Extraction of Semantic Links from a Document-Oriented NoSQL Database
The prior declaration of a schema when creating a database (DB) is not necessary for most NoSQL systems. This “Schemaless” property is important since it provides undeniable flexibility during data exploitation. However, the absence of schema is a major obstacle to the expression of precise queries...
Uloženo v:
| Vydáno v: | SN computer science Ročník 4; číslo 2; s. 148 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
09.01.2023
Springer Nature B.V Springer |
| Edice: | Advances on Model-Driven Engineering and Software Development |
| Témata: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The prior declaration of a schema when creating a database (DB) is not necessary for most NoSQL systems. This “Schemaless” property is important since it provides undeniable flexibility during data exploitation. However, the absence of schema is a major obstacle to the expression of precise queries on a DB. A new area of research has emerged to allow users of Schemaless NoSQL systems to visualize the schema of the data. Research works have proposed schema extraction processes, but these solutions are generally limited. In our previous works (Abdelhedi et al. in Proceedings of the 10th international conference on model-driven engineering and software development, pp 61–71.
https://doi.org/10.5220/0010899000003119
, 2022), we proposed a logical schema extraction process for a document-oriented NoSQL DB to address the needs of a medical application. In this paper, we extend this process to additional relationship types. To do this, we use the model driven architecture which proposes a development method based on metamodeling and the definition of transformation rules. The DB schema is obtained by applying a set of transformation rules to the specifications extracted from the DB. The interest of our process is to produce a schema that allows users of a NoSQL DB to build complex and precise queries. This is useful for both computer scientists who create a large number of complex queries as well as for decision makers who often have difficulty in apprehending the semantic of the data. Our extraction process was implemented in a medical application. |
|---|---|
| AbstractList | The prior declaration of a schema when creating a database (DB) is not necessary for most NoSQL systems. This “Schemaless” property is important since it provides undeniable flexibility during data exploitation. However, the absence of schema is a major obstacle to the expression of precise queries on a DB. A new area of research has emerged to allow users of Schemaless NoSQL systems to visualize the schema of the data. Research works have proposed schema extraction processes, but these solutions are generally limited. In our previous works (Abdelhedi et al. in Proceedings of the 10th international conference on model-driven engineering and software development, pp 61–71. https://doi.org/10.5220/0010899000003119, 2022), we proposed a logical schema extraction process for a document-oriented NoSQL DB to address the needs of a medical application. In this paper, we extend this process to additional relationship types. To do this, we use the model driven architecture which proposes a development method based on metamodeling and the definition of transformation rules. The DB schema is obtained by applying a set of transformation rules to the specifications extracted from the DB. The interest of our process is to produce a schema that allows users of a NoSQL DB to build complex and precise queries. This is useful for both computer scientists who create a large number of complex queries as well as for decision makers who often have difficulty in apprehending the semantic of the data. Our extraction process was implemented in a medical application. The prior declaration of a schema when creating a database (DB) is not necessary for most NoSQL systems. This “Schemaless” property is important since it provides undeniable flexibility during data exploitation. However, the absence of schema is a major obstacle to the expression of precise queries on a DB. A new area of research has emerged to allow users of Schemaless NoSQL systems to visualize the schema of the data. Research works have proposed schema extraction processes, but these solutions are generally limited. In our previous works (Abdelhedi et al. in Proceedings of the 10th international conference on model-driven engineering and software development, pp 61–71. https://doi.org/10.5220/0010899000003119 , 2022), we proposed a logical schema extraction process for a document-oriented NoSQL DB to address the needs of a medical application. In this paper, we extend this process to additional relationship types. To do this, we use the model driven architecture which proposes a development method based on metamodeling and the definition of transformation rules. The DB schema is obtained by applying a set of transformation rules to the specifications extracted from the DB. The interest of our process is to produce a schema that allows users of a NoSQL DB to build complex and precise queries. This is useful for both computer scientists who create a large number of complex queries as well as for decision makers who often have difficulty in apprehending the semantic of the data. Our extraction process was implemented in a medical application. |
| ArticleNumber | 148 |
| Author | Rajhi, Hela Zurfluh, Gilles Abdelhedi, Fatma |
| Author_xml | – sequence: 1 givenname: Fatma surname: Abdelhedi fullname: Abdelhedi, Fatma organization: CBI²-TRIMANE – sequence: 2 givenname: Hela orcidid: 0000-0001-8538-6229 surname: Rajhi fullname: Rajhi, Hela email: hela.rajhi@ut-capitole.fr organization: IRIT, Toulouse Capitole University – sequence: 3 givenname: Gilles surname: Zurfluh fullname: Zurfluh, Gilles organization: IRIT, Toulouse Capitole University |
| BackLink | https://hal.science/hal-04096794$$DView record in HAL |
| BookMark | eNp9kMFOwzAMhiM0JMbYC3CqxIlDwUnTpDlO22BIFRManKOQptCxNiPpEOzpySgCxGEnW9b_2dZ3jHqNbQxCpxguMAC_9JQILmIgJAac8izeHqA-YQzHmQDe-9MfoaH3SwAgKVDK0j6aTN9bp3Rb2SayZbQwtWraSkd51bz4qHS2jlQ0sXpTm6aN564KxRTRrV3c5dFEtepReXOCDku18mb4XQfo4Wp6P57F-fz6ZjzKY01Yto0LXprEMMqSRCdC8QJDknIoBEu1KhVNVUkhDEELXCQ8U1AaQ1JdZIXOCEAyQOfd3me1kmtX1cp9SKsqORvlcjcDCoJxQd9wyJ512bWzrxvjW7m0G9eE9yQRBBNOM8FCinQp7az3zpQ_azHInVzZyZVBrvySK7cByv5BumrVTmFQWa32o0mH-nCneTLu96s91CfNc48I |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3569779 |
| Cites_doi | 10.14778/2777598.2777601 10.21108/ijoict.v7i2.584 10.5441/002/edbt.2017.21 10.1007/s00778-018-0532-7 10.2196/jmir.1943 10.5220/0010899000003119 10.1109/ICDE51399.2021.00306 10.1155/2020/8813350 10.1016/j.knosys.2021.107394 10.1109/IRI.2018.00060 10.1007/978-3-319-25264-3_35 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 1XC |
| DOI | 10.1007/s42979-022-01578-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | oai:HAL:hal-04096794v1 10_1007_s42979_022_01578_z |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 1XC |
| ID | FETCH-LOGICAL-c268z-d7fe3e64633c39a7d103570d965cafa45af40d100c91d378a0fee25cd8dc82003 |
| IEDL.DBID | K7- |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Sat Oct 25 06:31:58 EDT 2025 Wed Nov 05 14:52:57 EST 2025 Tue Nov 18 22:32:07 EST 2025 Sat Nov 29 05:16:52 EST 2025 Fri Feb 21 02:45:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Logical schema Models transformation NoSQL DB Schemaless QVT Semantic links |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268z-d7fe3e64633c39a7d103570d965cafa45af40d100c91d378a0fee25cd8dc82003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8538-6229 0000-0003-2522-3596 0000-0003-3570-9792 |
| PQID | 2921274896 |
| PQPubID | 6623307 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04096794v1 proquest_journals_2921274896 crossref_primary_10_1007_s42979_022_01578_z crossref_citationtrail_10_1007_s42979_022_01578_z springer_journals_10_1007_s42979_022_01578_z |
| PublicationCentury | 2000 |
| PublicationDate | 20230109 |
| PublicationDateYYYYMMDD | 2023-01-09 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230109 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationSeriesTitle | Advances on Model-Driven Engineering and Software Development |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V Springer |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: Springer |
| References | Fruth M, Dauberschmidt K, Scherzinger SJ. Managing schemas for NoSQL document stores. In: IEEE 37th international conference on data engineering (ICDE), 2021. pp. 2693–6. https://doi.org/10.1109/ICDE51399.2021.00306. Laney D. 3D data management: Controlling data volume, velocity and variety. META group research note, 2001. BaaziziM-ALahmarHBColazzoDGhelliGSartianiCSchema inference for massive JSON datasetsExtend Database Technol201710.5441/002/edbt.2017.2107561594 Chillón AH, Hoyos JR, García-Molina J, Ruiz DS. Discovering entity inheritance relationships in document stores. Knowl Based Syst. 2021;230:107394. https://doi.org/10.1016/j.knosys.2021.107394. OMG: XML metadata interchange. https://www.omg.org/spec/XMI/. Accessed 20 Jan 2022. Eclipse: Ecore Tools. https://www.eclipse.org/ecoretools/doc/index.html. Accessed 20 Jan 2022. Baazizi M-A, Colazzo D, Ghelli G, Sartiani C. A type system for interactive JSON schema inference. In: 46th international colloquium on automata, languages, and programming (ICALP), 2019. Ruiz DS, Morales SF, Molina JG. Inferring versioned schemas from NoSQL databases and its applications. In: International conference on conceptual modeling, 2015, pp. 467–480. https://doi.org/10.1007/978-3-319-25264-3_35. MongoDB. https://www.mongodb.com/. Accessed 5 Sept 2021. Istiqamah AN, Wiharja KRS. A schema extraction of document-oriented database for data warehouse. Int J Inf Commun Technol. 2021;7(2):36–47. https://doi.org/10.21108/ijoict.v7i2.584. Abdelhedi F, Rajhi H, Zurfluh G. Extraction process of the logical schema of a document-oriented NoSQL database. In: Proceedings of the 10th international conference on model-driven engineering and software development, 2022, pp. 61–71. https://doi.org/10.5220/0010899000003119. Wang L, Hassanzadeh O, Zhang S, Shi J, Jiao L, Zou J, Wang C. Schema management for document stores. Proc VLDB Endow. 2015;8:922–33. https://doi.org/10.14778/2777598.2777601. BaaziziM-AColazzoDGhelliGSartianiCParametric schema inference for massive JSON datasetsVLDB J201928449752110.1007/s00778-018-0532-707561594 Aftab Z, Iqbal W, Almustafa KM, Bukhari F, Abdullah M. Automatic NoSQL to relational database transformation with dynamic schema mapping. Sci Programm. 2020. https://doi.org/10.1155/2020/8813350. OMG. https://www.omg.org/. Accessed 1 June 2021. OMG. MDA-The architecture of choice for a changing world. https://www.omg.org/mda. Accessed 1 Apr 2021. ODMS: Operational Database Management Systems. http://www.odbms.org/odmg-standard/. Accessed 10 Apr 2021. OMG: MOF query/view/transformation. https://www.omg.org/spec/QVT/1.3/About-QVT/. Accessed 20 Jan 2022. Erwin: Erwin Data Modeler. https://www.erwin.com/products/erwin-data-modeler/. Accessed 2 June 2021. Eclipse: Eclipse Modeling Framework (EMF) https://www.eclipse.org/modeling/emf/. Accessed 10 Jan 2022. OrientDB. https://orientdb.org/. Accessed 10 Apr 2021. Frozza AA, dos Santos Mello R, da Costa FS. An approach for schema extraction of JSON and extended JSON document collections. In: IEEE international conference on information reuse and integration (IRI), 2018. pp. 356–63. https://doi.org/10.1109/IRI.2018.00060. Idera: Data modeling tools for enterprise-scale data architecture. https://www.idera.com/products/er-studio/enterprise-data-modeling. Accessed 2 June 2021. OrientDB: basic concepts. https://orientdb.org/docs/3.0.x/datamodeling/Concepts.html. Accessed 10 Jan 2022. MongoDB. https://www.mongodb.com/products/compass. Accessed 5 Sept 2021. UML. https://www.uml.org/. Accessed 12 Dec 2021. Wang L, Wang J, Wang M, Li Y, Liang Y, Xu D. Using internet search engines to obtain medical information: a comparative study. J Med Internet Res. 2012;14(3):e74. https://doi.org/10.2196/jmir.1943. 1578_CR18 M-A Baazizi (1578_CR5) 2019; 28 1578_CR19 1578_CR10 1578_CR11 1578_CR12 1578_CR13 1578_CR14 1578_CR15 1578_CR16 1578_CR17 M-A Baazizi (1578_CR4) 2017 1578_CR9 1578_CR8 1578_CR21 1578_CR7 1578_CR22 1578_CR6 1578_CR23 1578_CR24 1578_CR25 1578_CR3 1578_CR26 1578_CR2 1578_CR27 1578_CR1 1578_CR20 |
| References_xml | – reference: Laney D. 3D data management: Controlling data volume, velocity and variety. META group research note, 2001. – reference: Istiqamah AN, Wiharja KRS. A schema extraction of document-oriented database for data warehouse. Int J Inf Commun Technol. 2021;7(2):36–47. https://doi.org/10.21108/ijoict.v7i2.584. – reference: Abdelhedi F, Rajhi H, Zurfluh G. Extraction process of the logical schema of a document-oriented NoSQL database. In: Proceedings of the 10th international conference on model-driven engineering and software development, 2022, pp. 61–71. https://doi.org/10.5220/0010899000003119. – reference: OMG. MDA-The architecture of choice for a changing world. https://www.omg.org/mda. Accessed 1 Apr 2021. – reference: Ruiz DS, Morales SF, Molina JG. Inferring versioned schemas from NoSQL databases and its applications. In: International conference on conceptual modeling, 2015, pp. 467–480. https://doi.org/10.1007/978-3-319-25264-3_35. – reference: OrientDB: basic concepts. https://orientdb.org/docs/3.0.x/datamodeling/Concepts.html. Accessed 10 Jan 2022. – reference: MongoDB. https://www.mongodb.com/. Accessed 5 Sept 2021. – reference: Eclipse: Ecore Tools. https://www.eclipse.org/ecoretools/doc/index.html. Accessed 20 Jan 2022. – reference: BaaziziM-AColazzoDGhelliGSartianiCParametric schema inference for massive JSON datasetsVLDB J201928449752110.1007/s00778-018-0532-707561594 – reference: Baazizi M-A, Colazzo D, Ghelli G, Sartiani C. A type system for interactive JSON schema inference. In: 46th international colloquium on automata, languages, and programming (ICALP), 2019. – reference: OMG. https://www.omg.org/. Accessed 1 June 2021. – reference: Fruth M, Dauberschmidt K, Scherzinger SJ. Managing schemas for NoSQL document stores. In: IEEE 37th international conference on data engineering (ICDE), 2021. pp. 2693–6. https://doi.org/10.1109/ICDE51399.2021.00306. – reference: Chillón AH, Hoyos JR, García-Molina J, Ruiz DS. Discovering entity inheritance relationships in document stores. Knowl Based Syst. 2021;230:107394. https://doi.org/10.1016/j.knosys.2021.107394. – reference: BaaziziM-ALahmarHBColazzoDGhelliGSartianiCSchema inference for massive JSON datasetsExtend Database Technol201710.5441/002/edbt.2017.2107561594 – reference: Eclipse: Eclipse Modeling Framework (EMF) https://www.eclipse.org/modeling/emf/. Accessed 10 Jan 2022. – reference: OMG: XML metadata interchange. https://www.omg.org/spec/XMI/. Accessed 20 Jan 2022. – reference: Idera: Data modeling tools for enterprise-scale data architecture. https://www.idera.com/products/er-studio/enterprise-data-modeling. Accessed 2 June 2021. – reference: MongoDB. https://www.mongodb.com/products/compass. Accessed 5 Sept 2021. – reference: OMG: MOF query/view/transformation. https://www.omg.org/spec/QVT/1.3/About-QVT/. Accessed 20 Jan 2022. – reference: ODMS: Operational Database Management Systems. http://www.odbms.org/odmg-standard/. Accessed 10 Apr 2021. – reference: Wang L, Wang J, Wang M, Li Y, Liang Y, Xu D. Using internet search engines to obtain medical information: a comparative study. J Med Internet Res. 2012;14(3):e74. https://doi.org/10.2196/jmir.1943. – reference: UML. https://www.uml.org/. Accessed 12 Dec 2021. – reference: Aftab Z, Iqbal W, Almustafa KM, Bukhari F, Abdullah M. Automatic NoSQL to relational database transformation with dynamic schema mapping. Sci Programm. 2020. https://doi.org/10.1155/2020/8813350. – reference: Wang L, Hassanzadeh O, Zhang S, Shi J, Jiao L, Zou J, Wang C. Schema management for document stores. Proc VLDB Endow. 2015;8:922–33. https://doi.org/10.14778/2777598.2777601. – reference: OrientDB. https://orientdb.org/. Accessed 10 Apr 2021. – reference: Erwin: Erwin Data Modeler. https://www.erwin.com/products/erwin-data-modeler/. Accessed 2 June 2021. – reference: Frozza AA, dos Santos Mello R, da Costa FS. An approach for schema extraction of JSON and extended JSON document collections. In: IEEE international conference on information reuse and integration (IRI), 2018. pp. 356–63. https://doi.org/10.1109/IRI.2018.00060. – ident: 1578_CR3 doi: 10.14778/2777598.2777601 – ident: 1578_CR8 doi: 10.21108/ijoict.v7i2.584 – year: 2017 ident: 1578_CR4 publication-title: Extend Database Technol doi: 10.5441/002/edbt.2017.21 – volume: 28 start-page: 497 issue: 4 year: 2019 ident: 1578_CR5 publication-title: VLDB J doi: 10.1007/s00778-018-0532-7 – ident: 1578_CR2 doi: 10.2196/jmir.1943 – ident: 1578_CR1 doi: 10.5220/0010899000003119 – ident: 1578_CR18 – ident: 1578_CR12 – ident: 1578_CR14 – ident: 1578_CR16 – ident: 1578_CR7 doi: 10.1109/ICDE51399.2021.00306 – ident: 1578_CR22 – ident: 1578_CR20 – ident: 1578_CR9 doi: 10.1155/2020/8813350 – ident: 1578_CR26 – ident: 1578_CR24 – ident: 1578_CR10 doi: 10.1016/j.knosys.2021.107394 – ident: 1578_CR6 doi: 10.1109/IRI.2018.00060 – ident: 1578_CR13 – ident: 1578_CR19 – ident: 1578_CR11 doi: 10.1007/978-3-319-25264-3_35 – ident: 1578_CR17 – ident: 1578_CR15 – ident: 1578_CR27 – ident: 1578_CR21 – ident: 1578_CR23 – ident: 1578_CR25 |
| SSID | ssj0002504465 |
| Score | 2.2206776 |
| Snippet | The prior declaration of a schema when creating a database (DB) is not necessary for most NoSQL systems. This “Schemaless” property is important since it... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 148 |
| SubjectTerms | Advances on Model-Driven Engineering and Software Development Case studies Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Disease Documents Information Systems and Communication Service Inheritances Metamodels Motivation Names Original Research Patients Pattern Recognition and Graphics Queries Semantics Software Software development Software engineering Software Engineering/Programming and Operating Systems User needs Vision |
| SummonAdditionalLinks | – databaseName: Springer Standard Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xOnU4L4poWuSZPmcahjDzKVqfhWsjRFQTfZqsj-eu-6tn6ggr6mCSmX5O53yd3vAA5EGvDEoVsiBlJ4QiXCiwTnCORC32hnpfBtXmxC9XrR7a2-KJLCJmW0e_kkmWvqKtkNNafSHkWfowlD32c6Dwshsc2Qj96_qW5WiJRLyLDIkPl-6CcrNH9HMZAfAOaXN9Hc1HTq__vJFVguoCVrz_bCKsy54RrUy7INrDjF63By-pqNZ_kMbJSyvntE6d5bRm7phFG-CTMMjc8zXRx650SEjLCU9Ub9yzN2YjJDlm8DrjunV8ddryim4NlARlMvUanjTgrJueXaqKTl81D5iZahNakRoUmFj42-1a2Eq8j4qXMBUQckNqIItk2oDUdDtwUscWjutOFWI94bhHyAmIcrGw0MYolAqAa0SuHGtmAap4IXD3HFkZyLKUYxxbmY4mkDDqsxTzOejV977-OaVR2JIrvbPoupDZWSlqhkXloNaJZLGhcHcxIHmijtRaRlA47KJXz__POU23_rvgNLVJg-v6zRTahl42e3C4v2JbufjPfyDfsGdXrj3g priority: 102 providerName: Springer Nature |
| Title | Extraction of Semantic Links from a Document-Oriented NoSQL Database |
| URI | https://link.springer.com/article/10.1007/s42979-022-01578-z https://www.proquest.com/docview/2921274896 https://hal.science/hal-04096794 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6KEXHipVAzSyUG_F6u7au16fqhSCOKCQEqiiXlaO7RVIkEBeqvLrmXE2ASrBhYsPXu9D_rwz4_HMNwDfZJkI53FbInuZ5FI5yXMpBBpyaWS0t5mMbCg2oVqtvNvV7crhNqrCKhcyMQhqN7DkI_-RaOIil7nOft4_cKoaRaerVQmNVViPE7xOh7KKL30sRM8lQzVJVEMJ1zrtVnkzIXsORbHSnMLZUSfiZmr2QjetXlNk5DOz87-T0qCATjbf--lbsFGZnqwxXyvbsOL7n-C4-W88nCc3sEHJOv4Op_rGMtqjjhglnzDDUBNNyIvIz4kVGW1U1hp0fp-xYzM2pAZ34OqkeXl0yqvKCtwmWT7jTpVe-ExmQlihjXJxJFIVOZ2l1pRGpqaUEXZGVsdOqNxEpfcJ8Qg4m1M422dY6w_6_gsw51H3aSOsRuOvl4oeGkBC2bxn0LBIpKpBvJjTwla041T94rZYEiYHHArEoQg4FLMafF_ecz8n3Xhz9AFCtRxIfNmnjbOC-lBC6QwlzjSuwf4Cm6L6S0fFEzA1OFyg-3T59Vfuvv20PfhIVemDp0bvw9p4OPFf4YOdjm9Gwzqs_2q22hf1sFaxbad_sb3o_HkExtXsHw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED9tHRK8MBAgCgMsBE9gkdqOHT8gNGinTithsCH1zbiOIyZBO9puQD_UPiN3adIBEnvbA6-O40S-893vzvcH4IkqhSwimiVqpBVXplA8U1IikEsTb2PQKglVswmT59lwaPfX4KzJhaGwykYmVoK6mATykb8QlmqRq8zqV8ffOHWNotvVpoXGki324s_vaLLNXu52kb5PhdjpHb7p87qrAA9CZwtemDLKqJWWMkjrTdFJZGqSwuo0-NKr1JcqwcEk2E4hTeaTMkZBOfRFyCiUC9ddhw0llU5bsPG6l-9_WHl1qCCYqvpXouIT3Np0WGfqVPl6KPyN5RRAj1oYzbfFH9pw_TPFYv4GdP-6m61U3s7m_7ZZN-B6Da7Z9vI03IS1OL4F3d6P-XSZvsEmJTuIX5GZjgIjK3zGKL2GeYa69oT8pPwd1X1GFM7yycH7Aev6uSdFfxs-XsqP34HWeDKOd4EVEbW79TJYhLejVI4Q4kkTspFH6CSUaUOnoaELdWF16u_xxa1KQld0d0h3V9HdLdrwbPXO8bKsyIWzHyNrrCZSRfD-9sDRGMpgq1GmnnbasNXwgqvl0MydM0IbnjfcdP7435-8d_Fqj-Bq__DtwA128737cE0g8qv8UnYLWvPpSXwAV8Lp_Gg2fVifEAafLpvPfgGbOUc0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4NNk28jMFAdGPDQryxiDR27PgRrVRMqwpbYeLNcm1HVIIWtQFN_fW7S5OMIZiE9urYcnRn-76z774D2BN5wn1At0QMpYiE8iLKBOcI5NLY6uCkiF1ZbEL1-9nFhT69l8VfRrvXT5KLnAZiaRoXBzc-P2gS3_AUVTqiSHQ0Z-gHzZfgpUBPhoK6fgx-NrcsRNAlZFplyzw-9C-LtHRJ8ZD3wOaD99HS7HRX__-H38KbCnKyw8UaWYMXYbwOq3U5B1bt7nfQOfpVTBd5DmySs0G4RqmPHCN3dcYoD4VZhkbpli4UoxMiSEa4yvqTwfce69jCkkXcgPPu0dmX46gqshC5RGbzyKs88CCF5NxxbZVvxzxVsdcydTa3IrW5iLExdrrtucpsnIeQEKWAdxlFtm3C8ngyDlvAfEAzqC13GnHgMOVDxEJcuWxoEWMkQrWgXQvauIqBnAphXJmGO7kUk0ExmVJMZt6C_WbMzYJ_45-9d1F_TUeizj4-7Blqw8NKSzx87tot2K7Va6oNOzOJJqp7kWnZgs-1Ov98fnrK98_rvgOvTztd0_va__YBVqh2fXmfo7dhuZjeho_wyt0Vo9n0U7mOfwNjmO-m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+Semantic+Links+from+a+Document-Oriented+NoSQL+Database&rft.jtitle=SN+computer+science&rft.au=Abdelhedi%2C+Fatma&rft.au=Rajhi%2C+Hela&rft.au=Zurfluh%2C+Gilles&rft.date=2023-01-09&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=2&rft.spage=148&rft_id=info:doi/10.1007%2Fs42979-022-01578-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |