A Novel GA-CP Method for Fixed-Type Multi-Robot Collaborative Scheduling in Flexible Job Shop
With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In the flexible job shop environment of automotive stamping, achieving smooth operation and efficient manufacturing of production lines hinges on...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 22; s. 13531 - 13543 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2025
|
| Témata: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In the flexible job shop environment of automotive stamping, achieving smooth operation and efficient manufacturing of production lines hinges on solving the critical issues of multi-robot task allocation and scheduling. However, for such fixed-type multi-robot collaboration problems, robots are constrained by specific areas or predetermined trajectories, and processing times can only be adjusted by varying the number of available robots. Therefore, the scheduling problem in multi-robot collaborative flexible job shop problems (MCFJSP) is divided into two sub-problems: FJSP with controllable processing times and multi-robot collaborative task balancing. To address these, we propose three distinct methods: mixed integer linear programming (MILP), constraint programming (CP), and a hybrid genetic algorithm-constraint programming (GA-CP). Finally, a set of 48 benchmark cases and two real-world cases are developed to test these methods. Comparative experiments demonstrate that the MILP model is superior in small-scale cases, while the GA-CP model exhibits the best overall performance in medium to large-scale cases. Furthermore, through comparisons with two advanced algorithms, the effectiveness and superiority of the GA-CP method in addressing real-world cases are confirmed.[8pt]Note to Practitioners-In modern manufacturing environments, particularly in industries like automotive manufacturing, multiple robots working together on complex tasks are increasingly common. This paper addresses the practical challenge of effectively scheduling these robots to maximize efficiency while reducing the number of robots assigned to each task. This study introduces and compares different methods, including MILP, CP, and GA-CP methods, that can help practitioners determine the best way to allocate tasks among robots and schedule them efficiently. For example, in small-scale tasks, the MILP model can quickly provide the best solution. However, as the complexity and scale of the task increase, the GA-CP method becomes more practical, offering high-quality solutions within a reasonable timeframe. The study provides actionable insights that can be applied directly to real-world production scenarios, helping practitioners in industries like automotive stamping to maximize job shop productivity while reducing energy consumption losses in robot processing. |
|---|---|
| AbstractList | With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In the flexible job shop environment of automotive stamping, achieving smooth operation and efficient manufacturing of production lines hinges on solving the critical issues of multi-robot task allocation and scheduling. However, for such fixed-type multi-robot collaboration problems, robots are constrained by specific areas or predetermined trajectories, and processing times can only be adjusted by varying the number of available robots. Therefore, the scheduling problem in multi-robot collaborative flexible job shop problems (MCFJSP) is divided into two sub-problems: FJSP with controllable processing times and multi-robot collaborative task balancing. To address these, we propose three distinct methods: mixed integer linear programming (MILP), constraint programming (CP), and a hybrid genetic algorithm-constraint programming (GA-CP). Finally, a set of 48 benchmark cases and two real-world cases are developed to test these methods. Comparative experiments demonstrate that the MILP model is superior in small-scale cases, while the GA-CP model exhibits the best overall performance in medium to large-scale cases. Furthermore, through comparisons with two advanced algorithms, the effectiveness and superiority of the GA-CP method in addressing real-world cases are confirmed.[8pt]Note to Practitioners-In modern manufacturing environments, particularly in industries like automotive manufacturing, multiple robots working together on complex tasks are increasingly common. This paper addresses the practical challenge of effectively scheduling these robots to maximize efficiency while reducing the number of robots assigned to each task. This study introduces and compares different methods, including MILP, CP, and GA-CP methods, that can help practitioners determine the best way to allocate tasks among robots and schedule them efficiently. For example, in small-scale tasks, the MILP model can quickly provide the best solution. However, as the complexity and scale of the task increase, the GA-CP method becomes more practical, offering high-quality solutions within a reasonable timeframe. The study provides actionable insights that can be applied directly to real-world production scenarios, helping practitioners in industries like automotive stamping to maximize job shop productivity while reducing energy consumption losses in robot processing. |
| Author | Gao, Liang Huang, Jin Li, Xinyu |
| Author_xml | – sequence: 1 givenname: Jin orcidid: 0009-0009-9794-1045 surname: Huang fullname: Huang, Jin organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Xinyu orcidid: 0000-0002-3730-0360 surname: Li fullname: Li, Xinyu email: lixinyu@mail.hust.edu.cn organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Liang orcidid: 0000-0002-1485-0722 surname: Gao fullname: Gao, Liang organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China |
| BookMark | eNp9kEFPwjAYhhuDiYD-ABMP_QPFbm3X7rgQQA2oETyapWu_SU1dyTYI_HtZ4GA8ePrew_e8efMMUK8KFSB0G9FRFNH0fpUtJ6OYxmLEhOA0Si9QPxJCESYV63WZCyJSIa7QoGm-KI25SmkffWT4OezA41lGxq94Ae06WFyGGk_dHixZHTaAF1vfOvIWitDicfBeF6HWrdsBXpo12K131Sd2FZ562LvCA34KBV6uw-YaXZbaN3BzvkP0Pp2sxg9k_jJ7HGdzYuJEtQQspdIWpRSWglQWlEoE5zYGq2lZamNZAolVXDHGreGJFMZoCXFSWki1ZkMkT72mDk1TQ5kb1x4XhqqttfN5RPPOUt5ZyjtL-dnSkYz-kJvafev68C9zd2IcAPz6T5mUnLEfg151sQ |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1016_j_jii_2025_100917 crossref_primary_10_1016_j_eij_2025_100759 |
| Cites_doi | 10.1016/j.cor.2016.04.006 10.1007/s11431-022-2096-6 10.1016/j.ijpe.2016.01.016 10.1109/tase.2024.3356255 10.1007/978-3-030-27535-8_47 10.1177/0278364913496484 10.1177/0278364904045564 10.1007/s00170-023-11750-1 10.1109/LRA.2021.3057011 10.1007/s10845-021-01803-1 10.1093/nsr/nwad042 10.1016/j.cirp.2020.04.030 10.1109/MRA.2019.2943395 10.1016/j.rcim.2022.102321 10.1080/00207543.2022.2154404 10.1016/j.rcim.2021.102140 10.1145/3150225 10.1016/j.rcim.2014.12.011 10.1016/j.eswa.2022.117796 10.1080/00207543.2013.827806 10.1016/j.rcim.2023.102620 10.1016/j.addma.2019.100906 10.1016/j.cie.2016.12.020 10.1109/IROS45743.2020.9341652 10.1016/j.swevo.2023.101374 10.1109/TASE.2018.2789820 10.1016/j.rcim.2018.12.020 10.1080/00207543.2018.1470695 10.1109/TRO.2020.3043688 10.1016/j.robot.2023.104492 10.1016/j.rcim.2016.08.006 10.1109/SMC42975.2020.9283215 10.1109/LRA.2021.3056069 10.1109/TRO.2018.2795034 10.1016/j.robot.2022.104289 10.14429/dsj.68.11187 10.1080/00207543.2021.1989077 10.1016/j.jmsy.2023.11.010 10.1109/TASE.2013.2274517 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2025.3554019 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 13543 |
| ExternalDocumentID | 10_1109_TASE_2025_3554019 10937743 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52188102 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2024BRA004 funderid: 10.13039/501100012226 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2024C01139 funderid: 10.13039/100022963 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c268t-ed007dbf75d0e78de886544d2eda0ffacd36e6d848334dc4675cca7e26fde9aa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470389400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 08:02:06 EST 2025 Tue Nov 18 21:20:28 EST 2025 Wed Aug 27 02:03:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-ed007dbf75d0e78de886544d2eda0ffacd36e6d848334dc4675cca7e26fde9aa3 |
| ORCID | 0000-0002-1485-0722 0009-0009-9794-1045 0000-0002-3730-0360 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TASE_2025_3554019 ieee_primary_10937743 crossref_primary_10_1109_TASE_2025_3554019 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Rajmohan (ref14) 2018; 68 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref36 doi: 10.1016/j.cor.2016.04.006 – ident: ref18 doi: 10.1007/s11431-022-2096-6 – ident: ref33 doi: 10.1016/j.ijpe.2016.01.016 – ident: ref17 doi: 10.1109/tase.2024.3356255 – ident: ref27 doi: 10.1007/978-3-030-27535-8_47 – ident: ref34 doi: 10.1177/0278364913496484 – ident: ref28 doi: 10.1177/0278364904045564 – ident: ref22 doi: 10.1007/s00170-023-11750-1 – ident: ref5 doi: 10.1109/LRA.2021.3057011 – ident: ref23 doi: 10.1007/s10845-021-01803-1 – ident: ref4 doi: 10.1093/nsr/nwad042 – ident: ref32 doi: 10.1016/j.cirp.2020.04.030 – ident: ref24 doi: 10.1109/MRA.2019.2943395 – ident: ref2 doi: 10.1016/j.rcim.2022.102321 – ident: ref38 doi: 10.1080/00207543.2022.2154404 – ident: ref1 doi: 10.1016/j.rcim.2021.102140 – ident: ref20 doi: 10.1145/3150225 – ident: ref15 doi: 10.1016/j.rcim.2014.12.011 – ident: ref30 doi: 10.1016/j.eswa.2022.117796 – ident: ref37 doi: 10.1080/00207543.2013.827806 – ident: ref11 doi: 10.1016/j.rcim.2023.102620 – ident: ref21 doi: 10.1016/j.addma.2019.100906 – ident: ref39 doi: 10.1016/j.cie.2016.12.020 – ident: ref13 doi: 10.1109/IROS45743.2020.9341652 – ident: ref35 doi: 10.1016/j.swevo.2023.101374 – ident: ref3 doi: 10.1109/TASE.2018.2789820 – ident: ref16 doi: 10.1016/j.rcim.2018.12.020 – ident: ref26 doi: 10.1080/00207543.2018.1470695 – ident: ref7 doi: 10.1109/TRO.2020.3043688 – ident: ref10 doi: 10.1016/j.robot.2023.104492 – ident: ref8 doi: 10.1016/j.rcim.2016.08.006 – ident: ref12 doi: 10.1109/SMC42975.2020.9283215 – ident: ref31 doi: 10.1109/LRA.2021.3056069 – ident: ref6 doi: 10.1109/TRO.2018.2795034 – ident: ref9 doi: 10.1016/j.robot.2022.104289 – volume: 68 start-page: 175 issue: 2 year: 2018 ident: ref14 article-title: Multi-objective optimisation of multi-robot task allocation with precedence constraints publication-title: Defence Sci. J. doi: 10.14429/dsj.68.11187 – ident: ref25 doi: 10.1080/00207543.2021.1989077 – ident: ref29 doi: 10.1016/j.jmsy.2023.11.010 – ident: ref19 doi: 10.1109/TASE.2013.2274517 |
| SSID | ssj0024890 |
| Score | 2.4244528 |
| Snippet | With the rapid development of intelligent manufacturing, multi-robot collaborative systems are increasingly integrated into various production processes. In... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 13531 |
| SubjectTerms | Assembly Collaboration constraint programming Fixed-type multi-robot collaborative problem genetic algorithm-constraint programming Job shop scheduling Manufacturing mixed integer linear programming Optimal scheduling Process control Resource management Robot kinematics Robots Service robots |
| Title | A Novel GA-CP Method for Fixed-Type Multi-Robot Collaborative Scheduling in Flexible Job Shop |
| URI | https://ieeexplore.ieee.org/document/10937743 |
| Volume | 22 |
| WOSCitedRecordID | wos001470389400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBZ8X6IgdPQtruI7vJsZRWES3FVuhFlk1mVgulW2pb_Pkm2dX2ouBtWTLLki9kHsl8HyE3gednUpjdDz3lszCLPCa19pinA4gViEiljsT1Me71xGgk-2WzuuuFQUR3-Qzr9tGd5UOul7ZU1rDURyZcCbbJdhzHRbPWmlhPuIKKDQkYl5yXR5jGpjFsDTomFfR53XpXx6qz4YQ2VFWcU-ke_PN3Dsl-GT3SVgH3EdnC6THZ2-AUPCGvLdrLVzihdy3W7tMnpxBNTWhKu-NPBGYTT-rabtlzrvIFba9XwgrpwIAI9nb6Gx1PadfSZaoJ0odc0cF7PquSl25n2L5npYYC034kFgzBBAGgsphDE2MBKETEwxB8hLSZZamGIMIIRCiCIARttk1uMI3RjzJAmabBKalM8ymeEcqtYKxU3HxAhsA9oUL0MtRSmzQrQ6iR5vekJrokGLc6F5PEJRpNmVgcEotDUuJQI7c_JrOCXeOvwVWLwcbAYvrPf3l_QXateVEvuSSVxXyJV2RHrxbjj_m1WzxfZK_BHw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBfXgW6zPHDwJ0e4ju8mxlNaqtYit4EWWTWZWC6UrtS3-fJPsqr0oeAshCWG-kHkk8w0hZ4HnZ1KY2w895bMwizwmtfaYpwOIFYhIpY7EtRN3u-LpSd6XyeouFwYR3eczvLBN95YPuZ7aUNmlpT4y5kqwSJZ4GPpeka71Q60nXEjFGgWMS87LR0wz67Jf7zWNM-jzC6tfHa_OnBqaq6vi1Epr458b2iTrpf1I6wXgW2QBR9tkbY5VcIc812k3n-GQXtVZ457euRrR1BintDX4QGDW9aQu8ZY95Cqf0MbPWZgh7RkYwf5Pf6GDEW1Zwkw1RHqTK9p7zd92yWOr2W-0WVlFgWk_EhOGYMwAUFnMoYaxABQiMtIDHyGtZVmqIYgwAhGKIAhBm4uTG1Rj9KMMUKZpsEcqo3yE-4RyWzJWKm4WkCFwT6gQvQy11MbRyhCqpPYl1ESXFOO20sUwca5GTSYWh8TikJQ4VMn595S3gl_jr8G7FoO5gYX4D37pPyUr7f5dJ-lcd28PyapdqoieHJHKZDzFY7KsZ5PB-_jEHaRPnZTEZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+GA-CP+Method+for+Fixed-Type+Multi-Robot+Collaborative+Scheduling+in+Flexible+Job+Shop&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Huang%2C+Jin&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=13531&rft.epage=13543&rft_id=info:doi/10.1109%2FTASE.2025.3554019&rft.externalDocID=10937743 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |