A Novel GA-CP Method for Fixed-Type Multi-Robot Collaborative Scheduling in Flexible Job Shop

With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In the flexible job shop environment of automotive stamping, achieving smooth operation and efficient manufacturing of production lines hinges on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automation science and engineering Ročník 22; s. 13531 - 13543
Hlavní autoři: Huang, Jin, Li, Xinyu, Gao, Liang
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:1545-5955, 1558-3783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In the flexible job shop environment of automotive stamping, achieving smooth operation and efficient manufacturing of production lines hinges on solving the critical issues of multi-robot task allocation and scheduling. However, for such fixed-type multi-robot collaboration problems, robots are constrained by specific areas or predetermined trajectories, and processing times can only be adjusted by varying the number of available robots. Therefore, the scheduling problem in multi-robot collaborative flexible job shop problems (MCFJSP) is divided into two sub-problems: FJSP with controllable processing times and multi-robot collaborative task balancing. To address these, we propose three distinct methods: mixed integer linear programming (MILP), constraint programming (CP), and a hybrid genetic algorithm-constraint programming (GA-CP). Finally, a set of 48 benchmark cases and two real-world cases are developed to test these methods. Comparative experiments demonstrate that the MILP model is superior in small-scale cases, while the GA-CP model exhibits the best overall performance in medium to large-scale cases. Furthermore, through comparisons with two advanced algorithms, the effectiveness and superiority of the GA-CP method in addressing real-world cases are confirmed.[8pt]Note to Practitioners-In modern manufacturing environments, particularly in industries like automotive manufacturing, multiple robots working together on complex tasks are increasingly common. This paper addresses the practical challenge of effectively scheduling these robots to maximize efficiency while reducing the number of robots assigned to each task. This study introduces and compares different methods, including MILP, CP, and GA-CP methods, that can help practitioners determine the best way to allocate tasks among robots and schedule them efficiently. For example, in small-scale tasks, the MILP model can quickly provide the best solution. However, as the complexity and scale of the task increase, the GA-CP method becomes more practical, offering high-quality solutions within a reasonable timeframe. The study provides actionable insights that can be applied directly to real-world production scenarios, helping practitioners in industries like automotive stamping to maximize job shop productivity while reducing energy consumption losses in robot processing.
AbstractList With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In the flexible job shop environment of automotive stamping, achieving smooth operation and efficient manufacturing of production lines hinges on solving the critical issues of multi-robot task allocation and scheduling. However, for such fixed-type multi-robot collaboration problems, robots are constrained by specific areas or predetermined trajectories, and processing times can only be adjusted by varying the number of available robots. Therefore, the scheduling problem in multi-robot collaborative flexible job shop problems (MCFJSP) is divided into two sub-problems: FJSP with controllable processing times and multi-robot collaborative task balancing. To address these, we propose three distinct methods: mixed integer linear programming (MILP), constraint programming (CP), and a hybrid genetic algorithm-constraint programming (GA-CP). Finally, a set of 48 benchmark cases and two real-world cases are developed to test these methods. Comparative experiments demonstrate that the MILP model is superior in small-scale cases, while the GA-CP model exhibits the best overall performance in medium to large-scale cases. Furthermore, through comparisons with two advanced algorithms, the effectiveness and superiority of the GA-CP method in addressing real-world cases are confirmed.[8pt]Note to Practitioners-In modern manufacturing environments, particularly in industries like automotive manufacturing, multiple robots working together on complex tasks are increasingly common. This paper addresses the practical challenge of effectively scheduling these robots to maximize efficiency while reducing the number of robots assigned to each task. This study introduces and compares different methods, including MILP, CP, and GA-CP methods, that can help practitioners determine the best way to allocate tasks among robots and schedule them efficiently. For example, in small-scale tasks, the MILP model can quickly provide the best solution. However, as the complexity and scale of the task increase, the GA-CP method becomes more practical, offering high-quality solutions within a reasonable timeframe. The study provides actionable insights that can be applied directly to real-world production scenarios, helping practitioners in industries like automotive stamping to maximize job shop productivity while reducing energy consumption losses in robot processing.
Author Gao, Liang
Huang, Jin
Li, Xinyu
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0009-0009-9794-1045
  surname: Huang
  fullname: Huang, Jin
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Xinyu
  orcidid: 0000-0002-3730-0360
  surname: Li
  fullname: Li, Xinyu
  email: lixinyu@mail.hust.edu.cn
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-1485-0722
  surname: Gao
  fullname: Gao, Liang
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kEFPwjAYhhuDiYD-ABMP_QPFbm3X7rgQQA2oETyapWu_SU1dyTYI_HtZ4GA8ePrew_e8efMMUK8KFSB0G9FRFNH0fpUtJ6OYxmLEhOA0Si9QPxJCESYV63WZCyJSIa7QoGm-KI25SmkffWT4OezA41lGxq94Ae06WFyGGk_dHixZHTaAF1vfOvIWitDicfBeF6HWrdsBXpo12K131Sd2FZ562LvCA34KBV6uw-YaXZbaN3BzvkP0Pp2sxg9k_jJ7HGdzYuJEtQQspdIWpRSWglQWlEoE5zYGq2lZamNZAolVXDHGreGJFMZoCXFSWki1ZkMkT72mDk1TQ5kb1x4XhqqttfN5RPPOUt5ZyjtL-dnSkYz-kJvafev68C9zd2IcAPz6T5mUnLEfg151sQ
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_jii_2025_100917
crossref_primary_10_1016_j_eij_2025_100759
Cites_doi 10.1016/j.cor.2016.04.006
10.1007/s11431-022-2096-6
10.1016/j.ijpe.2016.01.016
10.1109/tase.2024.3356255
10.1007/978-3-030-27535-8_47
10.1177/0278364913496484
10.1177/0278364904045564
10.1007/s00170-023-11750-1
10.1109/LRA.2021.3057011
10.1007/s10845-021-01803-1
10.1093/nsr/nwad042
10.1016/j.cirp.2020.04.030
10.1109/MRA.2019.2943395
10.1016/j.rcim.2022.102321
10.1080/00207543.2022.2154404
10.1016/j.rcim.2021.102140
10.1145/3150225
10.1016/j.rcim.2014.12.011
10.1016/j.eswa.2022.117796
10.1080/00207543.2013.827806
10.1016/j.rcim.2023.102620
10.1016/j.addma.2019.100906
10.1016/j.cie.2016.12.020
10.1109/IROS45743.2020.9341652
10.1016/j.swevo.2023.101374
10.1109/TASE.2018.2789820
10.1016/j.rcim.2018.12.020
10.1080/00207543.2018.1470695
10.1109/TRO.2020.3043688
10.1016/j.robot.2023.104492
10.1016/j.rcim.2016.08.006
10.1109/SMC42975.2020.9283215
10.1109/LRA.2021.3056069
10.1109/TRO.2018.2795034
10.1016/j.robot.2022.104289
10.14429/dsj.68.11187
10.1080/00207543.2021.1989077
10.1016/j.jmsy.2023.11.010
10.1109/TASE.2013.2274517
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3554019
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 13543
ExternalDocumentID 10_1109_TASE_2025_3554019
10937743
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52188102
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2024BRA004
  funderid: 10.13039/501100012226
– fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2024C01139
  funderid: 10.13039/100022963
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-ed007dbf75d0e78de886544d2eda0ffacd36e6d848334dc4675cca7e26fde9aa3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470389400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 08:02:06 EST 2025
Tue Nov 18 21:20:28 EST 2025
Wed Aug 27 02:03:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-ed007dbf75d0e78de886544d2eda0ffacd36e6d848334dc4675cca7e26fde9aa3
ORCID 0000-0002-1485-0722
0009-0009-9794-1045
0000-0002-3730-0360
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TASE_2025_3554019
ieee_primary_10937743
crossref_primary_10_1109_TASE_2025_3554019
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Rajmohan (ref14) 2018; 68
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref36
  doi: 10.1016/j.cor.2016.04.006
– ident: ref18
  doi: 10.1007/s11431-022-2096-6
– ident: ref33
  doi: 10.1016/j.ijpe.2016.01.016
– ident: ref17
  doi: 10.1109/tase.2024.3356255
– ident: ref27
  doi: 10.1007/978-3-030-27535-8_47
– ident: ref34
  doi: 10.1177/0278364913496484
– ident: ref28
  doi: 10.1177/0278364904045564
– ident: ref22
  doi: 10.1007/s00170-023-11750-1
– ident: ref5
  doi: 10.1109/LRA.2021.3057011
– ident: ref23
  doi: 10.1007/s10845-021-01803-1
– ident: ref4
  doi: 10.1093/nsr/nwad042
– ident: ref32
  doi: 10.1016/j.cirp.2020.04.030
– ident: ref24
  doi: 10.1109/MRA.2019.2943395
– ident: ref2
  doi: 10.1016/j.rcim.2022.102321
– ident: ref38
  doi: 10.1080/00207543.2022.2154404
– ident: ref1
  doi: 10.1016/j.rcim.2021.102140
– ident: ref20
  doi: 10.1145/3150225
– ident: ref15
  doi: 10.1016/j.rcim.2014.12.011
– ident: ref30
  doi: 10.1016/j.eswa.2022.117796
– ident: ref37
  doi: 10.1080/00207543.2013.827806
– ident: ref11
  doi: 10.1016/j.rcim.2023.102620
– ident: ref21
  doi: 10.1016/j.addma.2019.100906
– ident: ref39
  doi: 10.1016/j.cie.2016.12.020
– ident: ref13
  doi: 10.1109/IROS45743.2020.9341652
– ident: ref35
  doi: 10.1016/j.swevo.2023.101374
– ident: ref3
  doi: 10.1109/TASE.2018.2789820
– ident: ref16
  doi: 10.1016/j.rcim.2018.12.020
– ident: ref26
  doi: 10.1080/00207543.2018.1470695
– ident: ref7
  doi: 10.1109/TRO.2020.3043688
– ident: ref10
  doi: 10.1016/j.robot.2023.104492
– ident: ref8
  doi: 10.1016/j.rcim.2016.08.006
– ident: ref12
  doi: 10.1109/SMC42975.2020.9283215
– ident: ref31
  doi: 10.1109/LRA.2021.3056069
– ident: ref6
  doi: 10.1109/TRO.2018.2795034
– ident: ref9
  doi: 10.1016/j.robot.2022.104289
– volume: 68
  start-page: 175
  issue: 2
  year: 2018
  ident: ref14
  article-title: Multi-objective optimisation of multi-robot task allocation with precedence constraints
  publication-title: Defence Sci. J.
  doi: 10.14429/dsj.68.11187
– ident: ref25
  doi: 10.1080/00207543.2021.1989077
– ident: ref29
  doi: 10.1016/j.jmsy.2023.11.010
– ident: ref19
  doi: 10.1109/TASE.2013.2274517
SSID ssj0024890
Score 2.4244528
Snippet With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 13531
SubjectTerms Assembly
Collaboration
constraint programming
Fixed-type multi-robot collaborative problem
genetic algorithm-constraint programming
Job shop scheduling
Manufacturing
mixed integer linear programming
Optimal scheduling
Process control
Resource management
Robot kinematics
Robots
Service robots
Title A Novel GA-CP Method for Fixed-Type Multi-Robot Collaborative Scheduling in Flexible Job Shop
URI https://ieeexplore.ieee.org/document/10937743
Volume 22
WOSCitedRecordID wos001470389400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBZ8X6IgdPQtruI7vJsZRWES3FVuhFlk1mVgulW2pb_Pkm2dX2ouBtWTLLki9kHsl8HyE3gednUpjdDz3lszCLPCa19pinA4gViEiljsT1Me71xGgk-2WzuuuFQUR3-Qzr9tGd5UOul7ZU1rDURyZcCbbJdhzHRbPWmlhPuIKKDQkYl5yXR5jGpjFsDTomFfR53XpXx6qz4YQ2VFWcU-ke_PN3Dsl-GT3SVgH3EdnC6THZ2-AUPCGvLdrLVzihdy3W7tMnpxBNTWhKu-NPBGYTT-rabtlzrvIFba9XwgrpwIAI9nb6Gx1PadfSZaoJ0odc0cF7PquSl25n2L5npYYC034kFgzBBAGgsphDE2MBKETEwxB8hLSZZamGIMIIRCiCIARttk1uMI3RjzJAmabBKalM8ymeEcqtYKxU3HxAhsA9oUL0MtRSmzQrQ6iR5vekJrokGLc6F5PEJRpNmVgcEotDUuJQI7c_JrOCXeOvwVWLwcbAYvrPf3l_QXateVEvuSSVxXyJV2RHrxbjj_m1WzxfZK_BHw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBfXgW6zPHDwJ0e4ju8mxlNaqtYit4EWWTWZWC6UrtS3-fJPsqr0oeAshCWG-kHkk8w0hZ4HnZ1KY2w895bMwizwmtfaYpwOIFYhIpY7EtRN3u-LpSd6XyeouFwYR3eczvLBN95YPuZ7aUNmlpT4y5kqwSJZ4GPpeka71Q60nXEjFGgWMS87LR0wz67Jf7zWNM-jzC6tfHa_OnBqaq6vi1Epr458b2iTrpf1I6wXgW2QBR9tkbY5VcIc812k3n-GQXtVZ457euRrR1BintDX4QGDW9aQu8ZY95Cqf0MbPWZgh7RkYwf5Pf6GDEW1Zwkw1RHqTK9p7zd92yWOr2W-0WVlFgWk_EhOGYMwAUFnMoYaxABQiMtIDHyGtZVmqIYgwAhGKIAhBm4uTG1Rj9KMMUKZpsEcqo3yE-4RyWzJWKm4WkCFwT6gQvQy11MbRyhCqpPYl1ESXFOO20sUwca5GTSYWh8TikJQ4VMn595S3gl_jr8G7FoO5gYX4D37pPyUr7f5dJ-lcd28PyapdqoieHJHKZDzFY7KsZ5PB-_jEHaRPnZTEZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+GA-CP+Method+for+Fixed-Type+Multi-Robot+Collaborative+Scheduling+in+Flexible+Job+Shop&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Huang%2C+Jin&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=13531&rft.epage=13543&rft_id=info:doi/10.1109%2FTASE.2025.3554019&rft.externalDocID=10937743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon