -~C -~X .86 .GO 06D 0R~ 0VY 199 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AAAZS AABHQ AACDK AAGAY AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWIL AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABAWQ ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFAN ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLWH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ABXSQ ABYWD ACAOD ACBXY ACDTI ACGFS ACHJO ACHQT ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACMTB ACNCT ACOKC ACOMO ACPIV ACSTC ACTMH ACUHS ACZOJ ADEPB ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADNFJ ADODI ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUPB AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFQWF AFVYC AFWTZ AFZKB AGAYW AGDGC AGJBK AGLNM AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIHAF AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALRMG ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DQDLB DSRWC EAD EAP EAS EBLON EBS ECEWR EDJ EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GENNL GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQ6 HQYDN HRMNR HVGLF HZ~ I09 IAO IEA IHE IJ- IKXTQ INH INR IPSME ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JAV JBMMH JBSCW JBZCM JCJTX JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JZLTJ KDC KOV LAK LLZTM M4Y MA- MQGED N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I OAM OVD P19 P9Q PF- PT4 PT5 QF4 QM7 QN7 QOK QOS R-Y R89 R9I RHV RNS ROL RPD RPX RSV S16 S27 S3B SA0 SAP SDA SDH SDM SHS SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZY4 ~8M ~A9 ~EX AAYXX ABRTQ ABUFD CITATION 1SB 2.D 28- 2P1 5QI 7SW AANTL ACYUM AEFIE AFEXP AFOHR AGGDS AHKAY AI. BBWZM BJH BNH BNI BNJ BNO ERI H13 HGD IER ITC KOW MVM NDZJH NHB O-J P0- PET R4E REK RNI RZC RZD RZK S1Z S26 S28 SCLPG T16 TEORI VH1 WK6 WWN ZWUKE |
| ID | FETCH-LOGICAL-c269t-3f9f12d7ca95211be77752611fd3e264bb803017f7578d165e25c8497a2b03d13 |
| IEDL.DBID | RSV |
| ISSN | 0013-1954 |
| IngestDate | Tue Dec 02 16:26:25 EST 2025 Tue Nov 18 22:01:37 EST 2025 Sat Nov 29 05:24:53 EST 2025 Thu Jun 19 20:08:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | false |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c269t-3f9f12d7ca95211be77752611fd3e264bb803017f7578d165e25c8497a2b03d13 |
| PageCount | 20 |
| ParticipantIDs | eric_primary_EJ757768 crossref_citationtrail_10_1007_s10649_006_9038_0 crossref_primary_10_1007_s10649_006_9038_0 jstor_primary_27822668 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-05-00 |
| PublicationDateYYYYMMDD | 2007-05-01 |
| PublicationDate_xml | – month: 05 year: 2007 text: 2007-05-00 |
| PublicationDecade | 2000 |
| PublicationTitle | Educational studies in mathematics |
| PublicationYear | 2007 |
| Publisher | Springer |
| Publisher_xml | – name: Springer |
| References | M. Lampert (9038_CR23) 1990; 27 R. Millo De (9038_CR12) 1979/1998 National Council of Teachers of Mathematics (9038_CR29) 2000 C.A. Maher (9038_CR26) 1996; 27 E. Fischbein (9038_CR15) 1982; 3 P. Light (9038_CR25) 1989; 4 P. Kitcher (9038_CR21) 1984 E. Yackel (9038_CR36) 1996; 27 P. Ernest (9038_CR14) 1998 M.A. Simon (9038_CR32) 1996; 15 G. Brousseau (9038_CR8) 1981; 2 D.L. Ball (9038_CR5) 2003 D.L. Ball (9038_CR7) 1996; 33 P. Ernest (9038_CR13) 1991 E. Yackel (9038_CR37) 2003 L. Sowder (9038_CR33) 1998; 91 G. Polya (9038_CR30) 1981 N. Balacheff (9038_CR3) 1991 R. Coe (9038_CR11) 1994; 24 R.C. Moore (9038_CR28) 1994; 27 Z. Usiskin (9038_CR35) 1987 N. Balacheff (9038_CR2) 1990; 21 T.P. Carpenter (9038_CR10) 2003 L. Healy (9038_CR19) 2000; 31 9038_CR22 A.H. Schoenfeld (9038_CR31) 1994; 13 M.A. Mariotti (9038_CR27) 2000; 44 D.L. Ball (9038_CR6) 2002 G. Hanna (9038_CR18) 1996 G. Hanna (9038_CR17) 1983 J. Bruner (9038_CR9) 1960 (9038_CR34) 1986/1998 D.L. Ball (9038_CR4) 1993; 93 K.M. Galotti (9038_CR16) 1997; 33 R. Hersh (9038_CR20) 1993; 24 N. Balacheff (9038_CR1) 1988 M. Lampert (9038_CR24) 1992 |
| References_xml | – volume: 3 start-page: 9 issue: 2 year: 1982 ident: 9038_CR15 publication-title: For the Learning of Mathematics – volume-title: Social Constructivism as a Philosophy of Mathematics year: 1998 ident: 9038_CR14 – start-page: 175 volume-title: Mathematical Knowledge: Its Growth through Teaching year: 1991 ident: 9038_CR3 – volume: 93 start-page: 373 issue: 4 year: 1993 ident: 9038_CR4 publication-title: The Elementary School Journal doi: 10.1086/461730 – start-page: 27 volume-title: A Research Companion to Principles and Standards for School Mathematics year: 2003 ident: 9038_CR5 – volume: 2 start-page: 37 year: 1981 ident: 9038_CR8 publication-title: Recherches en Didactique des Mathématiques – volume: 4 start-page: 49 year: 1989 ident: 9038_CR25 publication-title: Cognitive Development doi: 10.1016/0885-2014(89)90004-X – volume: 91 start-page: 670 issue: 8 year: 1998 ident: 9038_CR33 publication-title: The Mathematics Teacher doi: 10.5951/MT.91.8.0670 – volume-title: Principles and Standards for School Mathematics year: 2000 ident: 9038_CR29 – start-page: 216 volume-title: Mathematics, Teachers and Children year: 1988 ident: 9038_CR1 – volume-title: The Process of Education year: 1960 ident: 9038_CR9 doi: 10.4159/9780674028999 – volume-title: New Directions in the Philosophy of Mathematics year: 1986/1998 ident: 9038_CR34 – volume: 15 start-page: 3 issue: 1 year: 1996 ident: 9038_CR32 publication-title: Journal of Mathematical Behavior doi: 10.1016/S0732-3123(96)90036-X – volume: 33 start-page: 155 year: 1996 ident: 9038_CR7 publication-title: American Educational Research Journal doi: 10.3102/00028312033001155 – volume-title: Rigorous Proof in Mathematics Education year: 1983 ident: 9038_CR17 – start-page: 877 volume-title: International Handbook of Mathematics Education year: 1996 ident: 9038_CR18 – volume: 21 start-page: 258 issue: 4 year: 1990 ident: 9038_CR2 publication-title: Journal for Research in Mathematics Education doi: 10.2307/749524 – volume-title: Mathematical Discovery: On Understanding, Learning, and Teaching Problem Solving year: 1981 ident: 9038_CR30 – volume: 27 start-page: 458 year: 1996 ident: 9038_CR36 publication-title: Journal for Research in Mathematics Education doi: 10.2307/749877 – volume-title: Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School year: 2003 ident: 9038_CR10 – volume-title: The philOsophy of Mathematics Education year: 1991 ident: 9038_CR13 – ident: 9038_CR22 doi: 10.1017/CBO9781139171472 – start-page: 295 volume-title: Effective and Responsible Teaching: The Newnat Synthesis year: 1992 ident: 9038_CR24 – volume: 31 start-page: 396 issue: 4 year: 2000 ident: 9038_CR19 publication-title: Journal for Research in Mathematics Education doi: 10.2307/749651 – start-page: 907 volume-title: Proceedings of the International Congress of Mathematicians, Vol. III year: 2002 ident: 9038_CR6 – volume: 24 start-page: 333 issue: 4 year: 1994 ident: 9038_CR11 publication-title: British Educational Research Journal – volume: 27 start-page: 29 year: 1990 ident: 9038_CR23 publication-title: American Educational Research Journal doi: 10.3102/00028312027001029 – volume: 44 start-page: 25 year: 2000 ident: 9038_CR27 publication-title: Educational Studies in Mathematics doi: 10.1023/A:1012733122556 – start-page: 227 volume-title: A Research Companion to Principles and Standards for School Mathematics year: 2003 ident: 9038_CR37 – volume: 33 start-page: 70 issue: 1 year: 1997 ident: 9038_CR16 publication-title: Developmental Psychology doi: 10.1037/0012-1649.33.1.70 – volume: 27 start-page: 194 year: 1996 ident: 9038_CR26 publication-title: Journal for Research in Mathematics Education doi: 10.2307/749600 – volume-title: The Nature of Mathematical Knowledge year: 1984 ident: 9038_CR21 – volume: 13 start-page: 55 year: 1994 ident: 9038_CR31 publication-title: Journal of Mathematical Behavior doi: 10.1016/0732-3123(94)90035-3 – volume: 24 start-page: 389 year: 1993 ident: 9038_CR20 publication-title: Educational Studies in Mathematics doi: 10.1007/BF01273372 – start-page: 17 volume-title: Learning and Teaching Geometry, K-12 year: 1987 ident: 9038_CR35 – start-page: 267 volume-title: New Directions in the Philosophy of Mathematics year: 1979/1998 ident: 9038_CR12 – volume: 27 start-page: 249 year: 1994 ident: 9038_CR28 publication-title: Educational Studies in Mathematics doi: 10.1007/BF01273731 |
| SSID | ssj0008007 |
| Score | 1.9542346 |
| SecondaryResourceType | review_article |
| Snippet | Despite increased appreciation of the role of proof in students' mathematical experiences across all grades, little research has focused on the issue of... Despite increased appreciation of the role of "proof" in students' mathematical experiences across "all" grades, little research has focused on the issue of... |
| SourceID | eric crossref jstor |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Case Studies Communities Concept Formation Conceptualization Elementary School Mathematics Elementary schools Even numbers Grade 3 Hypothesis Testing Logical Thinking Mathematical knowledge Mathematical Logic Mathematics Education Mathematics teachers Odd numbers Persuasive Discourse Scientific Methodology Scientific Principles Teachers Validity |
| Title | THE NOTION OF PROOF IN THE CONTEXT OF ELEMENTARY SCHOOL MATHEMATICS |
| URI | https://www.jstor.org/stable/27822668 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ757768 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0816 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008007 issn: 0013-1954 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6keNCDj9pifbEHT8JCNtns4yilRURLwQe9hexmFwqSSpuK_nt3kjStKEKvyWRYZiaZb7Kz3yB0rUUWOW0lyShLCTOMEh2amEgtPLjlwjBdTi15EKORnEzUeM2z_XsHHw65caYIVL4q8G8n1OeUV2e1nl6br64HPmI1rQBYzFY7mH9p-JGD6jbnzW7EMrcMD7da1RE6qCEkvq18fox2bN6G6ct1p0Yb7T82XKyLE9T3kYBH5bAePHN47KGyw9McexFcclN9FnB9UPeRz79wxcyJN7R00Mtw8Ny_I_XoBGJCrgoSOeVomAmTKp-fqbZCiNgXS9RlkfUYSGsJtZBwQGefUR7bMDaSKZGGOogyGnVRK5_l9hRhX594WKh9opeORWEgdcQyZizjmqtU8x4KVsZMTM0rDuMt3pI1IzLYKoEOOrBVEvTQTfPIe0Wq8Z9wBzzUCA7u_Zp9HPVQt3RZcyMEsMO5PNtG-znaq_7WQgvjBWoV86W9RLvmo5gu5ldliH0D0znCaA |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Notion+of+Proof+in+the+Context+of+Elementary+School+Mathematics&rft.jtitle=Educational+studies+in+mathematics&rft.au=stylianides%2C+andreas+j.&rft.date=2007-05-01&rft.issn=0013-1954&rft.eissn=1573-0816&rft.volume=65&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1007%2Fs10649-006-9038-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10649_006_9038_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-1954&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-1954&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-1954&client=summon |