Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting
The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction. There are many factors influencing the power load, and there may be a nonlinear relationship between the power l...
Saved in:
| Published in: | Energy (Oxford) Vol. 269; p. 126844 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.04.2023
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction.
There are many factors influencing the power load, and there may be a nonlinear relationship between the power load and these influencing factors. A new fractional multivariate grey Bernoulli model, referred to as MFGBM (q, r, N), is developed in this article for the short-term prediction of power load. The fractional differential equation and fractional accumulation generation are integrated into MFGBM (q, r, N). Second, this paper improves the grey wolf algorithm to better optimize many parameters in the model. The algorithm is improved by using a chaotic Tent map to optimize the initial population composition, adding inertia weights to change the position vector of the grey wolf, and introducing a nonlinear function and Lévy flight to enhance local exploitation and global exploration ability. Finally, this paper selects the daytime and nighttime power loads in Australia and takes the electricity price, humidity, and temperature as the influencing factors to validate the prediction capability of MFGBM (q, r, N). Our findings indicate that MFGBM (q, r, N) is highly applicable to short-term power system prediction.
•The multivariate grey Bernoulli model is proposed to predict short-term power load.•The improved grey wolf algorithm is proposed to avoid falling into local optimum.•3. The non-singular Caputo fractional derivative and Laplace transform are introduced.•The fractional-order operator is introduced to reduce the influence of randomness. |
|---|---|
| AbstractList | The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction. There are many factors influencing the power load, and there may be a nonlinear relationship between the power load and these influencing factors. A new fractional multivariate grey Bernoulli model, referred to as MFGBM (q, r, N), is developed in this article for the short-term prediction of power load. The fractional differential equation and fractional accumulation generation are integrated into MFGBM (q, r, N). Second, this paper improves the grey wolf algorithm to better optimize many parameters in the model. The algorithm is improved by using a chaotic Tent map to optimize the initial population composition, adding inertia weights to change the position vector of the grey wolf, and introducing a nonlinear function and Lévy flight to enhance local exploitation and global exploration ability. Finally, this paper selects the daytime and nighttime power loads in Australia and takes the electricity price, humidity, and temperature as the influencing factors to validate the prediction capability of MFGBM (q, r, N). Our findings indicate that MFGBM (q, r, N) is highly applicable to short-term power system prediction. The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy saving and emission reduction. There are many factors influencing the power load, and there may be a nonlinear relationship between the power load and these influencing factors. A new fractional multivariate grey Bernoulli model, referred to as MFGBM (q, r, N), is developed in this article for the short-term prediction of power load. The fractional differential equation and fractional accumulation generation are integrated into MFGBM (q, r, N). Second, this paper improves the grey wolf algorithm to better optimize many parameters in the model. The algorithm is improved by using a chaotic Tent map to optimize the initial population composition, adding inertia weights to change the position vector of the grey wolf, and introducing a nonlinear function and Lévy flight to enhance local exploitation and global exploration ability. Finally, this paper selects the daytime and nighttime power loads in Australia and takes the electricity price, humidity, and temperature as the influencing factors to validate the prediction capability of MFGBM (q, r, N). Our findings indicate that MFGBM (q, r, N) is highly applicable to short-term power system prediction. •The multivariate grey Bernoulli model is proposed to predict short-term power load.•The improved grey wolf algorithm is proposed to avoid falling into local optimum.•3. The non-singular Caputo fractional derivative and Laplace transform are introduced.•The fractional-order operator is introduced to reduce the influence of randomness. |
| ArticleNumber | 126844 |
| Author | Mao, Shuhua Yin, Chen |
| Author_xml | – sequence: 1 givenname: Chen surname: Yin fullname: Yin, Chen email: yinchen0907@163.com – sequence: 2 givenname: Shuhua surname: Mao fullname: Mao, Shuhua email: maosh_415@whut.edu.cn |
| BookMark | eNqFkL9u2zAQxjmkQPPvDTpw7CKXpChVzFAgDZqkQIAuzUzQ5NE5gyJVkrbhR-hbV446dWiWOxzu-z7c_S7IWUwRCPnA2Yoz3n_ariBC3hxXgol2xUU_SHlGzlnbs6aTUrwnF6VsGWPdoNQ5-X2fja2Yogl03IWKe5PRVKCbDEf6FXJMuxCQjslBoDaNa4zg6AHrC8Vxymk_T6_aQwqemrBJed6NN_R2mgJac8qmGGl5Sbk2FfJIp3SATEMyjvqUwZpSMW6uyDtvQoHrv_2SPN9_-3n32Dz9ePh-d_vUWNGr2rTrzjvuDJewdi1TvG-N65V1irtBCK4Gz7xcMyMG8PxzLwfohJ2LEt5A59pL8nHJnY__tYNS9YjFQggmQtoVLYZWCqZY183Sm0Vqcyolg9cW6-tHNRsMmjN9Yq63emGuT8z1wnw2y3_MU8bR5ONbti-LDWYGe4Ssi0WIFhzOqKp2Cf8f8Ac4MaXu |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_117855 crossref_primary_10_1016_j_cam_2025_116500 crossref_primary_10_1016_j_matcom_2024_11_003 crossref_primary_10_3390_biomimetics9060331 crossref_primary_10_1109_ACCESS_2024_3409440 crossref_primary_10_1016_j_energy_2024_132997 crossref_primary_10_1016_j_engappai_2023_106725 crossref_primary_10_1016_j_apenergy_2024_122821 crossref_primary_10_1016_j_eswa_2023_121356 crossref_primary_10_1080_15567036_2024_2440050 crossref_primary_10_1016_j_envres_2024_119809 crossref_primary_10_1038_s41598_025_15674_6 crossref_primary_10_1007_s43069_025_00531_z crossref_primary_10_1108_JFEP_10_2024_0307 crossref_primary_10_3390_electronics13142719 crossref_primary_10_1016_j_engappai_2025_110942 crossref_primary_10_32604_cmes_2023_029258 crossref_primary_10_3390_math12213353 crossref_primary_10_1108_GS_08_2023_0078 crossref_primary_10_1016_j_energy_2024_132188 crossref_primary_10_1108_GS_08_2023_0074 crossref_primary_10_1016_j_compeleceng_2025_110263 crossref_primary_10_12677_aam_2024_134159 crossref_primary_10_1007_s41207_024_00618_9 crossref_primary_10_1371_journal_pone_0285460 crossref_primary_10_1108_GS_09_2023_0090 crossref_primary_10_1016_j_engappai_2024_109398 crossref_primary_10_1016_j_energy_2023_127664 crossref_primary_10_1016_j_heliyon_2024_e28381 crossref_primary_10_1007_s11356_023_26599_w crossref_primary_10_1016_j_energy_2025_135442 crossref_primary_10_3390_en17081926 crossref_primary_10_1038_s41598_025_89861_w crossref_primary_10_1016_j_apm_2023_06_040 crossref_primary_10_1016_j_energy_2024_131163 crossref_primary_10_1016_j_eswa_2024_123631 crossref_primary_10_1016_j_jtice_2024_105915 crossref_primary_10_1108_GS_01_2024_0011 crossref_primary_10_1016_j_energy_2025_135609 crossref_primary_10_1016_j_energy_2025_134518 crossref_primary_10_3390_app14167092 crossref_primary_10_1108_GS_04_2024_0052 crossref_primary_10_1080_13504509_2023_2301370 crossref_primary_10_1016_j_eswa_2024_124481 crossref_primary_10_1016_j_ins_2025_122523 crossref_primary_10_1016_j_aej_2025_04_016 crossref_primary_10_1016_j_eswa_2024_125010 crossref_primary_10_1016_j_eswa_2024_123352 crossref_primary_10_1016_j_chaos_2023_113767 crossref_primary_10_1016_j_energy_2024_133099 crossref_primary_10_1016_j_jclepro_2023_137162 crossref_primary_10_1142_S0129156425400610 crossref_primary_10_1038_s41598_024_82128_w crossref_primary_10_1093_ijlct_ctae040 crossref_primary_10_3390_su15076261 |
| Cites_doi | 10.1016/j.energy.2022.124090 10.1016/j.energy.2021.120480 10.1007/s11356-022-21285-9 10.1016/j.eswa.2020.113338 10.1109/TSG.2019.2933413 10.1016/j.asoc.2020.106367 10.1016/j.asoc.2020.107061 10.1016/j.jocs.2018.06.008 10.1016/j.knosys.2022.109100 10.1038/381413a0 10.1016/j.asoc.2020.106538 10.1016/j.energy.2021.123024 10.1016/j.engappai.2017.10.024 10.1016/j.apm.2022.12.012 10.1007/s00521-021-06885-9 10.1016/j.apm.2020.12.016 10.1016/j.jclepro.2021.126001 10.1016/j.renene.2019.03.006 10.1016/j.asoc.2019.105994 10.1016/j.energy.2022.125955 10.1016/j.apm.2021.03.047 10.1016/j.jairtraman.2019.101736 10.1016/j.energy.2018.06.012 10.1016/j.advengsoft.2013.12.007 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2022.117579 10.1038/s41598-019-43546-3 10.1016/j.asoc.2017.06.044 10.1016/j.eswa.2022.117246 10.1016/j.trb.2022.01.007 10.1016/j.chaos.2006.08.024 10.1016/j.cie.2018.10.012 10.1016/j.apm.2015.12.014 10.1109/TFUZZ.2022.3164791 10.1016/j.engappai.2021.104360 10.1007/s00521-022-07303-4 10.1016/j.knosys.2021.107139 10.1016/j.asoc.2020.106543 10.1016/j.apm.2017.12.010 10.1109/TPWRS.2019.2924224 10.1007/s11356-022-18803-0 10.1016/j.patcog.2022.108623 10.1016/j.spc.2020.07.009 10.1016/j.cma.2020.113609 10.1016/j.scs.2020.102036 10.1016/j.eswa.2020.113498 10.1016/j.chaos.2021.111657 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2023.126844 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2023_126844 S0360544223002384 |
| GeographicLocations | Australia |
| GeographicLocations_xml | – name: Australia |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c269t-3b5fd1da14ebd309163ad69cd91d822198f0f4b0a28ef17648e52c8e592fae5d3 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937314600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 22:58:02 EDT 2025 Tue Nov 18 20:47:30 EST 2025 Sat Nov 29 07:18:30 EST 2025 Sat Apr 27 15:44:44 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electricity forecasting Tent map Fractional grey model Lévy flight |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c269t-3b5fd1da14ebd309163ad69cd91d822198f0f4b0a28ef17648e52c8e592fae5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834209055 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834209055 crossref_citationtrail_10_1016_j_energy_2023_126844 crossref_primary_10_1016_j_energy_2023_126844 elsevier_sciencedirect_doi_10_1016_j_energy_2023_126844 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-15 |
| PublicationDateYYYYMMDD | 2023-04-15 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xie, Yan, Wu, Liu, Bai, Liu (bib26) 2021; 292 Stratigakos, Bachoumis, Vita, Zafiropoulos (bib9) 2021; 14 Mao, Gao, Xiao, Zhu (bib47) 2016; 40 Duan, Wang (bib13) 2023; 116 Rodríguez, Camarena, Cuevas, Aranguren, Valdivia, Morales-Castañeda (bib41) 2021; 93 Chen (bib15) 2008; 37 Meidani, Hemmasian, Mirjalili, Barati Farimani (bib39) 2022; 34 Jiang, Zhao, Liu, Li, Wang (bib42) 2022; 250 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (bib28) 2021; 376 Li, Jiang, Yang, Li (bib2) 2020; 55 Wu, Ma, Zeng, Wang, Cai (bib17) 2019; 140 Gaidhane, Nigam (bib45) 2018; 27 Wu, Zeng, Liu, Xie, Goh (bib48) 2022; 155 Wang Y, Nie R, Ma X, Liu Z, Chi P, Wu W, et al. A novel Hausdorff fractional NGMC(p,. Mirjalili, Mirjalili, Lewis (bib32) 2014; 69 Huang, Tao, Liu, Cheng, Chen (bib25) 2021; 104 Viswanathan, Afanasyev, Buldyrev, Murphy, Prince, Stanley (bib49) 1996; 381 Ekonomou, Christodoulou, Mladenov (bib1) 2016; 1 Wu, Li, Huang, Xu (bib10) 2020; 95 Xiao, Mao (bib14) 2013 Ma, Liu (bib22) 2018; 56 Li, Wang, Liu, Zhong (bib20) 2022; 29 Wu, Wang, Precup, Boulet (bib4) 2020; 11 Kang, Mao, Zhang (bib31) 2022; 157 Long, Jiao, Liang, Tang (bib37) 2018; 68 Wang, Li (bib46) 2019; 9 Imani (bib8) 2021; 227 Xie, Wang, Wu (bib33) 2022; 30 Xiao, Shan, Gao, Xiao, Goh (bib19) 2020; 95 Wang, Wang, Wu (bib27) 2022; 243 Rao, Zhang, Wen, Xiao, Goh (bib7) 2023; 263 Şahin (bib18) 2021; 25 Khishe, Mosavi (bib29) 2020; 149 Yu, Xu, Li (bib38) 2021; 226 Inac, Dokur, Yüzgeç (bib40) 2022; 34 Mirjalili, Lewis (bib30) 2016; 95 Gupta, Deep (bib43) 2020; 93 Ma, Dong (bib5) 2020; 158 Kiliç, Uncu (bib36) 2022; 202 Heidari, Pahlavani (bib50) 2017; 60 Wang, Wang (bib21) 2022; 29 Hu, Li, Zhang, Fang (bib34) 2022; 127 Bracale, Caramia, Falco, Hong (bib3) 2020; 35 Zheng, Li, Wang (bib16) 2018; 126 Zhang, Wei, Li, Tan, Zhou (bib6) 2018; 158 Zhang, Lin, Mao, Liu, Dou, Liu (bib44) 2021; 101 Al-Momani, Mohamed, Abu Elhaija (bib35) 2022; 252 Emmanuel Sapnken, Gaston Tamba (bib11) 2022; 203 Moonchai, Chutsagulprom (bib23) 2020; 87 Carmona-Benítez, Nieto (bib12) 2020; 82 Viswanathan (10.1016/j.energy.2023.126844_bib49) 1996; 381 Wu (10.1016/j.energy.2023.126844_bib17) 2019; 140 10.1016/j.energy.2023.126844_sref24 Rodríguez (10.1016/j.energy.2023.126844_bib41) 2021; 93 Xiao (10.1016/j.energy.2023.126844_bib19) 2020; 95 Wang (10.1016/j.energy.2023.126844_bib27) 2022; 243 Emmanuel Sapnken (10.1016/j.energy.2023.126844_bib11) 2022; 203 Gupta (10.1016/j.energy.2023.126844_bib43) 2020; 93 Wu (10.1016/j.energy.2023.126844_bib4) 2020; 11 Wang (10.1016/j.energy.2023.126844_bib21) 2022; 29 Gaidhane (10.1016/j.energy.2023.126844_bib45) 2018; 27 Abualigah (10.1016/j.energy.2023.126844_bib28) 2021; 376 Imani (10.1016/j.energy.2023.126844_bib8) 2021; 227 Wu (10.1016/j.energy.2023.126844_bib10) 2020; 95 Long (10.1016/j.energy.2023.126844_bib37) 2018; 68 Jiang (10.1016/j.energy.2023.126844_bib42) 2022; 250 Xie (10.1016/j.energy.2023.126844_bib26) 2021; 292 (10.1016/j.energy.2023.126844_bib24n) 2021; 97 Zhang (10.1016/j.energy.2023.126844_bib44) 2021; 101 Huang (10.1016/j.energy.2023.126844_bib25) 2021; 104 Rao (10.1016/j.energy.2023.126844_bib7) 2023; 263 Şahin (10.1016/j.energy.2023.126844_bib18) 2021; 25 Mao (10.1016/j.energy.2023.126844_bib47) 2016; 40 Kiliç (10.1016/j.energy.2023.126844_bib36) 2022; 202 Carmona-Benítez (10.1016/j.energy.2023.126844_bib12) 2020; 82 Xiao (10.1016/j.energy.2023.126844_bib14) 2013 Mirjalili (10.1016/j.energy.2023.126844_bib32) 2014; 69 Mirjalili (10.1016/j.energy.2023.126844_bib30) 2016; 95 Wu (10.1016/j.energy.2023.126844_bib48) 2022; 155 Moonchai (10.1016/j.energy.2023.126844_bib23) 2020; 87 Zheng (10.1016/j.energy.2023.126844_bib16) 2018; 126 Heidari (10.1016/j.energy.2023.126844_bib50) 2017; 60 Stratigakos (10.1016/j.energy.2023.126844_bib9) 2021; 14 Khishe (10.1016/j.energy.2023.126844_bib29) 2020; 149 Kang (10.1016/j.energy.2023.126844_bib31) 2022; 157 Wang (10.1016/j.energy.2023.126844_bib46) 2019; 9 Yu (10.1016/j.energy.2023.126844_bib38) 2021; 226 Li (10.1016/j.energy.2023.126844_bib20) 2022; 29 Bracale (10.1016/j.energy.2023.126844_bib3) 2020; 35 Hu (10.1016/j.energy.2023.126844_bib34) 2022; 127 Ma (10.1016/j.energy.2023.126844_bib22) 2018; 56 Ma (10.1016/j.energy.2023.126844_bib5) 2020; 158 Al-Momani (10.1016/j.energy.2023.126844_bib35) 2022; 252 Zhang (10.1016/j.energy.2023.126844_bib6) 2018; 158 Xie (10.1016/j.energy.2023.126844_bib33) 2022; 30 Ekonomou (10.1016/j.energy.2023.126844_bib1) 2016; 1 Li (10.1016/j.energy.2023.126844_bib2) 2020; 55 Chen (10.1016/j.energy.2023.126844_bib15) 2008; 37 Meidani (10.1016/j.energy.2023.126844_bib39) 2022; 34 Duan (10.1016/j.energy.2023.126844_bib13) 2023; 116 Inac (10.1016/j.energy.2023.126844_bib40) 2022; 34 |
| References_xml | – volume: 37 start-page: 278 year: 2008 end-page: 287 ident: bib15 article-title: Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate publication-title: Chaos, Solit Fractals – volume: 292 year: 2021 ident: bib26 article-title: A novel robust reweighted multivariate grey model for forecasting the greenhouse gas emissions publication-title: J Clean Prod – volume: 203 year: 2022 ident: bib11 article-title: Petroleum products consumption forecasting based on a new structural auto-adaptive intelligent grey prediction model publication-title: Expert Syst Appl – volume: 30 start-page: 4953 year: 2022 end-page: 4964 ident: bib33 article-title: Adaptive image steganography using fuzzy enhancement and grey wolf optimizer publication-title: IEEE Trans Fuzzy Syst – volume: 93 year: 2020 ident: bib43 article-title: A memory-based Grey Wolf Optimizer for global optimization tasks publication-title: Appl Soft Comput – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib30 article-title: The whale optimization algorithm publication-title: Adv Eng Software – volume: 82 year: 2020 ident: bib12 article-title: SARIMA damp trend grey forecasting model for airline industry publication-title: J Air Transport Manag – volume: 93 start-page: 226 year: 2021 end-page: 243 ident: bib41 article-title: Group-based synchronous-asynchronous grey wolf optimizer publication-title: Appl Math Model – volume: 149 year: 2020 ident: bib29 article-title: Chimp optimization algorithm publication-title: Expert Syst Appl – volume: 55 year: 2020 ident: bib2 article-title: A novel hybrid forecasting scheme for electricity demand time series publication-title: Sustain Cities Soc – volume: 263 year: 2023 ident: bib7 article-title: Energy demand forecasting in China: a support vector regression-compositional data second exponential smoothing model publication-title: Energy – volume: 29 start-page: 47050 year: 2022 end-page: 47069 ident: bib21 article-title: Estimating CO2 emissions using a fractional grey Bernoulli model with time power term publication-title: Environ Sci Pollut Control Ser – volume: 116 start-page: 763 year: 2023 end-page: 785 ident: bib13 article-title: Partial differential grey model based on control matrix and its application in short-term traffic flow prediction publication-title: Appl Math Model – volume: 250 year: 2022 ident: bib42 article-title: DSGWO: an improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms publication-title: Knowl Base Syst – volume: 202 year: 2022 ident: bib36 article-title: Modified swarm intelligence algorithms for the pharmacy duty scheduling problem publication-title: Expert Syst Appl – volume: 155 year: 2022 ident: bib48 article-title: A time power-based grey model with conformable fractional derivative and its applications publication-title: Chaos, Solit Fractals – volume: 127 year: 2022 ident: bib34 article-title: A novel hybrid model for short-term prediction of wind speed publication-title: Pattern Recogn – volume: 376 year: 2021 ident: bib28 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng – volume: 381 start-page: 413 year: 1996 end-page: 415 ident: bib49 article-title: Lévy flight search patterns of wandering albatrosses publication-title: Nature – volume: 226 year: 2021 ident: bib38 article-title: Opposition-based learning grey wolf optimizer for global optimization publication-title: Knowl Base Syst – volume: 56 start-page: 217 year: 2018 end-page: 238 ident: bib22 article-title: The kernel-based nonlinear multivariate grey model publication-title: Appl Math Model – volume: 95 year: 2020 ident: bib10 article-title: A new grey prediction model and its application to predicting landslide displacement publication-title: Appl Soft Comput – volume: 252 year: 2022 ident: bib35 article-title: Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer publication-title: Energy – volume: 104 year: 2021 ident: bib25 article-title: Exploiting fractional accumulation and background value optimization in multivariate interval grey prediction model and its application publication-title: Eng Appl Artif Intell – volume: 227 year: 2021 ident: bib8 article-title: Electrical load-temperature CNN for residential load forecasting publication-title: Energy – volume: 87 year: 2020 ident: bib23 article-title: Short-term forecasting of renewable energy consumption: augmentation of a modified grey model with a Kalman filter publication-title: Appl Soft Comput – volume: 140 start-page: 70 year: 2019 end-page: 87 ident: bib17 article-title: Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model publication-title: Renew Energy – volume: 126 start-page: 507 year: 2018 end-page: 515 ident: bib16 article-title: Predicting the capital intensity of the new energy industry in China using a new hybrid grey model publication-title: Comput Ind Eng – volume: 34 start-page: 7711 year: 2022 end-page: 7731 ident: bib39 article-title: Adaptive grey wolf optimizer publication-title: Neural Comput Appl – volume: 34 start-page: 14627 year: 2022 end-page: 14657 ident: bib40 article-title: A multi-strategy random weighted gray wolf optimizer-based multi-layer perceptron model for short-term wind speed forecasting publication-title: Neural Comput Appl – volume: 243 year: 2022 ident: bib27 article-title: Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China publication-title: Energy – volume: 27 start-page: 284 year: 2018 end-page: 302 ident: bib45 article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems publication-title: J Computat Sci – volume: 158 start-page: 774 year: 2018 end-page: 781 ident: bib6 article-title: Short term electricity load forecasting using a hybrid model publication-title: Energy – volume: 101 year: 2021 ident: bib44 article-title: Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization publication-title: Appl Soft Comput – reference: Wang Y, Nie R, Ma X, Liu Z, Chi P, Wu W, et al. A novel Hausdorff fractional NGMC(p,. – volume: 157 start-page: 149 year: 2022 end-page: 174 ident: bib31 article-title: Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application publication-title: Transp Res Part B Methodol – volume: 68 start-page: 63 year: 2018 end-page: 80 ident: bib37 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng Appl Artif Intell – volume: 14 start-page: 4107 year: 2021 ident: bib9 article-title: Short-term net load forecasting with singular publication-title: Spectr Anal LSTM Neural Netw – volume: 95 year: 2020 ident: bib19 article-title: Parameter optimization for nonlinear grey Bernoulli model on biomass energy consumption prediction publication-title: Appl Soft Comput – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib32 article-title: Grey wolf optimizer publication-title: Adv Eng Software – volume: 29 start-page: 78069 year: 2022 end-page: 78091 ident: bib20 article-title: What is the short-term outlook for the EU's natural gas demand? Individual differences and general trends based on monthly forecasts publication-title: Environ Sci Pollut Control Ser – volume: 158 year: 2020 ident: bib5 article-title: An estimating combination method for interval forecasting of electrical load time series publication-title: Expert Syst Appl – year: 2013 ident: bib14 article-title: Grey prediction and decision methods – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: bib50 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl Soft Comput – volume: 1 start-page: 64 year: 2016 end-page: 68 ident: bib1 article-title: A short-term load forecasting method using artificial neural networks and wavelet analysis publication-title: Int J Power Syst – volume: 9 start-page: 7181 year: 2019 ident: bib46 article-title: An improved grey wolf optimizer based on differential evolution and elimination mechanism publication-title: Sci Rep – volume: 35 start-page: 628 year: 2020 end-page: 638 ident: bib3 article-title: Multivariate quantile regression for short-term probabilistic load forecasting publication-title: IEEE Trans Power Syst – volume: 11 start-page: 1183 year: 2020 end-page: 1192 ident: bib4 article-title: Multiple kernel learning-based transfer regression for electric load forecasting publication-title: IEEE Trans Smart Grid – volume: 25 start-page: 1 year: 2021 end-page: 14 ident: bib18 article-title: Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model publication-title: Sustain Prod Consum – volume: 40 start-page: 5063 year: 2016 end-page: 5076 ident: bib47 article-title: A novel fractional grey system model and its application publication-title: Appl Math Model – volume: 252 year: 2022 ident: 10.1016/j.energy.2023.126844_bib35 article-title: Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer publication-title: Energy doi: 10.1016/j.energy.2022.124090 – volume: 227 year: 2021 ident: 10.1016/j.energy.2023.126844_bib8 article-title: Electrical load-temperature CNN for residential load forecasting publication-title: Energy doi: 10.1016/j.energy.2021.120480 – volume: 29 start-page: 78069 issue: 51 year: 2022 ident: 10.1016/j.energy.2023.126844_bib20 article-title: What is the short-term outlook for the EU's natural gas demand? Individual differences and general trends based on monthly forecasts publication-title: Environ Sci Pollut Control Ser doi: 10.1007/s11356-022-21285-9 – volume: 149 year: 2020 ident: 10.1016/j.energy.2023.126844_bib29 article-title: Chimp optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113338 – volume: 11 start-page: 1183 issue: 2 year: 2020 ident: 10.1016/j.energy.2023.126844_bib4 article-title: Multiple kernel learning-based transfer regression for electric load forecasting publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2933413 – volume: 93 year: 2020 ident: 10.1016/j.energy.2023.126844_bib43 article-title: A memory-based Grey Wolf Optimizer for global optimization tasks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106367 – volume: 101 year: 2021 ident: 10.1016/j.energy.2023.126844_bib44 article-title: Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.107061 – volume: 27 start-page: 284 year: 2018 ident: 10.1016/j.energy.2023.126844_bib45 article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems publication-title: J Computat Sci doi: 10.1016/j.jocs.2018.06.008 – volume: 14 start-page: 4107 issue: 14 year: 2021 ident: 10.1016/j.energy.2023.126844_bib9 article-title: Short-term net load forecasting with singular publication-title: Spectr Anal LSTM Neural Netw – volume: 250 year: 2022 ident: 10.1016/j.energy.2023.126844_bib42 article-title: DSGWO: an improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2022.109100 – volume: 381 start-page: 413 issue: 6581 year: 1996 ident: 10.1016/j.energy.2023.126844_bib49 article-title: Lévy flight search patterns of wandering albatrosses publication-title: Nature doi: 10.1038/381413a0 – volume: 95 year: 2020 ident: 10.1016/j.energy.2023.126844_bib19 article-title: Parameter optimization for nonlinear grey Bernoulli model on biomass energy consumption prediction publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106538 – volume: 243 year: 2022 ident: 10.1016/j.energy.2023.126844_bib27 article-title: Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China publication-title: Energy doi: 10.1016/j.energy.2021.123024 – volume: 68 start-page: 63 year: 2018 ident: 10.1016/j.energy.2023.126844_bib37 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.10.024 – volume: 116 start-page: 763 year: 2023 ident: 10.1016/j.energy.2023.126844_bib13 article-title: Partial differential grey model based on control matrix and its application in short-term traffic flow prediction publication-title: Appl Math Model doi: 10.1016/j.apm.2022.12.012 – volume: 34 start-page: 7711 issue: 10 year: 2022 ident: 10.1016/j.energy.2023.126844_bib39 article-title: Adaptive grey wolf optimizer publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06885-9 – volume: 93 start-page: 226 year: 2021 ident: 10.1016/j.energy.2023.126844_bib41 article-title: Group-based synchronous-asynchronous grey wolf optimizer publication-title: Appl Math Model doi: 10.1016/j.apm.2020.12.016 – ident: 10.1016/j.energy.2023.126844_sref24 – volume: 292 year: 2021 ident: 10.1016/j.energy.2023.126844_bib26 article-title: A novel robust reweighted multivariate grey model for forecasting the greenhouse gas emissions publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126001 – volume: 140 start-page: 70 year: 2019 ident: 10.1016/j.energy.2023.126844_bib17 article-title: Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model publication-title: Renew Energy doi: 10.1016/j.renene.2019.03.006 – volume: 87 year: 2020 ident: 10.1016/j.energy.2023.126844_bib23 article-title: Short-term forecasting of renewable energy consumption: augmentation of a modified grey model with a Kalman filter publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105994 – volume: 263 year: 2023 ident: 10.1016/j.energy.2023.126844_bib7 article-title: Energy demand forecasting in China: a support vector regression-compositional data second exponential smoothing model publication-title: Energy doi: 10.1016/j.energy.2022.125955 – volume: 97 start-page: 381 year: 2021 ident: 10.1016/j.energy.2023.126844_bib24n article-title: Grey prediction model with Grey Wolf Optimizer and its applications in forecasting energy production and conversion of China publication-title: Appl Math Model doi: 10.1016/j.apm.2021.03.047 – volume: 82 year: 2020 ident: 10.1016/j.energy.2023.126844_bib12 article-title: SARIMA damp trend grey forecasting model for airline industry publication-title: J Air Transport Manag doi: 10.1016/j.jairtraman.2019.101736 – volume: 158 start-page: 774 year: 2018 ident: 10.1016/j.energy.2023.126844_bib6 article-title: Short term electricity load forecasting using a hybrid model publication-title: Energy doi: 10.1016/j.energy.2018.06.012 – year: 2013 ident: 10.1016/j.energy.2023.126844_bib14 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.energy.2023.126844_bib32 article-title: Grey wolf optimizer publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.energy.2023.126844_bib30 article-title: The whale optimization algorithm publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 203 year: 2022 ident: 10.1016/j.energy.2023.126844_bib11 article-title: Petroleum products consumption forecasting based on a new structural auto-adaptive intelligent grey prediction model publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117579 – volume: 9 start-page: 7181 issue: 1 year: 2019 ident: 10.1016/j.energy.2023.126844_bib46 article-title: An improved grey wolf optimizer based on differential evolution and elimination mechanism publication-title: Sci Rep doi: 10.1038/s41598-019-43546-3 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.energy.2023.126844_bib50 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.044 – volume: 202 year: 2022 ident: 10.1016/j.energy.2023.126844_bib36 article-title: Modified swarm intelligence algorithms for the pharmacy duty scheduling problem publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117246 – volume: 157 start-page: 149 year: 2022 ident: 10.1016/j.energy.2023.126844_bib31 article-title: Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application publication-title: Transp Res Part B Methodol doi: 10.1016/j.trb.2022.01.007 – volume: 37 start-page: 278 issue: 1 year: 2008 ident: 10.1016/j.energy.2023.126844_bib15 article-title: Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate publication-title: Chaos, Solit Fractals doi: 10.1016/j.chaos.2006.08.024 – volume: 126 start-page: 507 year: 2018 ident: 10.1016/j.energy.2023.126844_bib16 article-title: Predicting the capital intensity of the new energy industry in China using a new hybrid grey model publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.10.012 – volume: 40 start-page: 5063 issue: 7 year: 2016 ident: 10.1016/j.energy.2023.126844_bib47 article-title: A novel fractional grey system model and its application publication-title: Appl Math Model doi: 10.1016/j.apm.2015.12.014 – volume: 30 start-page: 4953 issue: 11 year: 2022 ident: 10.1016/j.energy.2023.126844_bib33 article-title: Adaptive image steganography using fuzzy enhancement and grey wolf optimizer publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2022.3164791 – volume: 104 year: 2021 ident: 10.1016/j.energy.2023.126844_bib25 article-title: Exploiting fractional accumulation and background value optimization in multivariate interval grey prediction model and its application publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104360 – volume: 1 start-page: 64 year: 2016 ident: 10.1016/j.energy.2023.126844_bib1 article-title: A short-term load forecasting method using artificial neural networks and wavelet analysis publication-title: Int J Power Syst – volume: 34 start-page: 14627 year: 2022 ident: 10.1016/j.energy.2023.126844_bib40 article-title: A multi-strategy random weighted gray wolf optimizer-based multi-layer perceptron model for short-term wind speed forecasting publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07303-4 – volume: 226 year: 2021 ident: 10.1016/j.energy.2023.126844_bib38 article-title: Opposition-based learning grey wolf optimizer for global optimization publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2021.107139 – volume: 95 year: 2020 ident: 10.1016/j.energy.2023.126844_bib10 article-title: A new grey prediction model and its application to predicting landslide displacement publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106543 – volume: 56 start-page: 217 year: 2018 ident: 10.1016/j.energy.2023.126844_bib22 article-title: The kernel-based nonlinear multivariate grey model publication-title: Appl Math Model doi: 10.1016/j.apm.2017.12.010 – volume: 35 start-page: 628 issue: 1 year: 2020 ident: 10.1016/j.energy.2023.126844_bib3 article-title: Multivariate quantile regression for short-term probabilistic load forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2924224 – volume: 29 start-page: 47050 issue: 31 year: 2022 ident: 10.1016/j.energy.2023.126844_bib21 article-title: Estimating CO2 emissions using a fractional grey Bernoulli model with time power term publication-title: Environ Sci Pollut Control Ser doi: 10.1007/s11356-022-18803-0 – volume: 127 year: 2022 ident: 10.1016/j.energy.2023.126844_bib34 article-title: A novel hybrid model for short-term prediction of wind speed publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108623 – volume: 25 start-page: 1 year: 2021 ident: 10.1016/j.energy.2023.126844_bib18 article-title: Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model publication-title: Sustain Prod Consum doi: 10.1016/j.spc.2020.07.009 – volume: 376 year: 2021 ident: 10.1016/j.energy.2023.126844_bib28 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 55 year: 2020 ident: 10.1016/j.energy.2023.126844_bib2 article-title: A novel hybrid forecasting scheme for electricity demand time series publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102036 – volume: 158 year: 2020 ident: 10.1016/j.energy.2023.126844_bib5 article-title: An estimating combination method for interval forecasting of electrical load time series publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113498 – volume: 155 year: 2022 ident: 10.1016/j.energy.2023.126844_bib48 article-title: A time power-based grey model with conformable fractional derivative and its applications publication-title: Chaos, Solit Fractals doi: 10.1016/j.chaos.2021.111657 |
| SSID | ssj0005899 |
| Score | 2.610263 |
| Snippet | The accurate prediction of power load is helpful to make reasonable power generation plans and scientific dispatching schemes and achieve the goal of energy... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 126844 |
| SubjectTerms | algorithms Australia differential equation electricity costs Electricity forecasting energy Fractional grey model humidity Lévy flight Markov chain power generation prediction temperature Tent map wolves |
| Title | Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting |
| URI | https://dx.doi.org/10.1016/j.energy.2023.126844 https://www.proquest.com/docview/2834209055 |
| Volume | 269 |
| WOSCitedRecordID | wos000937314600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagQ4IXBIOJcZOReKtS5eI0Nm8DdQIkJqQNqTxFji-0U5VUTTu6n7B_zTlxnBQmNEDixUpSx4n6fbGPj8_nQ8hrrVM2tkoEmYGPnCleBNyqLMgiU_AwtlbELtlEdnLCp1PxuZUr1k06gaws-XYrlv8VargGYKN09i_g7hqFC3AMoEMJsEP5R8Afr5xWAWUhGC14AbNhMCiHMLG-HL41q7LC9R-XAgcjymFq7EPQ542HAc6aut-rhR3KxbdqBb85f36_2o1-knoGtnuAfftwicnWhotKaoxbNErWaz8mere_Exni7qZbF1DfuSC-ztuV_16W9kk2LtzT2Wa2kbueiTjBRRanzXTuMi-Z6eOTnEwrDFLGfuqCY5eu5Vp37jwL5yPTvOIIHzKKcH8a1g9fXVDhKTaNLcOsCi0RdpvsxVkq-IDsHX2YTD_2oT-8ySvavYqXVDZxf9ef9TuT5ZfBu7FIzh6Q--1Ugh45Cjwkt0y5T-56pXm9Tw4mvYoRKrbdeP2IXPUcobscoYg77ThCG45QzxGKHKGeI64ucoR2HHlDdxhC5yXtGUIbhlBkCN1hyGPy5Xhy9u590ObkCBSAtA6SIrU60jJiptAJGJvjROqxUFpEGmzNSHAbWlaEMubGRtmYcZPGCgoRW2lSnRyQQVmV5gmhOswKy6RRArBKI8OVEZGxyThjBbcyOSSJ_9tz1W5Yj3lTFrmPTDzPHVg5gpU7sA5J0N21dBu23FA_84jmrdHpjMkcSHjDna88AXLok3GhTZam2tQ5mOwsDkWYpk__ufVn5F7_TT0ng_VqY16QO-piPa9XL1tG_wA3Zrvg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+multivariate+grey+Bernoulli+model+combined+with+improved+grey+wolf+algorithm%3A+Application+in+short-term+power+load+forecasting&rft.jtitle=Energy+%28Oxford%29&rft.au=Yin%2C+Chen&rft.au=Mao%2C+Shuhua&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=269&rft_id=info:doi/10.1016%2Fj.energy.2023.126844&rft.externalDocID=S0360544223002384 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |