Method of Y-Mappings for Study of Multiparameter Nonlinear Eigenvalue Problems
For the study of nonlinear multiparameter eigenvalue problems, a method of Y -mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept...
Saved in:
| Published in: | Computational mathematics and mathematical physics Vol. 62; no. 1; pp. 150 - 156 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Moscow
Pleiades Publishing
01.01.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0965-5425, 1555-6662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | For the study of nonlinear multiparameter eigenvalue problems, a method of
Y
-mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept of a
Y
-mapping, which puts into correspondence to the potential a special nonlinear function of several arguments: eigenfunctions of a linear problem, is defined. The multiparameter nonlinear eigenvalue problem is reduced to the problem of finding fixed points of
Y
-mappings. Using the Schauder theorem, the existence of an infinite set of fixed points of
Y
-mappings and, accordingly, solutions in a nonlinear multiparameter eigenvalue problem for sufficiently small values of the nonlinearity coefficient is proved. |
|---|---|
| AbstractList | For the study of nonlinear multiparameter eigenvalue problems, a method of
Y
-mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept of a
Y
-mapping, which puts into correspondence to the potential a special nonlinear function of several arguments: eigenfunctions of a linear problem, is defined. The multiparameter nonlinear eigenvalue problem is reduced to the problem of finding fixed points of
Y
-mappings. Using the Schauder theorem, the existence of an infinite set of fixed points of
Y
-mappings and, accordingly, solutions in a nonlinear multiparameter eigenvalue problem for sufficiently small values of the nonlinearity coefficient is proved. For the study of nonlinear multiparameter eigenvalue problems, a method of Y-mappings, making it possible to prove the existence of solutions, is proposed. The problem of propagation of coupled polarized electromagnetic waves in a nonlinear layer with saturating nonlinearity is studied. The concept of a Y-mapping, which puts into correspondence to the potential a special nonlinear function of several arguments: eigenfunctions of a linear problem, is defined. The multiparameter nonlinear eigenvalue problem is reduced to the problem of finding fixed points of Y-mappings. Using the Schauder theorem, the existence of an infinite set of fixed points of Y-mappings and, accordingly, solutions in a nonlinear multiparameter eigenvalue problem for sufficiently small values of the nonlinearity coefficient is proved. |
| Author | Smirnov, Yu. G. |
| Author_xml | – sequence: 1 givenname: Yu. G. surname: Smirnov fullname: Smirnov, Yu. G. email: smirnovyug@mail.ru organization: Penza State University |
| BookMark | eNp1kFFLwzAUhYNMcJv-AN8CPldv0iZLH2VMJ2xTmD74VNL2ZnZ0SU1aYf_elgk-iE8XzvnOuXAmZGSdRUKuGdwyFid3W0ilEAkXnAMDxuCMjJkQIpJS8hEZD3Y0-BdkEsIegMlUxWOyWWP74UrqDH2P1rppKrsL1DhPt21XHgd93dVt1WivD9iipxtn68qi9nRR7dB-6bpD-uJdXuMhXJJzo-uAVz93St4eFq_zZbR6fnya36-igkvVRiY2MNMgpU50mhuTGFmoJMZYlyBBlwZ7HxQkAoGDyhmTgjM1y5koC6HieEpuTr2Nd58dhjbbu87b_mXGJVczJXkqeoqdqMK7EDyarPHVQftjxiAbZsv-zNZn-CkTetbu0P82_x_6BvB8b40 |
| Cites_doi | 10.1070/SM8741 10.1016/0022-1236(73)90051-7 10.1007/978-3-642-53393-8 10.1070/RM1996v051n03ABEH002911 10.1063/1.4799276 10.1007/978-3-0348-5485-6 10.1063/1.4769885 10.14760/OWP-2014-15 10.1080/09500340.2019.1695004 10.1063/1.4817388 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2022. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2022, Vol. 62, No. 1, pp. 150–156. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2022, Vol. 62, No. 1, pp. 159–165. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2022. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2022, Vol. 62, No. 1, pp. 150–156. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2022, Vol. 62, No. 1, pp. 159–165. |
| DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1134/S0965542522010110 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1555-6662 |
| EndPage | 156 |
| ExternalDocumentID | 10_1134_S0965542522010110 |
| GroupedDBID | --K -5D -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 1B1 1N0 29F 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 6J9 6NX 7WY 88I 8FE 8FG 8FH 8FL 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ H~9 I-F IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KOV L6V LK5 LLZTM M0C M0N M2P M41 M4Y M7R M7S MA- MK~ N2Q NB0 NPVJJ NQ- NQJWS NU0 O9- O93 O9J P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RIG RNS ROL RPZ RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC TUS UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 XPP XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM PHGZT PQGLB 7SC 7TB 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c268t-f3f07a066a4a9bff4f6c843e3ad060adfef0708045e0208b11652187b15dc5833 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755152200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0965-5425 |
| IngestDate | Tue Oct 07 13:40:53 EDT 2025 Sat Nov 29 05:16:10 EST 2025 Fri Feb 21 02:47:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | coupled polarized electromagnetic waves multiparameter nonlinear eigenvalue problem Sturm–Liouville problem fixed point of mapping |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-f3f07a066a4a9bff4f6c843e3ad060adfef0708045e0208b11652187b15dc5833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2628786295 |
| PQPubID | 60276 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2628786295 crossref_primary_10_1134_S0965542522010110 springer_journals_10_1134_S0965542522010110 |
| PublicationCentury | 2000 |
| PublicationDate | 20220100 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Computational mathematics and mathematical physics |
| PublicationTitleAbbrev | Comput. Math. and Math. Phys |
| PublicationYear | 2022 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Vainberg (CR9) 1956 Vinokurov, Sadovnichii (CR13) 2003; 68 CR4 CR3 CR6 Angermann, Shestopalov, Smirnov, Yatsyk (CR7) 2018 Smirnov, Valovik (CR8) 2017; 294 CR5 CR18 CR17 CR16 CR15 Adams (CR21) 1975 Kupriyanova, Smirnov (CR2) 2004; 44 Atkinson, Mingarelli (CR11) 2011 CR20 Egorov, Kondrat’ev (CR12) 1996; 51 Ambrosetti, Rabinowitz (CR10) 1973; 14 Vladimirov (CR14) 2017; 208 Trenogin (CR22) 1993 Schurman, Smirnov, Shestopalov (CR1) 2005; 71 Kato (CR19) 1966 cr-split#-1612_CR17.1 cr-split#-1612_CR17.2 H. W. Schurman (1612_CR1) 2005; 71 M. M. Vainberg (1612_CR9) 1956 S. N. Kupriyanova (1612_CR2) 2004; 44 F. V. Atkinson (1612_CR11) 2011 T. Kato (1612_CR19) 1966 1612_CR20 Y. G. Smirnov (1612_CR8) 2017; 294 V. A. Vinokurov (1612_CR13) 2003; 68 1612_CR4 V. A. Trenogin (1612_CR22) 1993 1612_CR5 A. A. Vladimirov (1612_CR14) 2017; 208 1612_CR18 1612_CR6 L. Angermann (1612_CR7) 2018 1612_CR15 1612_CR16 Yu. V. Egorov (1612_CR12) 1996; 51 R. Adams (1612_CR21) 1975 1612_CR3 A. Ambrosetti (1612_CR10) 1973; 14 |
| References_xml | – volume: 208 start-page: 1298 year: 2017 end-page: 1311 ident: CR14 article-title: Majorants for eigenvalues of Sturm–Liouville problems with potentials lying in balls of weighted spaces publication-title: Sb. Math. doi: 10.1070/SM8741 – ident: CR18 – year: 2011 ident: CR11 – ident: CR3 – ident: CR4 – ident: CR15 – ident: CR16 – year: 1975 ident: CR21 – ident: CR17 – volume: 14 start-page: 349 year: 1973 end-page: 381 ident: CR10 article-title: Dual variational methods in critical point theory and applications publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(73)90051-7 – volume: 294 start-page: 146 year: 2017 end-page: 156 ident: CR8 article-title: Nonlinear coupled wave propagation in an -dimensional layer publication-title: Appl. Math. Comput. – year: 1966 ident: CR19 doi: 10.1007/978-3-642-53393-8 – volume: 44 start-page: 1762 year: 2004 end-page: 1772 ident: CR2 article-title: Propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium publication-title: Comput. Math. Math. Phys. – ident: CR6 – year: 2018 ident: CR7 – ident: CR5 – volume: 68 start-page: 247 year: 2003 end-page: 252 ident: CR13 article-title: On the range of variation of an eigenvalue when the potential is varied publication-title: Dokl. Math. – volume: 51 start-page: 439 year: 1996 end-page: 508 ident: CR12 article-title: Estimates for the first eigenvalue in some Sturm–Liouville problems publication-title: Russ. Math. Surv. doi: 10.1070/RM1996v051n03ABEH002911 – year: 1993 ident: CR22 – volume: 71 start-page: 016614-1 year: 2005 end-page: 016614-10 ident: CR1 article-title: “Propagation of TE waves in cylindrical nonlinear dielectric waveguides,” Phys. Rev. E Stat publication-title: Nonlinear Soft Matter Phys. – year: 1956 ident: CR9 – ident: CR20 – volume: 14 start-page: 349 year: 1973 ident: 1612_CR10 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(73)90051-7 – volume: 208 start-page: 1298 year: 2017 ident: 1612_CR14 publication-title: Sb. Math. doi: 10.1070/SM8741 – volume: 294 start-page: 146 year: 2017 ident: 1612_CR8 publication-title: Appl. Math. Comput. – ident: 1612_CR20 – volume-title: Sobolev Spaces year: 1975 ident: 1612_CR21 – ident: 1612_CR5 doi: 10.1063/1.4799276 – ident: 1612_CR18 doi: 10.1007/978-3-0348-5485-6 – volume-title: Nonlinear and Inverse Problems in Electromagnetics year: 2018 ident: 1612_CR7 – volume-title: Variational Methods for Analysis of Nonlinear Operators year: 1956 ident: 1612_CR9 – volume: 68 start-page: 247 year: 2003 ident: 1612_CR13 publication-title: Dokl. Math. – ident: 1612_CR4 doi: 10.1063/1.4769885 – ident: 1612_CR16 – ident: 1612_CR6 doi: 10.14760/OWP-2014-15 – volume-title: Functional Analysis year: 1993 ident: 1612_CR22 – ident: #cr-split#-1612_CR17.1 – ident: 1612_CR15 doi: 10.1080/09500340.2019.1695004 – volume: 44 start-page: 1762 year: 2004 ident: 1612_CR2 publication-title: Comput. Math. Math. Phys. – ident: #cr-split#-1612_CR17.2 – ident: 1612_CR3 doi: 10.1063/1.4817388 – volume-title: Perturbation Theory for Linear Operators year: 1966 ident: 1612_CR19 doi: 10.1007/978-3-642-53393-8 – volume: 71 start-page: 016614-1 year: 2005 ident: 1612_CR1 publication-title: Nonlinear Soft Matter Phys. – volume-title: Multiparameter Eigenvalue Problems: Sturm–Liouville Theory year: 2011 ident: 1612_CR11 – volume: 51 start-page: 439 year: 1996 ident: 1612_CR12 publication-title: Russ. Math. Surv. doi: 10.1070/RM1996v051n03ABEH002911 |
| SSID | ssj0016983 |
| Score | 2.211722 |
| Snippet | For the study of nonlinear multiparameter eigenvalue problems, a method of
Y
-mappings, making it possible to prove the existence of solutions, is proposed.... For the study of nonlinear multiparameter eigenvalue problems, a method of Y-mappings, making it possible to prove the existence of solutions, is proposed. The... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 150 |
| SubjectTerms | Computational Mathematics and Numerical Analysis Eigenvalues Eigenvectors Electromagnetic radiation Existence theorems Fixed points (mathematics) Mathematics Mathematics and Statistics Nonlinearity Partial Differential Equations Wave propagation |
| Title | Method of Y-Mappings for Study of Multiparameter Nonlinear Eigenvalue Problems |
| URI | https://link.springer.com/article/10.1134/S0965542522010110 https://www.proquest.com/docview/2628786295 |
| Volume | 62 |
| WOSCitedRecordID | wos000755152200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1555-6662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016983 issn: 0965-5425 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2hwgADhQKiUJAHJpBFmjhOPCLUiqVRRQGVKXISGzHQVnVB4t_jc5JWfA2wxh-KznbuXc73HsBZyIuIMZ3TSApGGS84zZjWVOTCK5QNoENZOLGJKEni8VgMqzpuU992r1OS7ktd6o6wyxHylIR2i_mYwO1iWdW69XYx6jXcjh6WqQMuSu5N25ti9yqV-eMUn53RCmF-SYo6X9Nv_ustd2C7gpbkqtwLu7CmJi1oVjCTVIfYtGBrsKRqNXuQDJyGNJlq8kgHEukangyxUJbgFcN3fO6KdJEj_AXvzpCkZNeQc9JDKk-kC1dkWArTmH247_furm9oJbJAc5_HC6oD7UXSAg_JpMi0ZprnMQtUIAuPe7LQyrZbWMlChXqeGdL1WFgQZd2wyLFk6wAak-lEHQKxIwJPelkkkXZQBZn2465da6kDEUo_bsN5be10VnJppC4GCVj6zW5t6NTrkVbHyqQ-twGejcFE2IaL2v6r5l8nO_pT72PY9LHIwf1o6UBjMX9VJ7CRvy2ezfzU7bYP5ajMBQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQQAIODAaIwYAcOIEiujZNmyNCm4ZYq4kNNE5V2iaIAxtaBxL_nrgPJl4HuDYPVY5Tf67tzwAnLk89xnRCPSkYZTzlNGZaU5EIK1XGgXZlmjeb8MLQH4_FoKzjzqps9yokmX-pi74j7HyIPCWuUTEbA7htLKtaZsZgIWH-zfDuI3TARcG9aWZTnF6GMn_c4rMxWiDML0HR3NZ06_96y03YKKEluSh0YQuW1KQB9RJmkvISZw1YDz6oWrNtCIO8hzSZanJPA4l0DQ8ZMVCWYIrhGz7Pi3SRI_wJc2dIWLBryBnpIJUn0oUrMiga02Q7cNvtjC57tGyyQBOb-3OqHW150gAPyaSItWaaJz5zlCNTi1sy1cqMG1jJXIX9PGOk6zGwwIvbbppgydYu1CbTidoDYlY4lrRiTyLtoHJibfttc9ZSO8KVtt-E00ra0XPBpRHlPojDom9ya0KrOo-ovFZZZHPj4BkfTLhNOKvkvxj-dbP9P80-htXeKOhH_avw-gDWbCx4yH-6tKA2n72oQ1hJXueP2ewo17x3f_vO6Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7IFNGD06k4nZqDJyWsa9O0PYpuKLoymMo8lbRNxIPbWKvgf29em2746yBem9dQkhfyvb73vg_gxOWpx5hKqCcCRhlPOY2ZUjRIAiuVOoB2RVqITXhh6I9GwcDonGZVtXuVkix7GpClaZy3p6kyGiSsPUTOEle7m43J3A62WC0zrKPHcH34ME8j8KDk4dTWFM1NWvPHKT5fTAu0-SVBWtw7vfq_v3gTNgzkJOelj2zBkhw3oG7gJzGHO2vAen9O4ZptQ9gvtKXJRJFH2hdI4_CUEQ1xCZYevuPzonkXucNfsKaGhCXrhpiRLlJ8Io24JINSsCbbgfte9-7iihrxBZrY3M-pcpTlCQ1IBBNBrBRTPPGZIx2RWtwSqZJ6XMNN5krU-YyRxkfDBS_uuGmCrVy7UBtPxnIPiH7DsYQVewLpCKUTK9vvaB8QyglcYftNOK1WPpqWHBtREZs4LPq2bk1oVXsTmeOWRTbXgZ-OzQK3CWfVXiyGf51s_0_Wx7A6uOxFt9fhzQGs2dgHUfyLaUEtn73KQ1hJ3vLnbHZUOOEHWorXzQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+of+Y-Mappings+for+Study+of+Multiparameter+Nonlinear+Eigenvalue+Problems&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Smirnov%2C+Yu.+G.&rft.date=2022-01-01&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=62&rft.issue=1&rft.spage=150&rft.epage=156&rft_id=info:doi/10.1134%2FS0965542522010110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0965542522010110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon |