A Fuzzy C-Means Clustering-Based Hybrid Multivariate Time Series Prediction Framework With Feature Selection
Multivariate time series prediction (MTSP) stands as a significant and challenging frontier in the data science domain, garnering considerable interest among researchers. Extreme learning machine (ELM) has emerged as a popular machine learning algorithm capable of effectively addressing MTSP challen...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 32; číslo 8; s. 4270 - 4284 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2024
|
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multivariate time series prediction (MTSP) stands as a significant and challenging frontier in the data science domain, garnering considerable interest among researchers. Extreme learning machine (ELM) has emerged as a popular machine learning algorithm capable of effectively addressing MTSP challenges. However, the high-dimensional and nonlinear nature of prediction information within Big Data contexts exposes certain limitations in ELM's prediction performance. To address this issue, this article proposes a hybrid MTSP framework based on fuzzy C-means (FCM) clustering coupled with feature selection. The framework begins with a possibility distribution (PD)-based feature selection algorithm designed to evaluate information quality and describe information uncertainty via multisource information fusion. Subsequently, a robust FCM algorithm is developed, optimizing the clustering process by incorporating feature differences and neighbor information of samples while employing a multimetric hybrid strategy to determine cluster numbers. Additionally, an enhanced dual-kernel ELM (EDKELM) network is established to enhance prediction capabilities. The resulting hybrid MTSP framework with feature selection excels in autonomously discovering intrinsic feature-model connections, exhibiting superior prediction performance, and demonstrating excellent generalization ability. Experimental results using real-world datasets showcase the competitiveness of the proposed framework over existing machine learning prediction models in resolving multivariate prediction challenges. |
|---|---|
| ISSN: | 1063-6706 1941-0034 |
| DOI: | 10.1109/TFUZZ.2024.3393622 |