A multi-population evolutionary algorithm based on knowledge transfer for constrained many-objective optimization

Constrained Many-objective Optimization Problems (CMaOPs) are challenging in handling objectives and constraints simultaneously. Here, a novel Constrained Many-objective Optimization Evolutionary Algorithm (CMaOEA) based on Multi-population, Knowledge transfer and Improved environmental selection ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering optimization Ročník 57; číslo 3; s. 813 - 843
Hlavní autoři: Ge, Wenlong, Zhang, Shanxin, Song, Weida, Wang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.03.2025
Taylor & Francis Ltd
Témata:
ISSN:0305-215X, 1029-0273
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Constrained Many-objective Optimization Problems (CMaOPs) are challenging in handling objectives and constraints simultaneously. Here, a novel Constrained Many-objective Optimization Evolutionary Algorithm (CMaOEA) based on Multi-population, Knowledge transfer and Improved environmental selection called CMaMKI is proposed to handle CMaOPs. The proposed framework evolves a task population to solve the original CMaOP and evolves another population to solve a helper problem derived from the original one. To assist solving the original CMaOP, a knowledge expression and transfer strategy is designed to share useful information in the helper population with the task population. Meanwhile, to balance population convergence, diversity and feasibility, an enhanced environmental selection strategy is devised by combining the ε-constrained technique, θ-dominance and subregional density evaluation. The proposed algorithm is evaluated and contrasted with six state-of-the-art algorithms on a set of benchmark CMaOPs. The experimental results demonstrate the superiority and competitiveness of the proposed method.
AbstractList Constrained Many-objective Optimization Problems (CMaOPs) are challenging in handling objectives and constraints simultaneously. Here, a novel Constrained Many-objective Optimization Evolutionary Algorithm (CMaOEA) based on Multi-population, Knowledge transfer and Improved environmental selection called CMaMKI is proposed to handle CMaOPs. The proposed framework evolves a task population to solve the original CMaOP and evolves another population to solve a helper problem derived from the original one. To assist solving the original CMaOP, a knowledge expression and transfer strategy is designed to share useful information in the helper population with the task population. Meanwhile, to balance population convergence, diversity and feasibility, an enhanced environmental selection strategy is devised by combining the ε-constrained technique, θ-dominance and subregional density evaluation. The proposed algorithm is evaluated and contrasted with six state-of-the-art algorithms on a set of benchmark CMaOPs. The experimental results demonstrate the superiority and competitiveness of the proposed method.
Author Ge, Wenlong
Song, Weida
Wang, Wei
Zhang, Shanxin
Author_xml – sequence: 1
  givenname: Wenlong
  surname: Ge
  fullname: Ge, Wenlong
  organization: Jiangnan University
– sequence: 2
  givenname: Shanxin
  orcidid: 0000-0002-7948-9202
  surname: Zhang
  fullname: Zhang, Shanxin
  email: shanxinzhang@jiangnan.edu.cn
  organization: Jiangnan University
– sequence: 3
  givenname: Weida
  surname: Song
  fullname: Song, Weida
  organization: Jiangnan University
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Jiangnan University
BookMark eNqFkE9v2yAYh1HVSk3_fIRKSDs7e4EQ29plVdVukyrtskq9IYwhI8PgAm6UffrhJrvssJ5A8Px-vDwX6NQHrxG6IbAk0MBHYMAp4c9LCnS1pIxxzukJWhCgbQW0ZqdoMTPVDJ2ji5S2AIQBNAv0couHyWVbjWGcnMw2eKxfg5vmnYx7LN0mRJt_DriTSfe43P_yYed0v9E4R-mT0RGbELEKPpUD6ws1SL-vQrfVKttXjcOY7WB_v9VfoTMjXdLXx_USPT3c_7j7Wj1-__Lt7vaxUnTd5EpTw41saCc1Xa0aaDlvOlIzpgzXquNtt1aM1LVpm4b30pA17WtQCjTjRveEXaIPh94xhpdJpyy2YYq-PClKjrIaeMsK9elAqRhSitoIZfPbnPNXnCAgZsfir2MxOxZHxyXN_0mP0Q5F27u5z4ec9cXcIHchul5kuXchmuJU2XnI_1b8AbxAmHo
CitedBy_id crossref_primary_10_1080_0305215X_2024_2420726
Cites_doi 10.1109/TEVC.2022.3155533
10.1109/TCYB.2022.3151793
10.1109/TEVC.4235
10.1109/TEVC.2013.2281534
10.1016/j.ins.2023.119260
10.1016/j.asoc.2019.105911
10.1016/j.ins.2023.119547
10.1007/978-3-319-15892-1_8
10.1109/CEC.2015.7256997
10.1007/978-3-642-05258-3_56
10.1016/j.swevo.2022.101055
10.1109/TEVC.2016.2634625
10.1109/4235.797969
10.1109/TEVC.2021.3055538
10.1109/TCYB.2020.3031642
10.1145/3377929.3398082
10.1109/TETCI.2023.3236633
10.1016/j.swevo.2019.100619
10.1109/MCI.2017.2742868
10.1109/TEVC.2015.2458037
10.1109/TEVC.2014.2339823
10.1016/j.swevo.2018.08.017
10.1016/j.swevo.2021.100983
10.1109/TEVC.2022.3230822
10.1109/MCI.2023.3245719
10.1109/TCYB.2018.2819208
10.1109/CEC.2006.1688283
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/0305215X.2024.2335552
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 843
ExternalDocumentID 10_1080_0305215X_2024_2335552
2335552
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61802153
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c268t-e2f5fa82bae244809558b1733cf5ecb59b6c3177f9885daf162d70cc0e35fed13
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235408700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-215X
IngestDate Wed Aug 13 09:18:55 EDT 2025
Sat Nov 29 08:12:21 EST 2025
Tue Nov 18 22:17:56 EST 2025
Mon Oct 20 23:48:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-e2f5fa82bae244809558b1733cf5ecb59b6c3177f9885daf162d70cc0e35fed13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7948-9202
PQID 3172370593
PQPubID 53195
PageCount 31
ParticipantIDs informaworld_taylorfrancis_310_1080_0305215X_2024_2335552
proquest_journals_3172370593
crossref_citationtrail_10_1080_0305215X_2024_2335552
crossref_primary_10_1080_0305215X_2024_2335552
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
Zhou Yalan (e_1_3_3_33_1) 2020; 50
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_15_1
  doi: 10.1109/TEVC.2022.3155533
– ident: e_1_3_3_20_1
  doi: 10.1109/TCYB.2022.3151793
– ident: e_1_3_3_16_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_28_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_17_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_10_1
  doi: 10.1109/TEVC.2013.2281534
– ident: e_1_3_3_19_1
  doi: 10.1016/j.ins.2023.119260
– ident: e_1_3_3_30_1
  doi: 10.1016/j.asoc.2019.105911
– ident: e_1_3_3_32_1
  doi: 10.1016/j.ins.2023.119547
– ident: e_1_3_3_31_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_13_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_9_1
  doi: 10.1007/978-3-319-15892-1_8
– ident: e_1_3_3_12_1
  doi: 10.1109/CEC.2015.7256997
– ident: e_1_3_3_14_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_6_1
  doi: 10.1007/978-3-642-05258-3_56
– ident: e_1_3_3_22_1
  doi: 10.1016/j.swevo.2022.101055
– ident: e_1_3_3_7_1
  doi: 10.1109/TEVC.2016.2634625
– ident: e_1_3_3_35_1
  doi: 10.1109/4235.797969
– ident: e_1_3_3_24_1
  doi: 10.1109/TEVC.2021.3055538
– ident: e_1_3_3_11_1
  doi: 10.1109/TCYB.2020.3031642
– ident: e_1_3_3_25_1
  doi: 10.1145/3377929.3398082
– ident: e_1_3_3_23_1
  doi: 10.1109/TETCI.2023.3236633
– volume: 50
  start-page: 3086
  issue: 8
  year: 2020
  ident: e_1_3_3_33_1
  article-title: Tri-Goal Evolution Framework for Constrained Many-Objective Optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– ident: e_1_3_3_3_1
  doi: 10.1016/j.swevo.2019.100619
– ident: e_1_3_3_27_1
  doi: 10.1109/MCI.2017.2742868
– ident: e_1_3_3_8_1
  doi: 10.1109/TEVC.2015.2458037
– ident: e_1_3_3_2_1
  doi: 10.1109/TEVC.2014.2339823
– ident: e_1_3_3_4_1
  doi: 10.1016/j.swevo.2018.08.017
– ident: e_1_3_3_5_1
  doi: 10.1016/j.swevo.2021.100983
– ident: e_1_3_3_21_1
  doi: 10.1109/TEVC.2022.3230822
– ident: e_1_3_3_18_1
  doi: 10.1109/MCI.2023.3245719
– ident: e_1_3_3_29_1
  doi: 10.1109/TCYB.2018.2819208
– ident: e_1_3_3_34_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_26_1
  doi: 10.1109/CEC.2006.1688283
SSID ssj0013008
Score 2.3999174
Snippet Constrained Many-objective Optimization Problems (CMaOPs) are challenging in handling objectives and constraints simultaneously. Here, a novel Constrained...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 813
SubjectTerms Algorithms
Constrained many-objective optimization
Constraints
environmental selection
evolutionary algorithm
Evolutionary algorithms
knowledge transfer
multi-population
Multiple objective analysis
Optimization
Title A multi-population evolutionary algorithm based on knowledge transfer for constrained many-objective optimization
URI https://www.tandfonline.com/doi/abs/10.1080/0305215X.2024.2335552
https://www.proquest.com/docview/3172370593
Volume 57
WOSCitedRecordID wos001235408700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6JQkAdWQ-IktTMiRMWEGEB0ixw_oKgPSAMS_547xylFCDHAnJzl2Oe7z875-wg5cdZEuYw0OK_gLFWpYVLalHETaalFpIVwXmxCXF_LwSC_CdWEs1BWiXto1xBF-FiNi1uVs7Yi7gx9FDLVAHZ3PD3lCaTMDKMwpH5cmrf9-8__CJHXpEMLhibtHZ6fWvmSnb5wl36L1T4B9Tf-oeubZD2gT3reuMsWWbKTbbK2wEm4Q17OqS8yZM9zaS9q34KDquqdqtHDtBrWj2OKGdBQeD4_mKO1x8G2ovBJVCP2RAkKeGsMQYdNy6cmvtIpRKpxuAK6S-76l7cXVyzoMjDNe7JmlrvMKclLZQEcSCSxk2UskkS7zOoyy8ueBlgiXC5lZpSLe9zArOvIJhn4RpzskeXJdGL3CYXNXhkrIU1PlilABSVzLY0F2Gg8FOmQtJ2PQgfScuz4qIhbbtMwogWOaBFGtENO52bPDWvHbwb54mQXtT8ucY22SZH8YtttPaMIAQBNBE8E6iUe_KHpQ7LKUW8Ya97SLlmuq1d7RFb0Wz2cVcfe1T8AL-371Q
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQIAEHdsRSwAeuhsRJaueIEFUR0FMRvUWJFxZ1I4RK_D0zTlKKEOIA52Qsx57MPNvj9wg5sUZ7sfQUOK_gLExDzaQ0IePaU1IJTwlhndiE6HRkrxfP3oXBskpcQ9uSKMLFavy5cTO6Lok7QyeFVNWD5R0PT3kAOTOCMLwQQa5F_vxu6_7zJMFzqnRowtCmvsXzUzNf8tMX9tJv0dqloNbaf3R-naxWAJSelx6zQebMcJOszNASbpGXc-rqDNl4qu5FzaTy0TR_p2n_YZQ_FY8DiklQU3g-3ZujhYPCJqfwTVQh_EQVCnhrAHGHjbLnMsTSEQSrQXULdJvctS67F21WSTMwxZuyYIbbyKaSZ6kBfCCRx05mvggCZSOjsijOmgqQibCxlJFOrd_kGiZeeSaIwD38YIfMD0dDs0sorPcyPxVSN2UWAlpIZaykNoActUMjeySsJyRRFW85dryf-DW9aTWiCY5oUo3oHjmdmo1L4o7fDOLZ2U4Kt2NiS3mTJPjFtlG7RlLFADQRPBAombj_h6aPyVK7e3uT3Fx1rg_IMkf5YSyBCxtkvsjfzCFZVJPi6TU_cn7_ASFLAA4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQIAQHdkShgA9cXRJnsXNEQAUCVRxA9BYlXqCILoRQib9n7DiFCqEe4JyM5dgvM8_2eB5Cx1pJL-GeAPAySsIslIRzFRIqPcEF8wRj2opNsE6Hd7vJrcsmfHNplWYNratCEdZXm597JHWdEXdiMAqRqgurOxq2aAAhMwIvvADUOTYgv2s_fB0keFaUzpgQY1Nf4vmtmanwNFW89IezthGovfYPfV9Hq45-4tMKLxtoTg020cq3ooRb6PUU2yxDMppoe2E1dgjNig-cvTwOi1751McmBEoMzyc7c7i0RFgVGD4JC0M-jQYFvNUHr0OG-XPlYPEQXFXf3QHdRvfti7uzS-KEGYigMS-JojrSGad5poAdcFPFjuc-CwKhIyXyKMljAbyE6YTzSGbaj6mEaReeCiIAhx_soPnBcKB2EYbVXu5njMuY5yFwhYwngksFvFFaLtJAYT0fqXBVy03HX1K_Lm7qRjQ1I5q6EW2g1sRsVJXtmGWQfJ_stLT7JboSN0mDGbbNGhmp8wDGhNGAGcHEvT80fYSWbs_b6c1V53ofLVOjPWzy38Immi-Ld3WAFsW47L0Vhxb1nxv5_rE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-population+evolutionary+algorithm+based+on+knowledge+transfer+for+constrained+many-objective+optimization&rft.jtitle=Engineering+optimization&rft.au=Ge%2C+Wenlong&rft.au=Zhang%2C+Shanxin&rft.au=Song%2C+Weida&rft.au=Wang%2C+Wei&rft.date=2025-03-04&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=57&rft.issue=3&rft.spage=813&rft.epage=843&rft_id=info:doi/10.1080%2F0305215X.2024.2335552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2024_2335552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon