Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting

The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction. There are many factors influencing the power load, and there may be a nonlinear relationship between the power l...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 269; p. 126844
Main Authors: Yin, Chen, Mao, Shuhua
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.04.2023
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction. There are many factors influencing the power load, and there may be a nonlinear relationship between the power load and these influencing factors. A new fractional multivariate grey Bernoulli model, referred to as MFGBM (q, r, N), is developed in this article for the short-term prediction of power load. The fractional differential equation and fractional accumulation generation are integrated into MFGBM (q, r, N). Second, this paper improves the grey wolf algorithm to better optimize many parameters in the model. The algorithm is improved by using a chaotic Tent map to optimize the initial population composition, adding inertia weights to change the position vector of the grey wolf, and introducing a nonlinear function and Lévy flight to enhance local exploitation and global exploration ability. Finally, this paper selects the daytime and nighttime power loads in Australia and takes the electricity price, humidity, and temperature as the influencing factors to validate the prediction capability of MFGBM (q, r, N). Our findings indicate that MFGBM (q, r, N) is highly applicable to short-term power system prediction. •The multivariate grey Bernoulli model is proposed to predict short-term power load.•The improved grey wolf algorithm is proposed to avoid falling into local optimum.•3. The non-singular Caputo fractional derivative and Laplace transform are introduced.•The fractional-order operator is introduced to reduce the influence of randomness.
AbstractList The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction. There are many factors influencing the power load, and there may be a nonlinear relationship between the power load and these influencing factors. A new fractional multivariate grey Bernoulli model, referred to as MFGBM (q, r, N), is developed in this article for the short-term prediction of power load. The fractional differential equation and fractional accumulation generation are integrated into MFGBM (q, r, N). Second, this paper improves the grey wolf algorithm to better optimize many parameters in the model. The algorithm is improved by using a chaotic Tent map to optimize the initial population composition, adding inertia weights to change the position vector of the grey wolf, and introducing a nonlinear function and Lévy flight to enhance local exploitation and global exploration ability. Finally, this paper selects the daytime and nighttime power loads in Australia and takes the electricity price, humidity, and temperature as the influencing factors to validate the prediction capability of MFGBM (q, r, N). Our findings indicate that MFGBM (q, r, N) is highly applicable to short-term power system prediction.
The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction. There are many factors influencing the power load, and there may be a nonlinear relationship between the power load and these influencing factors. A new fractional multivariate grey Bernoulli model, referred to as MFGBM (q, r, N), is developed in this article for the short-term prediction of power load. The fractional differential equation and fractional accumulation generation are integrated into MFGBM (q, r, N). Second, this paper improves the grey wolf algorithm to better optimize many parameters in the model. The algorithm is improved by using a chaotic Tent map to optimize the initial population composition, adding inertia weights to change the position vector of the grey wolf, and introducing a nonlinear function and Lévy flight to enhance local exploitation and global exploration ability. Finally, this paper selects the daytime and nighttime power loads in Australia and takes the electricity price, humidity, and temperature as the influencing factors to validate the prediction capability of MFGBM (q, r, N). Our findings indicate that MFGBM (q, r, N) is highly applicable to short-term power system prediction. •The multivariate grey Bernoulli model is proposed to predict short-term power load.•The improved grey wolf algorithm is proposed to avoid falling into local optimum.•3. The non-singular Caputo fractional derivative and Laplace transform are introduced.•The fractional-order operator is introduced to reduce the influence of randomness.
ArticleNumber 126844
Author Mao, Shuhua
Yin, Chen
Author_xml – sequence: 1
  givenname: Chen
  surname: Yin
  fullname: Yin, Chen
  email: yinchen0907@163.com
– sequence: 2
  givenname: Shuhua
  surname: Mao
  fullname: Mao, Shuhua
  email: maosh_415@whut.edu.cn
BookMark eNqFkL9u2zAQxjmkQPPvDTpw7CKXpChVzFAgDZqkQIAuzUzQ5NE5gyJVkrbhR-hbV446dWiWOxzu-z7c_S7IWUwRCPnA2Yoz3n_ariBC3hxXgol2xUU_SHlGzlnbs6aTUrwnF6VsGWPdoNQ5-X2fja2Yogl03IWKe5PRVKCbDEf6FXJMuxCQjslBoDaNa4zg6AHrC8Vxymk_T6_aQwqemrBJed6NN_R2mgJac8qmGGl5Sbk2FfJIp3SATEMyjvqUwZpSMW6uyDtvQoHrv_2SPN9_-3n32Dz9ePh-d_vUWNGr2rTrzjvuDJewdi1TvG-N65V1irtBCK4Gz7xcMyMG8PxzLwfohJ2LEt5A59pL8nHJnY__tYNS9YjFQggmQtoVLYZWCqZY183Sm0Vqcyolg9cW6-tHNRsMmjN9Yq63emGuT8z1wnw2y3_MU8bR5ONbti-LDWYGe4Ssi0WIFhzOqKp2Cf8f8Ac4MaXu
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117855
crossref_primary_10_1016_j_cam_2025_116500
crossref_primary_10_1016_j_matcom_2024_11_003
crossref_primary_10_3390_biomimetics9060331
crossref_primary_10_1109_ACCESS_2024_3409440
crossref_primary_10_1016_j_energy_2024_132997
crossref_primary_10_1016_j_engappai_2023_106725
crossref_primary_10_1016_j_apenergy_2024_122821
crossref_primary_10_1016_j_eswa_2023_121356
crossref_primary_10_1080_15567036_2024_2440050
crossref_primary_10_1016_j_envres_2024_119809
crossref_primary_10_1038_s41598_025_15674_6
crossref_primary_10_1007_s43069_025_00531_z
crossref_primary_10_1108_JFEP_10_2024_0307
crossref_primary_10_3390_electronics13142719
crossref_primary_10_1016_j_engappai_2025_110942
crossref_primary_10_32604_cmes_2023_029258
crossref_primary_10_3390_math12213353
crossref_primary_10_1108_GS_08_2023_0078
crossref_primary_10_1016_j_energy_2024_132188
crossref_primary_10_1108_GS_08_2023_0074
crossref_primary_10_1016_j_compeleceng_2025_110263
crossref_primary_10_12677_aam_2024_134159
crossref_primary_10_1007_s41207_024_00618_9
crossref_primary_10_1371_journal_pone_0285460
crossref_primary_10_1108_GS_09_2023_0090
crossref_primary_10_1016_j_engappai_2024_109398
crossref_primary_10_1016_j_energy_2023_127664
crossref_primary_10_1016_j_heliyon_2024_e28381
crossref_primary_10_1007_s11356_023_26599_w
crossref_primary_10_1016_j_energy_2025_135442
crossref_primary_10_3390_en17081926
crossref_primary_10_1038_s41598_025_89861_w
crossref_primary_10_1016_j_apm_2023_06_040
crossref_primary_10_1016_j_energy_2024_131163
crossref_primary_10_1016_j_eswa_2024_123631
crossref_primary_10_1016_j_jtice_2024_105915
crossref_primary_10_1108_GS_01_2024_0011
crossref_primary_10_1016_j_energy_2025_135609
crossref_primary_10_1016_j_energy_2025_134518
crossref_primary_10_3390_app14167092
crossref_primary_10_1108_GS_04_2024_0052
crossref_primary_10_1080_13504509_2023_2301370
crossref_primary_10_1016_j_eswa_2024_124481
crossref_primary_10_1016_j_ins_2025_122523
crossref_primary_10_1016_j_aej_2025_04_016
crossref_primary_10_1016_j_eswa_2024_125010
crossref_primary_10_1016_j_eswa_2024_123352
crossref_primary_10_1016_j_chaos_2023_113767
crossref_primary_10_1016_j_energy_2024_133099
crossref_primary_10_1016_j_jclepro_2023_137162
crossref_primary_10_1142_S0129156425400610
crossref_primary_10_1038_s41598_024_82128_w
crossref_primary_10_1093_ijlct_ctae040
crossref_primary_10_3390_su15076261
Cites_doi 10.1016/j.energy.2022.124090
10.1016/j.energy.2021.120480
10.1007/s11356-022-21285-9
10.1016/j.eswa.2020.113338
10.1109/TSG.2019.2933413
10.1016/j.asoc.2020.106367
10.1016/j.asoc.2020.107061
10.1016/j.jocs.2018.06.008
10.1016/j.knosys.2022.109100
10.1038/381413a0
10.1016/j.asoc.2020.106538
10.1016/j.energy.2021.123024
10.1016/j.engappai.2017.10.024
10.1016/j.apm.2022.12.012
10.1007/s00521-021-06885-9
10.1016/j.apm.2020.12.016
10.1016/j.jclepro.2021.126001
10.1016/j.renene.2019.03.006
10.1016/j.asoc.2019.105994
10.1016/j.energy.2022.125955
10.1016/j.apm.2021.03.047
10.1016/j.jairtraman.2019.101736
10.1016/j.energy.2018.06.012
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2022.117579
10.1038/s41598-019-43546-3
10.1016/j.asoc.2017.06.044
10.1016/j.eswa.2022.117246
10.1016/j.trb.2022.01.007
10.1016/j.chaos.2006.08.024
10.1016/j.cie.2018.10.012
10.1016/j.apm.2015.12.014
10.1109/TFUZZ.2022.3164791
10.1016/j.engappai.2021.104360
10.1007/s00521-022-07303-4
10.1016/j.knosys.2021.107139
10.1016/j.asoc.2020.106543
10.1016/j.apm.2017.12.010
10.1109/TPWRS.2019.2924224
10.1007/s11356-022-18803-0
10.1016/j.patcog.2022.108623
10.1016/j.spc.2020.07.009
10.1016/j.cma.2020.113609
10.1016/j.scs.2020.102036
10.1016/j.eswa.2020.113498
10.1016/j.chaos.2021.111657
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2023.126844
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_126844
S0360544223002384
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c269t-3b5fd1da14ebd309163ad69cd91d822198f0f4b0a28ef17648e52c8e592fae5d3
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937314600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Thu Oct 02 22:58:02 EDT 2025
Tue Nov 18 20:47:30 EST 2025
Sat Nov 29 07:18:30 EST 2025
Sat Apr 27 15:44:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Electricity forecasting
Tent map
Fractional grey model
Lévy flight
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c269t-3b5fd1da14ebd309163ad69cd91d822198f0f4b0a28ef17648e52c8e592fae5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834209055
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834209055
crossref_citationtrail_10_1016_j_energy_2023_126844
crossref_primary_10_1016_j_energy_2023_126844
elsevier_sciencedirect_doi_10_1016_j_energy_2023_126844
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Yan, Wu, Liu, Bai, Liu (bib26) 2021; 292
Stratigakos, Bachoumis, Vita, Zafiropoulos (bib9) 2021; 14
Mao, Gao, Xiao, Zhu (bib47) 2016; 40
Duan, Wang (bib13) 2023; 116
Rodríguez, Camarena, Cuevas, Aranguren, Valdivia, Morales-Castañeda (bib41) 2021; 93
Chen (bib15) 2008; 37
Meidani, Hemmasian, Mirjalili, Barati Farimani (bib39) 2022; 34
Jiang, Zhao, Liu, Li, Wang (bib42) 2022; 250
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (bib28) 2021; 376
Li, Jiang, Yang, Li (bib2) 2020; 55
Wu, Ma, Zeng, Wang, Cai (bib17) 2019; 140
Gaidhane, Nigam (bib45) 2018; 27
Wu, Zeng, Liu, Xie, Goh (bib48) 2022; 155
Wang Y, Nie R, Ma X, Liu Z, Chi P, Wu W, et al. A novel Hausdorff fractional NGMC(p,.
Mirjalili, Mirjalili, Lewis (bib32) 2014; 69
Huang, Tao, Liu, Cheng, Chen (bib25) 2021; 104
Viswanathan, Afanasyev, Buldyrev, Murphy, Prince, Stanley (bib49) 1996; 381
Ekonomou, Christodoulou, Mladenov (bib1) 2016; 1
Wu, Li, Huang, Xu (bib10) 2020; 95
Xiao, Mao (bib14) 2013
Ma, Liu (bib22) 2018; 56
Li, Wang, Liu, Zhong (bib20) 2022; 29
Wu, Wang, Precup, Boulet (bib4) 2020; 11
Kang, Mao, Zhang (bib31) 2022; 157
Long, Jiao, Liang, Tang (bib37) 2018; 68
Wang, Li (bib46) 2019; 9
Imani (bib8) 2021; 227
Xie, Wang, Wu (bib33) 2022; 30
Xiao, Shan, Gao, Xiao, Goh (bib19) 2020; 95
Wang, Wang, Wu (bib27) 2022; 243
Rao, Zhang, Wen, Xiao, Goh (bib7) 2023; 263
Şahin (bib18) 2021; 25
Khishe, Mosavi (bib29) 2020; 149
Yu, Xu, Li (bib38) 2021; 226
Inac, Dokur, Yüzgeç (bib40) 2022; 34
Mirjalili, Lewis (bib30) 2016; 95
Gupta, Deep (bib43) 2020; 93
Ma, Dong (bib5) 2020; 158
Kiliç, Uncu (bib36) 2022; 202
Heidari, Pahlavani (bib50) 2017; 60
Wang, Wang (bib21) 2022; 29
Hu, Li, Zhang, Fang (bib34) 2022; 127
Bracale, Caramia, Falco, Hong (bib3) 2020; 35
Zheng, Li, Wang (bib16) 2018; 126
Zhang, Wei, Li, Tan, Zhou (bib6) 2018; 158
Zhang, Lin, Mao, Liu, Dou, Liu (bib44) 2021; 101
Al-Momani, Mohamed, Abu Elhaija (bib35) 2022; 252
Emmanuel Sapnken, Gaston Tamba (bib11) 2022; 203
Moonchai, Chutsagulprom (bib23) 2020; 87
Carmona-Benítez, Nieto (bib12) 2020; 82
Viswanathan (10.1016/j.energy.2023.126844_bib49) 1996; 381
Wu (10.1016/j.energy.2023.126844_bib17) 2019; 140
10.1016/j.energy.2023.126844_sref24
Rodríguez (10.1016/j.energy.2023.126844_bib41) 2021; 93
Xiao (10.1016/j.energy.2023.126844_bib19) 2020; 95
Wang (10.1016/j.energy.2023.126844_bib27) 2022; 243
Emmanuel Sapnken (10.1016/j.energy.2023.126844_bib11) 2022; 203
Gupta (10.1016/j.energy.2023.126844_bib43) 2020; 93
Wu (10.1016/j.energy.2023.126844_bib4) 2020; 11
Wang (10.1016/j.energy.2023.126844_bib21) 2022; 29
Gaidhane (10.1016/j.energy.2023.126844_bib45) 2018; 27
Abualigah (10.1016/j.energy.2023.126844_bib28) 2021; 376
Imani (10.1016/j.energy.2023.126844_bib8) 2021; 227
Wu (10.1016/j.energy.2023.126844_bib10) 2020; 95
Long (10.1016/j.energy.2023.126844_bib37) 2018; 68
Jiang (10.1016/j.energy.2023.126844_bib42) 2022; 250
Xie (10.1016/j.energy.2023.126844_bib26) 2021; 292
(10.1016/j.energy.2023.126844_bib24n) 2021; 97
Zhang (10.1016/j.energy.2023.126844_bib44) 2021; 101
Huang (10.1016/j.energy.2023.126844_bib25) 2021; 104
Rao (10.1016/j.energy.2023.126844_bib7) 2023; 263
Şahin (10.1016/j.energy.2023.126844_bib18) 2021; 25
Mao (10.1016/j.energy.2023.126844_bib47) 2016; 40
Kiliç (10.1016/j.energy.2023.126844_bib36) 2022; 202
Carmona-Benítez (10.1016/j.energy.2023.126844_bib12) 2020; 82
Xiao (10.1016/j.energy.2023.126844_bib14) 2013
Mirjalili (10.1016/j.energy.2023.126844_bib32) 2014; 69
Mirjalili (10.1016/j.energy.2023.126844_bib30) 2016; 95
Wu (10.1016/j.energy.2023.126844_bib48) 2022; 155
Moonchai (10.1016/j.energy.2023.126844_bib23) 2020; 87
Zheng (10.1016/j.energy.2023.126844_bib16) 2018; 126
Heidari (10.1016/j.energy.2023.126844_bib50) 2017; 60
Stratigakos (10.1016/j.energy.2023.126844_bib9) 2021; 14
Khishe (10.1016/j.energy.2023.126844_bib29) 2020; 149
Kang (10.1016/j.energy.2023.126844_bib31) 2022; 157
Wang (10.1016/j.energy.2023.126844_bib46) 2019; 9
Yu (10.1016/j.energy.2023.126844_bib38) 2021; 226
Li (10.1016/j.energy.2023.126844_bib20) 2022; 29
Bracale (10.1016/j.energy.2023.126844_bib3) 2020; 35
Hu (10.1016/j.energy.2023.126844_bib34) 2022; 127
Ma (10.1016/j.energy.2023.126844_bib22) 2018; 56
Ma (10.1016/j.energy.2023.126844_bib5) 2020; 158
Al-Momani (10.1016/j.energy.2023.126844_bib35) 2022; 252
Zhang (10.1016/j.energy.2023.126844_bib6) 2018; 158
Xie (10.1016/j.energy.2023.126844_bib33) 2022; 30
Ekonomou (10.1016/j.energy.2023.126844_bib1) 2016; 1
Li (10.1016/j.energy.2023.126844_bib2) 2020; 55
Chen (10.1016/j.energy.2023.126844_bib15) 2008; 37
Meidani (10.1016/j.energy.2023.126844_bib39) 2022; 34
Duan (10.1016/j.energy.2023.126844_bib13) 2023; 116
Inac (10.1016/j.energy.2023.126844_bib40) 2022; 34
References_xml – volume: 37
  start-page: 278
  year: 2008
  end-page: 287
  ident: bib15
  article-title: Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate
  publication-title: Chaos, Solit Fractals
– volume: 292
  year: 2021
  ident: bib26
  article-title: A novel robust reweighted multivariate grey model for forecasting the greenhouse gas emissions
  publication-title: J Clean Prod
– volume: 203
  year: 2022
  ident: bib11
  article-title: Petroleum products consumption forecasting based on a new structural auto-adaptive intelligent grey prediction model
  publication-title: Expert Syst Appl
– volume: 30
  start-page: 4953
  year: 2022
  end-page: 4964
  ident: bib33
  article-title: Adaptive image steganography using fuzzy enhancement and grey wolf optimizer
  publication-title: IEEE Trans Fuzzy Syst
– volume: 93
  year: 2020
  ident: bib43
  article-title: A memory-based Grey Wolf Optimizer for global optimization tasks
  publication-title: Appl Soft Comput
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib30
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Software
– volume: 82
  year: 2020
  ident: bib12
  article-title: SARIMA damp trend grey forecasting model for airline industry
  publication-title: J Air Transport Manag
– volume: 93
  start-page: 226
  year: 2021
  end-page: 243
  ident: bib41
  article-title: Group-based synchronous-asynchronous grey wolf optimizer
  publication-title: Appl Math Model
– volume: 149
  year: 2020
  ident: bib29
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst Appl
– volume: 55
  year: 2020
  ident: bib2
  article-title: A novel hybrid forecasting scheme for electricity demand time series
  publication-title: Sustain Cities Soc
– volume: 263
  year: 2023
  ident: bib7
  article-title: Energy demand forecasting in China: a support vector regression-compositional data second exponential smoothing model
  publication-title: Energy
– volume: 29
  start-page: 47050
  year: 2022
  end-page: 47069
  ident: bib21
  article-title: Estimating CO2 emissions using a fractional grey Bernoulli model with time power term
  publication-title: Environ Sci Pollut Control Ser
– volume: 116
  start-page: 763
  year: 2023
  end-page: 785
  ident: bib13
  article-title: Partial differential grey model based on control matrix and its application in short-term traffic flow prediction
  publication-title: Appl Math Model
– volume: 250
  year: 2022
  ident: bib42
  article-title: DSGWO: an improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms
  publication-title: Knowl Base Syst
– volume: 202
  year: 2022
  ident: bib36
  article-title: Modified swarm intelligence algorithms for the pharmacy duty scheduling problem
  publication-title: Expert Syst Appl
– volume: 155
  year: 2022
  ident: bib48
  article-title: A time power-based grey model with conformable fractional derivative and its applications
  publication-title: Chaos, Solit Fractals
– volume: 127
  year: 2022
  ident: bib34
  article-title: A novel hybrid model for short-term prediction of wind speed
  publication-title: Pattern Recogn
– volume: 376
  year: 2021
  ident: bib28
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
– volume: 381
  start-page: 413
  year: 1996
  end-page: 415
  ident: bib49
  article-title: Lévy flight search patterns of wandering albatrosses
  publication-title: Nature
– volume: 226
  year: 2021
  ident: bib38
  article-title: Opposition-based learning grey wolf optimizer for global optimization
  publication-title: Knowl Base Syst
– volume: 56
  start-page: 217
  year: 2018
  end-page: 238
  ident: bib22
  article-title: The kernel-based nonlinear multivariate grey model
  publication-title: Appl Math Model
– volume: 95
  year: 2020
  ident: bib10
  article-title: A new grey prediction model and its application to predicting landslide displacement
  publication-title: Appl Soft Comput
– volume: 252
  year: 2022
  ident: bib35
  article-title: Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer
  publication-title: Energy
– volume: 104
  year: 2021
  ident: bib25
  article-title: Exploiting fractional accumulation and background value optimization in multivariate interval grey prediction model and its application
  publication-title: Eng Appl Artif Intell
– volume: 227
  year: 2021
  ident: bib8
  article-title: Electrical load-temperature CNN for residential load forecasting
  publication-title: Energy
– volume: 87
  year: 2020
  ident: bib23
  article-title: Short-term forecasting of renewable energy consumption: augmentation of a modified grey model with a Kalman filter
  publication-title: Appl Soft Comput
– volume: 140
  start-page: 70
  year: 2019
  end-page: 87
  ident: bib17
  article-title: Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model
  publication-title: Renew Energy
– volume: 126
  start-page: 507
  year: 2018
  end-page: 515
  ident: bib16
  article-title: Predicting the capital intensity of the new energy industry in China using a new hybrid grey model
  publication-title: Comput Ind Eng
– volume: 34
  start-page: 7711
  year: 2022
  end-page: 7731
  ident: bib39
  article-title: Adaptive grey wolf optimizer
  publication-title: Neural Comput Appl
– volume: 34
  start-page: 14627
  year: 2022
  end-page: 14657
  ident: bib40
  article-title: A multi-strategy random weighted gray wolf optimizer-based multi-layer perceptron model for short-term wind speed forecasting
  publication-title: Neural Comput Appl
– volume: 243
  year: 2022
  ident: bib27
  article-title: Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China
  publication-title: Energy
– volume: 27
  start-page: 284
  year: 2018
  end-page: 302
  ident: bib45
  article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems
  publication-title: J Computat Sci
– volume: 158
  start-page: 774
  year: 2018
  end-page: 781
  ident: bib6
  article-title: Short term electricity load forecasting using a hybrid model
  publication-title: Energy
– volume: 101
  year: 2021
  ident: bib44
  article-title: Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization
  publication-title: Appl Soft Comput
– reference: Wang Y, Nie R, Ma X, Liu Z, Chi P, Wu W, et al. A novel Hausdorff fractional NGMC(p,.
– volume: 157
  start-page: 149
  year: 2022
  end-page: 174
  ident: bib31
  article-title: Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application
  publication-title: Transp Res Part B Methodol
– volume: 68
  start-page: 63
  year: 2018
  end-page: 80
  ident: bib37
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng Appl Artif Intell
– volume: 14
  start-page: 4107
  year: 2021
  ident: bib9
  article-title: Short-term net load forecasting with singular
  publication-title: Spectr Anal LSTM Neural Netw
– volume: 95
  year: 2020
  ident: bib19
  article-title: Parameter optimization for nonlinear grey Bernoulli model on biomass energy consumption prediction
  publication-title: Appl Soft Comput
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib32
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Software
– volume: 29
  start-page: 78069
  year: 2022
  end-page: 78091
  ident: bib20
  article-title: What is the short-term outlook for the EU's natural gas demand? Individual differences and general trends based on monthly forecasts
  publication-title: Environ Sci Pollut Control Ser
– volume: 158
  year: 2020
  ident: bib5
  article-title: An estimating combination method for interval forecasting of electrical load time series
  publication-title: Expert Syst Appl
– year: 2013
  ident: bib14
  article-title: Grey prediction and decision methods
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: bib50
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl Soft Comput
– volume: 1
  start-page: 64
  year: 2016
  end-page: 68
  ident: bib1
  article-title: A short-term load forecasting method using artificial neural networks and wavelet analysis
  publication-title: Int J Power Syst
– volume: 9
  start-page: 7181
  year: 2019
  ident: bib46
  article-title: An improved grey wolf optimizer based on differential evolution and elimination mechanism
  publication-title: Sci Rep
– volume: 35
  start-page: 628
  year: 2020
  end-page: 638
  ident: bib3
  article-title: Multivariate quantile regression for short-term probabilistic load forecasting
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 1183
  year: 2020
  end-page: 1192
  ident: bib4
  article-title: Multiple kernel learning-based transfer regression for electric load forecasting
  publication-title: IEEE Trans Smart Grid
– volume: 25
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib18
  article-title: Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model
  publication-title: Sustain Prod Consum
– volume: 40
  start-page: 5063
  year: 2016
  end-page: 5076
  ident: bib47
  article-title: A novel fractional grey system model and its application
  publication-title: Appl Math Model
– volume: 252
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib35
  article-title: Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124090
– volume: 227
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib8
  article-title: Electrical load-temperature CNN for residential load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120480
– volume: 29
  start-page: 78069
  issue: 51
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib20
  article-title: What is the short-term outlook for the EU's natural gas demand? Individual differences and general trends based on monthly forecasts
  publication-title: Environ Sci Pollut Control Ser
  doi: 10.1007/s11356-022-21285-9
– volume: 149
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib29
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113338
– volume: 11
  start-page: 1183
  issue: 2
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib4
  article-title: Multiple kernel learning-based transfer regression for electric load forecasting
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2933413
– volume: 93
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib43
  article-title: A memory-based Grey Wolf Optimizer for global optimization tasks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106367
– volume: 101
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib44
  article-title: Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.107061
– volume: 27
  start-page: 284
  year: 2018
  ident: 10.1016/j.energy.2023.126844_bib45
  article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems
  publication-title: J Computat Sci
  doi: 10.1016/j.jocs.2018.06.008
– volume: 14
  start-page: 4107
  issue: 14
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib9
  article-title: Short-term net load forecasting with singular
  publication-title: Spectr Anal LSTM Neural Netw
– volume: 250
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib42
  article-title: DSGWO: an improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2022.109100
– volume: 381
  start-page: 413
  issue: 6581
  year: 1996
  ident: 10.1016/j.energy.2023.126844_bib49
  article-title: Lévy flight search patterns of wandering albatrosses
  publication-title: Nature
  doi: 10.1038/381413a0
– volume: 95
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib19
  article-title: Parameter optimization for nonlinear grey Bernoulli model on biomass energy consumption prediction
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106538
– volume: 243
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib27
  article-title: Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China
  publication-title: Energy
  doi: 10.1016/j.energy.2021.123024
– volume: 68
  start-page: 63
  year: 2018
  ident: 10.1016/j.energy.2023.126844_bib37
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.10.024
– volume: 116
  start-page: 763
  year: 2023
  ident: 10.1016/j.energy.2023.126844_bib13
  article-title: Partial differential grey model based on control matrix and its application in short-term traffic flow prediction
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2022.12.012
– volume: 34
  start-page: 7711
  issue: 10
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib39
  article-title: Adaptive grey wolf optimizer
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06885-9
– volume: 93
  start-page: 226
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib41
  article-title: Group-based synchronous-asynchronous grey wolf optimizer
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.12.016
– ident: 10.1016/j.energy.2023.126844_sref24
– volume: 292
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib26
  article-title: A novel robust reweighted multivariate grey model for forecasting the greenhouse gas emissions
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.126001
– volume: 140
  start-page: 70
  year: 2019
  ident: 10.1016/j.energy.2023.126844_bib17
  article-title: Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.03.006
– volume: 87
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib23
  article-title: Short-term forecasting of renewable energy consumption: augmentation of a modified grey model with a Kalman filter
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105994
– volume: 263
  year: 2023
  ident: 10.1016/j.energy.2023.126844_bib7
  article-title: Energy demand forecasting in China: a support vector regression-compositional data second exponential smoothing model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125955
– volume: 97
  start-page: 381
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib24n
  article-title: Grey prediction model with Grey Wolf Optimizer and its applications in forecasting energy production and conversion of China
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2021.03.047
– volume: 82
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib12
  article-title: SARIMA damp trend grey forecasting model for airline industry
  publication-title: J Air Transport Manag
  doi: 10.1016/j.jairtraman.2019.101736
– volume: 158
  start-page: 774
  year: 2018
  ident: 10.1016/j.energy.2023.126844_bib6
  article-title: Short term electricity load forecasting using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.012
– year: 2013
  ident: 10.1016/j.energy.2023.126844_bib14
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.energy.2023.126844_bib32
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.energy.2023.126844_bib30
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 203
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib11
  article-title: Petroleum products consumption forecasting based on a new structural auto-adaptive intelligent grey prediction model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117579
– volume: 9
  start-page: 7181
  issue: 1
  year: 2019
  ident: 10.1016/j.energy.2023.126844_bib46
  article-title: An improved grey wolf optimizer based on differential evolution and elimination mechanism
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-43546-3
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.energy.2023.126844_bib50
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.044
– volume: 202
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib36
  article-title: Modified swarm intelligence algorithms for the pharmacy duty scheduling problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117246
– volume: 157
  start-page: 149
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib31
  article-title: Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application
  publication-title: Transp Res Part B Methodol
  doi: 10.1016/j.trb.2022.01.007
– volume: 37
  start-page: 278
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2023.126844_bib15
  article-title: Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate
  publication-title: Chaos, Solit Fractals
  doi: 10.1016/j.chaos.2006.08.024
– volume: 126
  start-page: 507
  year: 2018
  ident: 10.1016/j.energy.2023.126844_bib16
  article-title: Predicting the capital intensity of the new energy industry in China using a new hybrid grey model
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.10.012
– volume: 40
  start-page: 5063
  issue: 7
  year: 2016
  ident: 10.1016/j.energy.2023.126844_bib47
  article-title: A novel fractional grey system model and its application
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2015.12.014
– volume: 30
  start-page: 4953
  issue: 11
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib33
  article-title: Adaptive image steganography using fuzzy enhancement and grey wolf optimizer
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2022.3164791
– volume: 104
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib25
  article-title: Exploiting fractional accumulation and background value optimization in multivariate interval grey prediction model and its application
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104360
– volume: 1
  start-page: 64
  year: 2016
  ident: 10.1016/j.energy.2023.126844_bib1
  article-title: A short-term load forecasting method using artificial neural networks and wavelet analysis
  publication-title: Int J Power Syst
– volume: 34
  start-page: 14627
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib40
  article-title: A multi-strategy random weighted gray wolf optimizer-based multi-layer perceptron model for short-term wind speed forecasting
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07303-4
– volume: 226
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib38
  article-title: Opposition-based learning grey wolf optimizer for global optimization
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2021.107139
– volume: 95
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib10
  article-title: A new grey prediction model and its application to predicting landslide displacement
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106543
– volume: 56
  start-page: 217
  year: 2018
  ident: 10.1016/j.energy.2023.126844_bib22
  article-title: The kernel-based nonlinear multivariate grey model
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.12.010
– volume: 35
  start-page: 628
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib3
  article-title: Multivariate quantile regression for short-term probabilistic load forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2924224
– volume: 29
  start-page: 47050
  issue: 31
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib21
  article-title: Estimating CO2 emissions using a fractional grey Bernoulli model with time power term
  publication-title: Environ Sci Pollut Control Ser
  doi: 10.1007/s11356-022-18803-0
– volume: 127
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib34
  article-title: A novel hybrid model for short-term prediction of wind speed
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.108623
– volume: 25
  start-page: 1
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib18
  article-title: Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model
  publication-title: Sustain Prod Consum
  doi: 10.1016/j.spc.2020.07.009
– volume: 376
  year: 2021
  ident: 10.1016/j.energy.2023.126844_bib28
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 55
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib2
  article-title: A novel hybrid forecasting scheme for electricity demand time series
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102036
– volume: 158
  year: 2020
  ident: 10.1016/j.energy.2023.126844_bib5
  article-title: An estimating combination method for interval forecasting of electrical load time series
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113498
– volume: 155
  year: 2022
  ident: 10.1016/j.energy.2023.126844_bib48
  article-title: A time power-based grey model with conformable fractional derivative and its applications
  publication-title: Chaos, Solit Fractals
  doi: 10.1016/j.chaos.2021.111657
SSID ssj0005899
Score 2.610263
Snippet The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126844
SubjectTerms algorithms
Australia
differential equation
electricity costs
Electricity forecasting
energy
Fractional grey model
humidity
Lévy flight
Markov chain
power generation
prediction
temperature
Tent map
wolves
Title Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting
URI https://dx.doi.org/10.1016/j.energy.2023.126844
https://www.proquest.com/docview/2834209055
Volume 269
WOSCitedRecordID wos000937314600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagQ4IXBIOJcZOReKtS5eI0Nm8DdQIkJqQNqTxFji-0U5VUTTu6n7B_zTlxnBQmNEDixUpSx4n6fbGPj8_nQ8hrrVM2tkoEmYGPnCleBNyqLMgiU_AwtlbELtlEdnLCp1PxuZUr1k06gaws-XYrlv8VargGYKN09i_g7hqFC3AMoEMJsEP5R8Afr5xWAWUhGC14AbNhMCiHMLG-HL41q7LC9R-XAgcjymFq7EPQ542HAc6aut-rhR3KxbdqBb85f36_2o1-knoGtnuAfftwicnWhotKaoxbNErWaz8mere_Exni7qZbF1DfuSC-ztuV_16W9kk2LtzT2Wa2kbueiTjBRRanzXTuMi-Z6eOTnEwrDFLGfuqCY5eu5Vp37jwL5yPTvOIIHzKKcH8a1g9fXVDhKTaNLcOsCi0RdpvsxVkq-IDsHX2YTD_2oT-8ySvavYqXVDZxf9ef9TuT5ZfBu7FIzh6Q--1Ugh45Cjwkt0y5T-56pXm9Tw4mvYoRKrbdeP2IXPUcobscoYg77ThCG45QzxGKHKGeI64ucoR2HHlDdxhC5yXtGUIbhlBkCN1hyGPy5Xhy9u590ObkCBSAtA6SIrU60jJiptAJGJvjROqxUFpEGmzNSHAbWlaEMubGRtmYcZPGCgoRW2lSnRyQQVmV5gmhOswKy6RRArBKI8OVEZGxyThjBbcyOSSJ_9tz1W5Yj3lTFrmPTDzPHVg5gpU7sA5J0N21dBu23FA_84jmrdHpjMkcSHjDna88AXLok3GhTZam2tQ5mOwsDkWYpk__ufVn5F7_TT0ng_VqY16QO-piPa9XL1tG_wA3Zrvg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+multivariate+grey+Bernoulli+model+combined+with+improved+grey+wolf+algorithm%3A+Application+in+short-term+power+load+forecasting&rft.jtitle=Energy+%28Oxford%29&rft.au=Yin%2C+Chen&rft.au=Mao%2C+Shuhua&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=269&rft_id=info:doi/10.1016%2Fj.energy.2023.126844&rft.externalDocID=S0360544223002384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon